1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 #include <linux/kfence.h> 21 22 #include <asm/system_misc.h> 23 #include <asm/system_info.h> 24 #include <asm/tlbflush.h> 25 26 #include "fault.h" 27 28 #ifdef CONFIG_MMU 29 30 /* 31 * This is useful to dump out the page tables associated with 32 * 'addr' in mm 'mm'. 33 */ 34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 35 { 36 pgd_t *pgd; 37 38 if (!mm) 39 mm = &init_mm; 40 41 pgd = pgd_offset(mm, addr); 42 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 43 44 do { 45 p4d_t *p4d; 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 50 p4d = p4d_offset(pgd, addr); 51 if (p4d_none(*p4d)) 52 break; 53 54 if (p4d_bad(*p4d)) { 55 pr_cont("(bad)"); 56 break; 57 } 58 59 pud = pud_offset(p4d, addr); 60 if (PTRS_PER_PUD != 1) 61 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 62 63 if (pud_none(*pud)) 64 break; 65 66 if (pud_bad(*pud)) { 67 pr_cont("(bad)"); 68 break; 69 } 70 71 pmd = pmd_offset(pud, addr); 72 if (PTRS_PER_PMD != 1) 73 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 74 75 if (pmd_none(*pmd)) 76 break; 77 78 if (pmd_bad(*pmd)) { 79 pr_cont("(bad)"); 80 break; 81 } 82 83 /* We must not map this if we have highmem enabled */ 84 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 85 break; 86 87 pte = pte_offset_map(pmd, addr); 88 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 89 #ifndef CONFIG_ARM_LPAE 90 pr_cont(", *ppte=%08llx", 91 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 92 #endif 93 pte_unmap(pte); 94 } while(0); 95 96 pr_cont("\n"); 97 } 98 #else /* CONFIG_MMU */ 99 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 100 { } 101 #endif /* CONFIG_MMU */ 102 103 static inline bool is_write_fault(unsigned int fsr) 104 { 105 return (fsr & FSR_WRITE) && !(fsr & FSR_CM); 106 } 107 108 static inline bool is_translation_fault(unsigned int fsr) 109 { 110 int fs = fsr_fs(fsr); 111 #ifdef CONFIG_ARM_LPAE 112 if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL) 113 return true; 114 #else 115 if (fs == FS_L1_TRANS || fs == FS_L2_TRANS) 116 return true; 117 #endif 118 return false; 119 } 120 121 static void die_kernel_fault(const char *msg, struct mm_struct *mm, 122 unsigned long addr, unsigned int fsr, 123 struct pt_regs *regs) 124 { 125 bust_spinlocks(1); 126 pr_alert("8<--- cut here ---\n"); 127 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 128 msg, addr); 129 130 show_pte(KERN_ALERT, mm, addr); 131 die("Oops", regs, fsr); 132 bust_spinlocks(0); 133 make_task_dead(SIGKILL); 134 } 135 136 /* 137 * Oops. The kernel tried to access some page that wasn't present. 138 */ 139 static void 140 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 141 struct pt_regs *regs) 142 { 143 const char *msg; 144 /* 145 * Are we prepared to handle this kernel fault? 146 */ 147 if (fixup_exception(regs)) 148 return; 149 150 /* 151 * No handler, we'll have to terminate things with extreme prejudice. 152 */ 153 if (addr < PAGE_SIZE) { 154 msg = "NULL pointer dereference"; 155 } else { 156 if (is_translation_fault(fsr) && 157 kfence_handle_page_fault(addr, is_write_fault(fsr), regs)) 158 return; 159 160 msg = "paging request"; 161 } 162 163 die_kernel_fault(msg, mm, addr, fsr, regs); 164 } 165 166 /* 167 * Something tried to access memory that isn't in our memory map.. 168 * User mode accesses just cause a SIGSEGV 169 */ 170 static void 171 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 172 int code, struct pt_regs *regs) 173 { 174 struct task_struct *tsk = current; 175 176 if (addr > TASK_SIZE) 177 harden_branch_predictor(); 178 179 #ifdef CONFIG_DEBUG_USER 180 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 181 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 182 pr_err("8<--- cut here ---\n"); 183 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 184 tsk->comm, sig, addr, fsr); 185 show_pte(KERN_ERR, tsk->mm, addr); 186 show_regs(regs); 187 } 188 #endif 189 #ifndef CONFIG_KUSER_HELPERS 190 