xref: /linux/arch/arm/mm/fault.c (revision 1f20a5769446a1acae67ac9e63d07a594829a789)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2004 Russell King
7  */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 #include <linux/kfence.h>
21 
22 #include <asm/system_misc.h>
23 #include <asm/system_info.h>
24 #include <asm/tlbflush.h>
25 
26 #include "fault.h"
27 
28 bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size)
29 {
30 	unsigned long addr = (unsigned long)unsafe_src;
31 
32 	return addr >= TASK_SIZE && ULONG_MAX - addr >= size;
33 }
34 
35 #ifdef CONFIG_MMU
36 
37 /*
38  * This is useful to dump out the page tables associated with
39  * 'addr' in mm 'mm'.
40  */
41 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
42 {
43 	pgd_t *pgd;
44 
45 	if (!mm)
46 		mm = &init_mm;
47 
48 	pgd = pgd_offset(mm, addr);
49 	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
50 
51 	do {
52 		p4d_t *p4d;
53 		pud_t *pud;
54 		pmd_t *pmd;
55 		pte_t *pte;
56 
57 		p4d = p4d_offset(pgd, addr);
58 		if (p4d_none(*p4d))
59 			break;
60 
61 		if (p4d_bad(*p4d)) {
62 			pr_cont("(bad)");
63 			break;
64 		}
65 
66 		pud = pud_offset(p4d, addr);
67 		if (PTRS_PER_PUD != 1)
68 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
69 
70 		if (pud_none(*pud))
71 			break;
72 
73 		if (pud_bad(*pud)) {
74 			pr_cont("(bad)");
75 			break;
76 		}
77 
78 		pmd = pmd_offset(pud, addr);
79 		if (PTRS_PER_PMD != 1)
80 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
81 
82 		if (pmd_none(*pmd))
83 			break;
84 
85 		if (pmd_bad(*pmd)) {
86 			pr_cont("(bad)");
87 			break;
88 		}
89 
90 		/* We must not map this if we have highmem enabled */
91 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
92 			break;
93 
94 		pte = pte_offset_map(pmd, addr);
95 		if (!pte)
96 			break;
97 
98 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
99 #ifndef CONFIG_ARM_LPAE
100 		pr_cont(", *ppte=%08llx",
101 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
102 #endif
103 		pte_unmap(pte);
104 	} while(0);
105 
106 	pr_cont("\n");
107 }
108 #else					/* CONFIG_MMU */
109 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
110 { }
111 #endif					/* CONFIG_MMU */
112 
113 static inline bool is_write_fault(unsigned int fsr)
114 {
115 	return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
116 }
117 
118 static inline bool is_translation_fault(unsigned int fsr)
119 {
120 	int fs = fsr_fs(fsr);
121 #ifdef CONFIG_ARM_LPAE
122 	if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL)
123 		return true;
124 #else
125 	if (fs == FS_L1_TRANS || fs == FS_L2_TRANS)
126 		return true;
127 #endif
128 	return false;
129 }
130 
131 static void die_kernel_fault(const char *msg, struct mm_struct *mm,
132 			     unsigned long addr, unsigned int fsr,
133 			     struct pt_regs *regs)
134 {
135 	bust_spinlocks(1);
136 	pr_alert("8<--- cut here ---\n");
137 	pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n",
138 		 msg, addr, fsr & FSR_LNX_PF ? "execute" :
139 		 fsr & FSR_WRITE ? "write" : "read");
140 
141 	show_pte(KERN_ALERT, mm, addr);
142 	die("Oops", regs, fsr);
143 	bust_spinlocks(0);
144 	make_task_dead(SIGKILL);
145 }
146 
147 /*
148  * Oops.  The kernel tried to access some page that wasn't present.
149  */
150 static void
151 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
152 		  struct pt_regs *regs)
153 {
154 	const char *msg;
155 	/*
156 	 * Are we prepared to handle this kernel fault?
157 	 */
158 	if (fixup_exception(regs))
159 		return;
160 
161 	/*
162 	 * No handler, we'll have to terminate things with extreme prejudice.
163 	 */
164 	if (addr < PAGE_SIZE) {
165 		msg = "NULL pointer dereference";
166 	} else {
167 		if (is_translation_fault(fsr) &&
168 		    kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
169 			return;
170 
171 		msg = "paging request";
172 	}
173 
174 	die_kernel_fault(msg, mm, addr, fsr, regs);
175 }
176 
177 /*
178  * Something tried to access memory that isn't in our memory map..
