1 /* 2 * linux/arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Modifications for ARM processor (c) 1995-2004 Russell King 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/signal.h> 13 #include <linux/mm.h> 14 #include <linux/hardirq.h> 15 #include <linux/init.h> 16 #include <linux/kprobes.h> 17 #include <linux/uaccess.h> 18 #include <linux/page-flags.h> 19 #include <linux/sched.h> 20 #include <linux/highmem.h> 21 #include <linux/perf_event.h> 22 23 #include <asm/exception.h> 24 #include <asm/pgtable.h> 25 #include <asm/system_misc.h> 26 #include <asm/system_info.h> 27 #include <asm/tlbflush.h> 28 29 #include "fault.h" 30 31 #ifdef CONFIG_MMU 32 33 #ifdef CONFIG_KPROBES 34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 35 { 36 int ret = 0; 37 38 if (!user_mode(regs)) { 39 /* kprobe_running() needs smp_processor_id() */ 40 preempt_disable(); 41 if (kprobe_running() && kprobe_fault_handler(regs, fsr)) 42 ret = 1; 43 preempt_enable(); 44 } 45 46 return ret; 47 } 48 #else 49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 50 { 51 return 0; 52 } 53 #endif 54 55 /* 56 * This is useful to dump out the page tables associated with 57 * 'addr' in mm 'mm'. 58 */ 59 void show_pte(struct mm_struct *mm, unsigned long addr) 60 { 61 pgd_t *pgd; 62 63 if (!mm) 64 mm = &init_mm; 65 66 pr_alert("pgd = %p\n", mm->pgd); 67 pgd = pgd_offset(mm, addr); 68 pr_alert("[%08lx] *pgd=%08llx", 69 addr, (long long)pgd_val(*pgd)); 70 71 do { 72 pud_t *pud; 73 pmd_t *pmd; 74 pte_t *pte; 75 76 if (pgd_none(*pgd)) 77 break; 78 79 if (pgd_bad(*pgd)) { 80 pr_cont("(bad)"); 81 break; 82 } 83 84 pud = pud_offset(pgd, addr); 85 if (PTRS_PER_PUD != 1) 86 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 87 88 if (pud_none(*pud)) 89 break; 90 91 if (pud_bad(*pud)) { 92 pr_cont("(bad)"); 93 break; 94 } 95 96 pmd = pmd_offset(pud, addr); 97 if (PTRS_PER_PMD != 1) 98 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 99 100 if (pmd_none(*pmd)) 101 break; 102 103 if (pmd_bad(*pmd)) { 104 pr_cont("(bad)"); 105 break; 106 } 107 108 /* We must not map this if we have highmem enabled */ 109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 110 break; 111 112 pte = pte_offset_map(pmd, addr); 113 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 114 #ifndef CONFIG_ARM_LPAE 115 pr_cont(", *ppte=%08llx", 116 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 117 #endif 118 pte_unmap(pte); 119 } while(0); 120 121 pr_cont("\n"); 122 } 123 #else /* CONFIG_MMU */ 124 void show_pte(struct mm_struct *mm, unsigned long addr) 125 { } 126 #endif /* CONFIG_MMU */ 127 128 /* 129 * Oops. The kernel tried to access some page that wasn't present. 130 */ 131 static void 132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 133 struct pt_regs *regs) 134 { 135 /* 136 * Are we prepared to handle this kernel fault? 137 */ 138 if (fixup_exception(regs)) 139 return; 140 141 /* 142 * No handler, we'll have to terminate things with extreme prejudice. 143 */ 144 bust_spinlocks(1); 145 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 146 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 147 "paging request", addr); 148 149 show_pte(mm, addr); 150 die("Oops", regs, fsr); 151 bust_spinlocks(0); 152 do_exit(SIGKILL); 153 } 154 155 /* 156 * Something tried to access memory that isn't in our memory map.. 157 * User mode accesses just cause a SIGSEGV 158 */ 159 static void 160 __do_user_fault(struct task_struct *tsk, unsigned long addr, 161 unsigned int fsr, unsigned int sig, int code, 162 struct pt_regs *regs) 163 { 164 struct siginfo si; 165 166 #ifdef CONFIG_DEBUG_USER 167 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 168 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 169 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 170 tsk->comm, sig, addr, fsr); 171 show_pte(tsk->mm, addr); 172 show_regs(regs); 173 } 174 #endif 175 176 tsk->thread.address = addr; 177 tsk->thread.error_code = fsr; 178 tsk->thread.trap_no = 14; 179 si.si_signo = sig; 180 si.si_errno = 0; 181 si.si_code = code; 182 si.si_addr = (void __user *)addr; 183 force_sig_info(sig, &si, tsk); 184 } 185 186 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 187 { 188 struct task_struct *tsk = current; 189 struct mm_struct *mm = tsk->active_mm; 190 191 /* 192 * If we are in kernel mode at this point, we 193 * have no context to handle this fault with. 194 */ 195 if (user_mode(regs)) 196 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 197 else 198 __do_kernel_fault(mm, addr, fsr, regs); 199 } 200 201 #ifdef CONFIG_MMU 202 #define VM_FAULT_BADMAP 0x010000 203 #define VM_FAULT_BADACCESS 0x020000 204 205 /* 206 * Check that the permissions on the VMA allow for the fault which occurred. 207 * If we encountered a write fault, we must have write permission, otherwise 208 * we allow any permission. 209 */ 210 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 211 { 212 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; 213 214 if (fsr & FSR_WRITE) 215 mask = VM_WRITE; 216 if (fsr & FSR_LNX_PF) 217 mask = VM_EXEC; 218 219 return vma->vm_flags & mask ? false : true; 220 } 221 222 static int __kprobes 223 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 224 unsigned int flags, struct task_struct *tsk) 225 { 226 struct vm_area_struct *vma; 227 int fault; 228 229 vma = find_vma(mm, addr); 230 fault = VM_FAULT_BADMAP; 231 if (unlikely(!vma)) 232 goto out; 233 if (unlikely(vma->vm_start > addr)) 234 goto check_stack; 235 236 /* 237 * Ok, we have a good vm_area for this 238 * memory access, so we can handle it. 239 */ 240 good_area: 241 if (access_error(fsr, vma)) { 242 fault = VM_FAULT_BADACCESS; 243 goto out; 244 } 245 246 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags); 247 248 check_stack: 249 /* Don't allow expansion below FIRST_USER_ADDRESS */ 250 if (vma->vm_flags & VM_GROWSDOWN && 251 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 252 goto good_area; 253 out: 254 return fault; 255 } 256 257 static int __kprobes 258 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 259 { 260 struct task_struct *tsk; 261 struct mm_struct *mm; 262 int fault, sig, code; 263 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 264 265 if (notify_page_fault(regs, fsr)) 266 return 0; 267 268 tsk = current; 269 mm = tsk->mm; 270 271 /* Enable interrupts if they were enabled in the parent context. */ 272 if (interrupts_enabled(regs)) 273 local_irq_enable(); 274 275 /* 276 * If we're in an interrupt or have no user 277 * context, we must not take the fault.. 278 */ 279 if (faulthandler_disabled() || !mm) 280 goto no_context; 281 282 if (user_mode(regs)) 283 flags |= FAULT_FLAG_USER; 284 if (fsr & FSR_WRITE) 285 flags |= FAULT_FLAG_WRITE; 286 287 /* 288 * As per x86, we may deadlock here. However, since the kernel only 289 * validly references user space from well defined areas of the code, 290 * we can bug out early if this is from code which shouldn't. 291 */ 292 if (!down_read_trylock(&mm->mmap_sem)) { 293 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 294 goto no_context; 295 retry: 296 down_read(&mm->mmap_sem); 297 } else { 298 /* 299 * The above down_read_trylock() might have succeeded in 300 * which case, we'll have missed the might_sleep() from 301 * down_read() 302 */ 303 might_sleep(); 304 #ifdef CONFIG_DEBUG_VM 305 if (!user_mode(regs) && 306 !search_exception_tables(regs->ARM_pc)) 307 goto no_context; 308 #endif 309 } 310 311 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 312 313 /* If we need to retry but a fatal signal is pending, handle the 314 * signal first. We do not need to release the mmap_sem because 315 * it would already be released in __lock_page_or_retry in 316 * mm/filemap.c. */ 317 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 318 return 0; 319 320 /* 321 * Major/minor page fault accounting is only done on the 322 * initial attempt. If we go through a retry, it is extremely 323 * likely that the page will be found in page cache at that point. 