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 191 printk_ratelimited(KERN_DEBUG 192 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 193 tsk->comm, addr); 194 #endif 195 196 tsk->thread.address = addr; 197 tsk->thread.error_code = fsr; 198 tsk->thread.trap_no = 14; 199 force_sig_fault(sig, code, (void __user *)addr); 200 } 201 202 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 203 { 204 struct task_struct *tsk = current; 205 struct mm_struct *mm = tsk->active_mm; 206 207 /* 208 * If we are in kernel mode at this point, we 209 * have no context to handle this fault with. 210 */ 211 if (user_mode(regs)) 212 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 213 else 214 __do_kernel_fault(mm, addr, fsr, regs); 215 } 216 217 #ifdef CONFIG_MMU 218 #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000) 219 #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000) 220 221 static inline bool is_permission_fault(unsigned int fsr) 222 { 223 int fs = fsr_fs(fsr); 224 #ifdef CONFIG_ARM_LPAE 225 if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL) 226 return true; 227 #else 228 if (fs == FS_L1_PERM || fs == FS_L2_PERM) 229 return true; 230 #endif 231 return false; 232 } 233 234 static vm_fault_t __kprobes 235 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags, 236 unsigned long vma_flags, struct pt_regs *regs) 237 { 238 struct vm_area_struct *vma = find_vma(mm, addr); 239 if (unlikely(!vma)) 240 return VM_FAULT_BADMAP; 241 242 if (unlikely(vma->vm_start > addr)) { 243 if (!(vma->vm_flags & VM_GROWSDOWN)) 244 return VM_FAULT_BADMAP; 245 if (addr < FIRST_USER_ADDRESS) 246 return VM_FAULT_BADMAP; 247 if (expand_stack(vma, addr)) 248 return VM_FAULT_BADMAP; 249 } 250 251 /* 252 * ok, we have a good vm_area for this memory access, check the 253 * permissions on the VMA allow for the fault which occurred. 254 */ 255 if (!(vma->vm_flags & vma_flags)) 256 return VM_FAULT_BADACCESS; 257 258 return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); 259 } 260 261 static int __kprobes 262 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 263 { 264 struct mm_struct *mm = current->mm; 265 int sig, code; 266 vm_fault_t fault; 267 unsigned int flags = FAULT_FLAG_DEFAULT; 268 unsigned long vm_flags = VM_ACCESS_FLAGS; 269 270 if (kprobe_page_fault(regs, fsr)) 271 return 0; 272 273 274 /* Enable interrupts if they were enabled in the parent context. */ 275 if (interrupts_enabled(regs)) 276 local_irq_enable(); 277 278 /* 279 * If we're in an interrupt or have no user 280 * context, we must not take the fault.. 281 */ 282 if (faulthandler_disabled() || !mm) 283 goto no_context; 284 285 if (user_mode(regs)) 286 flags |= FAULT_FLAG_USER; 287 288 if (is_write_fault(fsr)) { 289 flags |= FAULT_FLAG_WRITE; 290 vm_flags = VM_WRITE; 291 } 292 293 if (fsr & FSR_LNX_PF) { 294 vm_flags = VM_EXEC; 295 296 if (is_permission_fault(fsr) && !user_mode(regs)) 297 die_kernel_fault("execution of memory", 298 mm, addr, fsr, regs); 299 } 300 301 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 302 303 /* 304 * As per x86, we may deadlock here. However, since the kernel only 305 * validly references user space from well defined areas of the code, 306 * we can bug out early if this is from code which shouldn't. 307 */ 308 if (!mmap_read_trylock(mm)) { 309 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 310 goto no_context; 311 retry: 312 mmap_read_lock(mm); 313 } else { 314 /* 315 * The above down_read_trylock() might have succeeded in 316 * which case, we'll have missed the might_sleep() from 317 * down_read() 318 */ 319 might_sleep(); 320 #ifdef CONFIG_DEBUG_VM 321 if (!user_mode(regs) && 322 !search_exception_tables(regs->ARM_pc)) 323 goto no_context; 324 #endif 325 } 326 327 fault = __do_page_fault(mm, addr, flags, vm_flags, regs); 328 329 /* If we need to retry but a fatal signal is pending, handle the 330 * signal first. We do not need to release the mmap_lock because 331 * it would already be released in __lock_page_or_retry in 332 * mm/filemap.c. */ 333 if (fault_signal_pending(fault, regs)) { 334 if (!user_mode(regs)) 335 goto no_context; 336 return 0; 337 } 338 339 /* The fault is fully completed (including releasing mmap lock) */ 340 if (fault & VM_FAULT_COMPLETED) 341 return 0; 342 343 if (!