179  * User mode accesses just cause a SIGSEGV
180  */
181 static void
182 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
183 		int code, struct pt_regs *regs)
184 {
185 	struct task_struct *tsk = current;
186 
187 	if (addr > TASK_SIZE)
188 		harden_branch_predictor();
189 
190 #ifdef CONFIG_DEBUG_USER
191 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
192 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
193 		pr_err("8<--- cut here ---\n");
194 		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
195 		       tsk->comm, sig, addr, fsr);
196 		show_pte(KERN_ERR, tsk->mm, addr);
197 		show_regs(regs);
198 	}
199 #endif
200 #ifndef CONFIG_KUSER_HELPERS
201 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
202 		printk_ratelimited(KERN_DEBUG
203 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
204 				   tsk->comm, addr);
205 #endif
206 
207 	tsk->thread.address = addr;
208 	tsk->thread.error_code = fsr;
209 	tsk->thread.trap_no = 14;
210 	force_sig_fault(sig, code, (void __user *)addr);
211 }
212 
213 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
214 {
215 	struct task_struct *tsk = current;
216 	struct mm_struct *mm = tsk->active_mm;
217 
218 	/*
219 	 * If we are in kernel mode at this point, we
220 	 * have no context to handle this fault with.
221 	 */
222 	if (user_mode(regs))
223 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
224 	else
225 		__do_kernel_fault(mm, addr, fsr, regs);
226 }
227 
228 #ifdef CONFIG_MMU
229 #define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
230 #define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
231 
232 static inline bool is_permission_fault(unsigned int fsr)
233 {
234 	int fs = fsr_fs(fsr);
235 #ifdef CONFIG_ARM_LPAE
236 	if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL)
237 		return true;
238 #else
239 	if (fs == FS_L1_PERM || fs == FS_L2_PERM)
240 		return true;
241 #endif
242 	return false;
243 }
244 
245 static int __kprobes
246 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
247 {
248 	struct mm_struct *mm = current->mm;
249 	struct vm_area_struct *vma;
250 	int sig, code;
251 	vm_fault_t fault;
252 	unsigned int flags = FAULT_FLAG_DEFAULT;
253 	unsigned long vm_flags = VM_ACCESS_FLAGS;
254 
255 	if (kprobe_page_fault(regs, fsr))
256 		return 0;
257 
258 
259 	/* Enable interrupts if they were enabled in the parent context. */
260 	if (interrupts_enabled(regs))
261 		local_irq_enable();
262 
263 	/*
264 	 * If we're in an interrupt or have no user
265 	 * context, we must not take the fault..
266 	 */
267 	if (faulthandler_disabled() || !mm)
268 		goto no_context;
269 
270 	if (user_mode(regs))
271 		flags |= FAULT_FLAG_USER;
272 
273 	if (is_write_fault(fsr)) {
274 		flags |= FAULT_FLAG_WRITE;
275 		vm_flags = VM_WRITE;
276 	}
277 
278 	if (fsr & FSR_LNX_PF) {
279 		vm_flags = VM_EXEC;
280 
281 		if (is_permission_fault(fsr) && !user_mode(regs))
282 			die_kernel_fault("execution of memory",
283 					 mm, addr, fsr, regs);
284 	}
285 
286 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
287 
288 	if (!(flags & FAULT_FLAG_USER))
289 		goto lock_mmap;
290 
291 	vma = lock_vma_under_rcu(mm, addr);
292 	if (!vma)
293 		goto lock_mmap;
294 
295 	if (!(vma->vm_flags & vm_flags)) {
296 		vma_end_read(vma);
297 		goto lock_mmap;
298 	}
299 	fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs);
300 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
301 		vma_end_read(vma);
302 
303 	if (!(fault & VM_FAULT_RETRY)) {
304 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
305 		goto done;
306 	}
307 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
308 	if (fault & VM_FAULT_MAJOR)
309 		flags |= FAULT_FLAG_TRIED;
310 
311 	/* Quick path to respond to signals */
312 	if (fault_signal_pending(fault, regs)) {
313 		if (!user_mode(regs))
314 			goto no_context;
315 		return 0;
316 	}
317 lock_mmap:
318 
319 retry:
320 	vma = lock_mm_and_find_vma(mm, addr, regs);
321 	if (unlikely(!vma)) {
322 		fault = VM_FAULT_BADMAP;
323 		goto bad_area;
324 	}
325 
326 	/*
327 	 * ok, we have a good vm_area for this memory access, check the
328 	 * permissions on the VMA allow for the fault which occurred.