324 */ 325 326 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 327 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 328 if (fault & VM_FAULT_MAJOR) { 329 tsk->maj_flt++; 330 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 331 regs, addr); 332 } else { 333 tsk->min_flt++; 334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 335 regs, addr); 336 } 337 if (fault & VM_FAULT_RETRY) { 338 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 339 * of starvation. */ 340 flags &= ~FAULT_FLAG_ALLOW_RETRY; 341 flags |= FAULT_FLAG_TRIED; 342 goto retry; 343 } 344 } 345 346 up_read(&mm->mmap_sem); 347 348 /* 349 * Handle the "normal" case first - VM_FAULT_MAJOR 350 */ 351 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 352 return 0; 353 354 /* 355 * If we are in kernel mode at this point, we 356 * have no context to handle this fault with. 357 */ 358 if (!user_mode(regs)) 359 goto no_context; 360 361 if (fault & VM_FAULT_OOM) { 362 /* 363 * We ran out of memory, call the OOM killer, and return to 364 * userspace (which will retry the fault, or kill us if we 365 * got oom-killed) 366 */ 367 pagefault_out_of_memory(); 368 return 0; 369 } 370 371 if (fault & VM_FAULT_SIGBUS) { 372 /* 373 * We had some memory, but were unable to 374 * successfully fix up this page fault. 375 */ 376 sig = SIGBUS; 377 code = BUS_ADRERR; 378 } else { 379 /* 380 * Something tried to access memory that 381 * isn't in our memory map.. 382 */ 383 sig = SIGSEGV; 384 code = fault == VM_FAULT_BADACCESS ? 385 SEGV_ACCERR : SEGV_MAPERR; 386 } 387 388 __do_user_fault(tsk, addr, fsr, sig, code, regs); 389 return 0; 390 391 no_context: 392 __do_kernel_fault(mm, addr, fsr, regs); 393 return 0; 394 } 395 #else /* CONFIG_MMU */ 396 static int 397 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 398 { 399 return 0; 400 } 401 #endif /* CONFIG_MMU */ 402 403 /* 404 * First Level Translation Fault Handler 405 * 406 * We enter here because the first level page table doesn't contain 407 * a valid entry for the address. 408 * 409 * If the address is in kernel space (>= TASK_SIZE), then we are 410 * probably faulting in the vmalloc() area. 411 * 412 * If the init_task's first level page tables contains the relevant 413 * entry, we copy the it to this task. If not, we send the process 414 * a signal, fixup the exception, or oops the kernel. 415 * 416 * NOTE! We MUST NOT take any locks for this case. We may be in an 417 * interrupt or a critical region, and should only copy the information 418 * from the master page table, nothing more. 419 */ 420 #ifdef CONFIG_MMU 421 static int __kprobes 422 do_translation_fault(unsigned long addr, unsigned int fsr, 423 struct pt_regs *regs) 424 { 425 unsigned int index; 426 pgd_t *pgd, *pgd_k; 427 pud_t *pud, *pud_k; 428 pmd_t *pmd, *pmd_k; 429 430 if (addr < TASK_SIZE) 431 return do_page_fault(addr, fsr, regs); 432 433 if (user_mode(regs)) 434 goto bad_area; 435 436 index = pgd_index(addr); 437 438 pgd = cpu_get_pgd() + index; 439 pgd_k = init_mm.pgd + index; 440 441 if (pgd_none(*pgd_k)) 442 goto bad_area; 443 if (!pgd_present(*pgd)) 444 set_pgd(pgd, *pgd_k); 445 446 pud = pud_offset(pgd, addr); 447 pud_k = pud_offset(pgd_k, addr); 448 449 if (pud_none(*pud_k)) 450 goto bad_area; 451 if (!pud_present(*pud)) 452 set_pud(pud, *pud_k); 453 454 pmd = pmd_offset(pud, addr); 455 pmd_k = pmd_offset(pud_k, addr); 456 457 #ifdef CONFIG_ARM_LPAE 458 /* 459 * Only one hardware entry per PMD with LPAE. 460 */ 461 index = 0; 462 #else 463 /* 464 * On ARM one Linux PGD entry contains two hardware entries (see page 465 * tables layout in pgtable.h). We normally guarantee that we always 466 * fill both L1 entries. But create_mapping() doesn't follow the rule. 467 * It can create inidividual L1 entries, so here we have to call 468 * pmd_none() check for the entry really corresponded to address, not 469 * for the first of pair. 470 */ 471 index = (addr >> SECTION_SHIFT) & 1; 472 #endif 473 if (pmd_none(pmd_k[index])) 474 goto bad_area; 475 476 copy_pmd(pmd, pmd_k); 477 return 0; 478 479 bad_area: 480 do_bad_area(addr, fsr, regs); 481 return 0; 482 } 483 #else /* CONFIG_MMU */ 484 static int 485 do_translation_fault(unsigned long addr, unsigned int fsr, 486 struct pt_regs *regs) 487 { 488 return 0; 489 } 490 #endif /* CONFIG_MMU */ 491 492 /* 493 * Some section permission faults need to be handled gracefully. 