(fault & VM_FAULT_ERROR)) { 344 if (fault & VM_FAULT_RETRY) { 345 flags |= FAULT_FLAG_TRIED; 346 goto retry; 347 } 348 } 349 350 mmap_read_unlock(mm); 351 352 /* 353 * Handle the "normal" case first - VM_FAULT_MAJOR 354 */ 355 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 356 return 0; 357 358 /* 359 * If we are in kernel mode at this point, we 360 * have no context to handle this fault with. 361 */ 362 if (!user_mode(regs)) 363 goto no_context; 364 365 if (fault & VM_FAULT_OOM) { 366 /* 367 * We ran out of memory, call the OOM killer, and return to 368 * userspace (which will retry the fault, or kill us if we 369 * got oom-killed) 370 */ 371 pagefault_out_of_memory(); 372 return 0; 373 } 374 375 if (fault & VM_FAULT_SIGBUS) { 376 /* 377 * We had some memory, but were unable to 378 * successfully fix up this page fault. 379 */ 380 sig = SIGBUS; 381 code = BUS_ADRERR; 382 } else { 383 /* 384 * Something tried to access memory that 385 * isn't in our memory map.. 386 */ 387 sig = SIGSEGV; 388 code = fault == VM_FAULT_BADACCESS ? 389 SEGV_ACCERR : SEGV_MAPERR; 390 } 391 392 __do_user_fault(addr, fsr, sig, code, regs); 393 return 0; 394 395 no_context: 396 __do_kernel_fault(mm, addr, fsr, regs); 397 return 0; 398 } 399 #else /* CONFIG_MMU */ 400 static int 401 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 402 { 403 return 0; 404 } 405 #endif /* CONFIG_MMU */ 406 407 /* 408 * First Level Translation Fault Handler 409 * 410 * We enter here because the first level page table doesn't contain 411 * a valid entry for the address. 412 * 413 * If the address is in kernel space (>= TASK_SIZE), then we are 414 * probably faulting in the vmalloc() area. 415 * 416 * If the init_task's first level page tables contains the relevant 417 * entry, we copy the it to this task. If not, we send the process 418 * a signal, fixup the exception, or oops the kernel. 419 * 420 * NOTE! We MUST NOT take any locks for this case. We may be in an 421 * interrupt or a critical region, and should only copy the information 422 * from the master page table, nothing more. 423 */ 424 #ifdef CONFIG_MMU 425 static int __kprobes 426 do_translation_fault(unsigned long addr, unsigned int fsr, 427 struct pt_regs *regs) 428 { 429 unsigned int index; 430 pgd_t *pgd, *pgd_k; 431 p4d_t *p4d, *p4d_k; 432 pud_t *pud, *pud_k; 433 pmd_t *pmd, *pmd_k; 434 435 if (addr < TASK_SIZE) 436 return do_page_fault(addr, fsr, regs); 437 438 if (user_mode(regs)) 439 goto bad_area; 440 441 index = pgd_index(addr); 442 443 pgd = cpu_get_pgd() + index; 444 pgd_k = init_mm.pgd + index; 445 446 p4d = p4d_offset(pgd, addr); 447 p4d_k = p4d_offset(pgd_k, addr); 448 449 if (p4d_none(*p4d_k)) 450 goto bad_area; 451 if (!p4d_present(*p4d)) 452 set_p4d(p4d, *p4d_k); 453 454 pud = pud_offset(p4d, addr); 455 pud_k = pud_offset(p4d_k, addr); 456 457 if (pud_none(*pud_k)) 458 goto bad_area; 459 if (!pud_present(*pud)) 460 set_pud(pud, *pud_k); 461 462 pmd = pmd_offset(pud, addr); 463 pmd_k = pmd_offset(pud_k, addr); 464 465 #ifdef CONFIG_ARM_LPAE 466 /* 467 * Only one hardware entry per PMD with LPAE. 468 */ 469 index = 0; 470 #else 471 /* 472 * On ARM one Linux PGD entry contains two hardware entries (see page 473 * tables layout in pgtable.h). We normally guarantee that we always 474 * fill both L1 entries. But create_mapping() doesn't follow the rule. 475 * It can create inidividual L1 entries, so here we have to call 476 * pmd_none() check for the entry really corresponded to address, not 477 * for the first of pair. 478 */ 479 index = (addr >> SECTION_SHIFT) & 1; 480 #endif 481 if (pmd_none(pmd_k[index])) 482 goto bad_area; 483 484 copy_pmd(pmd, pmd_k); 485 return 0; 486 487 bad_area: 488 do_bad_area(addr, fsr, regs); 489 return 0; 490 } 491 #else /* CONFIG_MMU */ 492 static int 493 do_translation_fault(unsigned long addr, unsigned int fsr, 494 struct pt_regs *regs) 495 { 496 return 0; 497 } 498 #endif /* CONFIG_MMU */ 499 500 /* 501 * Some section permission faults need to be handled gracefully. 