329 	 */
330 	if (!(vma->vm_flags & vm_flags))
331 		fault = VM_FAULT_BADACCESS;
332 	else
333 		fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
334 
335 	/* If we need to retry but a fatal signal is pending, handle the
336 	 * signal first. We do not need to release the mmap_lock because
337 	 * it would already be released in __lock_page_or_retry in
338 	 * mm/filemap.c. */
339 	if (fault_signal_pending(fault, regs)) {
340 		if (!user_mode(regs))
341 			goto no_context;
342 		return 0;
343 	}
344 
345 	/* The fault is fully completed (including releasing mmap lock) */
346 	if (fault & VM_FAULT_COMPLETED)
347 		return 0;
348 
349 	if (!(fault & VM_FAULT_ERROR)) {
350 		if (fault & VM_FAULT_RETRY) {
351 			flags |= FAULT_FLAG_TRIED;
352 			goto retry;
353 		}
354 	}
355 
356 	mmap_read_unlock(mm);
357 done:
358 
359 	/*
360 	 * Handle the "normal" case first - VM_FAULT_MAJOR
361 	 */
362 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
363 		return 0;
364 
365 bad_area:
366 	/*
367 	 * If we are in kernel mode at this point, we
368 	 * have no context to handle this fault with.
369 	 */
370 	if (!user_mode(regs))
371 		goto no_context;
372 
373 	if (fault & VM_FAULT_OOM) {
374 		/*
375 		 * We ran out of memory, call the OOM killer, and return to
376 		 * userspace (which will retry the fault, or kill us if we
377 		 * got oom-killed)
378 		 */
379 		pagefault_out_of_memory();
380 		return 0;
381 	}
382 
383 	if (fault & VM_FAULT_SIGBUS) {
384 		/*
385 		 * We had some memory, but were unable to
386 		 * successfully fix up this page fault.
387 		 */
388 		sig = SIGBUS;
389 		code = BUS_ADRERR;
390 	} else {
391 		/*
392 		 * Something tried to access memory that
393 		 * isn't in our memory map..
394 		 */
395 		sig = SIGSEGV;
396 		code = fault == VM_FAULT_BADACCESS ?
397 			SEGV_ACCERR : SEGV_MAPERR;
398 	}
399 
400 	__do_user_fault(addr, fsr, sig, code, regs);
401 	return 0;
402 
403 no_context:
404 	__do_kernel_fault(mm, addr, fsr, regs);
405 	return 0;
406 }
407 #else					/* CONFIG_MMU */
408 static int
409 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
410 {
411 	return 0;
412 }
413 #endif					/* CONFIG_MMU */
414 
415 /*
416  * First Level Translation Fault Handler
417  *
418  * We enter here because the first level page table doesn't contain
419  * a valid entry for the address.
420  *
421  * If the address is in kernel space (>= TASK_SIZE), then we are
422  * probably faulting in the vmalloc() area.
423  *
424  * If the init_task's first level page tables contains the relevant
425  * entry, we copy the it to this task.  If not, we send the process
426  * a signal, fixup the exception, or oops the kernel.
427  *
428  * NOTE! We MUST NOT take any locks for this case. We may be in an
429  * interrupt or a critical region, and should only copy the information
430  * from the master page table, nothing more.
431  */
432 #ifdef CONFIG_MMU
433 static int __kprobes
434 do_translation_fault(unsigned long addr, unsigned int fsr,
435 		     struct pt_regs *regs)
436 {
437 	unsigned int index;
438 	pgd_t *pgd, *pgd_k;
439 	p4d_t *p4d, *p4d_k;
440 	pud_t *pud, *pud_k;
441 	pmd_t *pmd, *pmd_k;
442 
443 	if (addr < TASK_SIZE)
444 		return do_page_fault(addr, fsr, regs);
445 
446 	if (user_mode(regs))
447 		goto bad_area;
448 
449 	index = pgd_index(addr);
450 
451 	pgd = cpu_get_pgd() + index;
452 	pgd_k = init_mm.pgd + index;
453 
454 	p4d = p4d_offset(pgd, addr);
455 	p4d_k = p4d_offset(pgd_k, addr);
456 
457 	if (p4d_none(*p4d_k))
458 		goto bad_area;
459 	if (!p4d_present(*p4d))
460 		set_p4d(p4d, *p4d_k);
461 
462 	pud = pud_offset(p4d, addr);
463 	pud_k = pud_offset(p4d_k, addr);
464 
465 	if (pud_none(*pud_k))
466 		goto bad_area;
467 	if (!pud_present(*pud))
468 		set_pud(pud, *pud_k);
469 
470 	pmd = pmd_offset(pud, addr);
471 	pmd_k = pmd_offset(pud_k, addr);
472 
473 #ifdef CONFIG_ARM_LPAE
474 	/*
475 	 * Only one hardware entry per PMD with LPAE.