494 * They can happen due to a __{get,put}_user during an oops. 495 */ 496 #ifndef CONFIG_ARM_LPAE 497 static int 498 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 499 { 500 do_bad_area(addr, fsr, regs); 501 return 0; 502 } 503 #endif /* CONFIG_ARM_LPAE */ 504 505 /* 506 * This abort handler always returns "fault". 507 */ 508 static int 509 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 510 { 511 return 1; 512 } 513 514 struct fsr_info { 515 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 516 int sig; 517 int code; 518 const char *name; 519 }; 520 521 /* FSR definition */ 522 #ifdef CONFIG_ARM_LPAE 523 #include "fsr-3level.c" 524 #else 525 #include "fsr-2level.c" 526 #endif 527 528 void __init 529 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 530 int sig, int code, const char *name) 531 { 532 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 533 BUG(); 534 535 fsr_info[nr].fn = fn; 536 fsr_info[nr].sig = sig; 537 fsr_info[nr].code = code; 538 fsr_info[nr].name = name; 539 } 540 541 /* 542 * Dispatch a data abort to the relevant handler. 543 */ 544 asmlinkage void __exception 545 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 546 { 547 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 548 struct siginfo info; 549 550 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 551 return; 552 553 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 554 inf->name, fsr, addr); 555 show_pte(current->mm, addr); 556 557 info.si_signo = inf->sig; 558 info.si_errno = 0; 559 info.si_code = inf->code; 560 info.si_addr = (void __user *)addr; 561 arm_notify_die("", regs, &info, fsr, 0); 562 } 563 564 void __init 565 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 566 int sig, int code, const char *name) 567 { 568 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 569 BUG(); 570 571 ifsr_info[nr].fn = fn; 572 ifsr_info[nr].sig = sig; 573 ifsr_info[nr].code = code; 574 ifsr_info[nr].name = name; 575 } 576 577 asmlinkage void __exception 578 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 579 { 580 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 581 struct siginfo info; 582 583 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 584 return; 585 586 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 587 inf->name, ifsr, addr); 588 589 info.si_signo = inf->sig; 590 info.si_errno = 0; 591 info.si_code = inf->code; 592 info.si_addr = (void __user *)addr; 593 arm_notify_die("", regs, &info, ifsr, 0); 594 } 595 596 /* 597 * Abort handler to be used only during first unmasking of asynchronous aborts 598 * on the boot CPU. This makes sure that the machine will not die if the 599 * firmware/bootloader left an imprecise abort pending for us to trip over. 600 */ 601 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 602 struct pt_regs *regs) 603 { 604 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 605 "first unmask, this is most likely caused by a " 606 "firmware/bootloader bug.\n", fsr); 607 608 return 0; 609 } 610 611 void __init early_abt_enable(void) 612 { 613 fsr_info[22].fn = early_abort_handler; 614 local_abt_enable(); 615 fsr_info[22].fn = do_bad; 616 } 617 618 #ifndef CONFIG_ARM_LPAE 619 static int __init exceptions_init(void) 620 { 621 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 622 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 623 "I-cache maintenance fault"); 624 } 625 626 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 627 /* 628 * TODO: Access flag faults introduced in ARMv6K. 629 * Runtime check for 'K' extension is needed 630 */ 631 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 632 "section access flag fault"); 633 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 634 "section access flag fault"); 635 } 636 637 return 0; 638 } 639 640 arch_initcall(exceptions_init); 641 #endif 642