502 * They can happen due to a __{get,put}_user during an oops. 503 */ 504 #ifndef CONFIG_ARM_LPAE 505 static int 506 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 507 { 508 do_bad_area(addr, fsr, regs); 509 return 0; 510 } 511 #endif /* CONFIG_ARM_LPAE */ 512 513 /* 514 * This abort handler always returns "fault". 515 */ 516 static int 517 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 518 { 519 return 1; 520 } 521 522 struct fsr_info { 523 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 524 int sig; 525 int code; 526 const char *name; 527 }; 528 529 /* FSR definition */ 530 #ifdef CONFIG_ARM_LPAE 531 #include "fsr-3level.c" 532 #else 533 #include "fsr-2level.c" 534 #endif 535 536 void __init 537 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 538 int sig, int code, const char *name) 539 { 540 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 541 BUG(); 542 543 fsr_info[nr].fn = fn; 544 fsr_info[nr].sig = sig; 545 fsr_info[nr].code = code; 546 fsr_info[nr].name = name; 547 } 548 549 /* 550 * Dispatch a data abort to the relevant handler. 551 */ 552 asmlinkage void 553 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 554 { 555 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 556 557 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 558 return; 559 560 pr_alert("8<--- cut here ---\n"); 561 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 562 inf->name, fsr, addr); 563 show_pte(KERN_ALERT, current->mm, addr); 564 565 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 566 fsr, 0); 567 } 568 569 void __init 570 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 571 int sig, int code, const char *name) 572 { 573 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 574 BUG(); 575 576 ifsr_info[nr].fn = fn; 577 ifsr_info[nr].sig = sig; 578 ifsr_info[nr].code = code; 579 ifsr_info[nr].name = name; 580 } 581 582 asmlinkage void 583 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 584 { 585 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 586 587 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 588 return; 589 590 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 591 inf->name, ifsr, addr); 592 593 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 594 ifsr, 0); 595 } 596 597 /* 598 * Abort handler to be used only during first unmasking of asynchronous aborts 599 * on the boot CPU. This makes sure that the machine will not die if the 600 * firmware/bootloader left an imprecise abort pending for us to trip over. 601 */ 602 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 603 struct pt_regs *regs) 604 { 605 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 606 "first unmask, this is most likely caused by a " 607 "firmware/bootloader bug.\n", fsr); 608 609 return 0; 610 } 611 612 void __init early_abt_enable(void) 613 { 614 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 615 local_abt_enable(); 616 fsr_info[FSR_FS_AEA].fn = do_bad; 617 } 618 619 #ifndef CONFIG_ARM_LPAE 620 static int __init exceptions_init(void) 621 { 622 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 623 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 624 "I-cache maintenance fault"); 625 } 626 627 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 628 /* 629 * TODO: Access flag faults introduced in ARMv6K. 630 * Runtime check for 'K' extension is needed 631 */ 632 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 633 "section access flag fault"); 634 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 635 "section access flag fault"); 636 } 637 638 return 0; 639 } 640 641 arch_initcall(exceptions_init); 642 #endif 643