476 	 */
477 	index = 0;
478 #else
479 	/*
480 	 * On ARM one Linux PGD entry contains two hardware entries (see page
481 	 * tables layout in pgtable.h). We normally guarantee that we always
482 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
483 	 * It can create inidividual L1 entries, so here we have to call
484 	 * pmd_none() check for the entry really corresponded to address, not
485 	 * for the first of pair.
486 	 */
487 	index = (addr >> SECTION_SHIFT) & 1;
488 #endif
489 	if (pmd_none(pmd_k[index]))
490 		goto bad_area;
491 
492 	copy_pmd(pmd, pmd_k);
493 	return 0;
494 
495 bad_area:
496 	do_bad_area(addr, fsr, regs);
497 	return 0;
498 }
499 #else					/* CONFIG_MMU */
500 static int
501 do_translation_fault(unsigned long addr, unsigned int fsr,
502 		     struct pt_regs *regs)
503 {
504 	return 0;
505 }
506 #endif					/* CONFIG_MMU */
507 
508 /*
509  * Some section permission faults need to be handled gracefully.
510  * They can happen due to a __{get,put}_user during an oops.
511  */
512 #ifndef CONFIG_ARM_LPAE
513 static int
514 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
515 {
516 	do_bad_area(addr, fsr, regs);
517 	return 0;
518 }
519 #endif /* CONFIG_ARM_LPAE */
520 
521 /*
522  * This abort handler always returns "fault".
523  */
524 static int
525 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
526 {
527 	return 1;
528 }
529 
530 struct fsr_info {
531 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
532 	int	sig;
533 	int	code;
534 	const char *name;
535 };
536 
537 /* FSR definition */
538 #ifdef CONFIG_ARM_LPAE
539 #include "fsr-3level.c"
540 #else
541 #include "fsr-2level.c"
542 #endif
543 
544 void __init
545 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
546 		int sig, int code, const char *name)
547 {
548 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
549 		BUG();
550 
551 	fsr_info[nr].fn   = fn;
552 	fsr_info[nr].sig  = sig;
553 	fsr_info[nr].code = code;
554 	fsr_info[nr].name = name;
555 }
556 
557 /*
558  * Dispatch a data abort to the relevant handler.
559  */
560 asmlinkage void
561 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
562 {
563 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
564 
565 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
566 		return;
567 
568 	pr_alert("8<--- cut here ---\n");
569 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
570 		inf->name, fsr, addr);
571 	show_pte(KERN_ALERT, current->mm, addr);
572 
573 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
574 		       fsr, 0);
575 }
576 
577 void __init
578 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
579 		 int sig, int code, const char *name)
580 {
581 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
582 		BUG();
583 
584 	ifsr_info[nr].fn   = fn;
585 	ifsr_info[nr].sig  = sig;
586 	ifsr_info[nr].code = code;
587 	ifsr_info[nr].name = name;
588 }
589 
590 asmlinkage void
591 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
592 {
593 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
594 
595 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
596 		return;
597 
598 	pr_alert("8<--- cut here ---\n");
599 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
600 		inf->name, ifsr, addr);
601 
602 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
603 		       ifsr, 0);
604 }
605 
606 /*
607  * Abort handler to be used only during first unmasking of asynchronous aborts
608  * on the boot CPU. This makes sure that the machine will not die if the
609  * firmware/bootloader left an imprecise abort pending for us to trip over.
610  */
611 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
612 				      struct pt_regs *regs)
613 {
614 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
615 		"first unmask, this is most likely caused by a "
616 		"firmware/bootloader bug.\n", fsr);
617 
618 	return 0;
619 }
620 
621 void __init early_abt_enable(void)
622 {
623 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
624 	local_abt_enable();
625 	fsr_info[FSR_FS_AEA].fn = do_bad;
626 }
627 
628 #ifndef CONFIG_ARM_LPAE
629 static int __init exceptions_init(void)
630 {
631 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
632 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
633 				"I-cache maintenance fault");
634 	}
635 
636 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
637 		/*
638 		 * TODO: Access flag faults introduced in ARMv6K.
639 		 * Runtime check for 'K' extension is needed
640 		 */
641 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
642 				"section access flag fault");
643 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
644 				"section access flag fault");
645 	}
646 
647 	return 0;
648 }
649 
650 arch_initcall(exceptions_init);
651 #endif
652