xref: /linux/arch/arm/mm/fault.c (revision 29ba26af9a9d43d5dbb8aa8e653adeb159d42587)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2004 Russell King
7  */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 #include <linux/kfence.h>
21 
22 #include <asm/system_misc.h>
23 #include <asm/system_info.h>
24 #include <asm/tlbflush.h>
25 
26 #include "fault.h"
27 
28 #ifdef CONFIG_MMU
29 
copy_from_kernel_nofault_allowed(const void * unsafe_src,size_t size)30 bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size)
31 {
32 	unsigned long addr = (unsigned long)unsafe_src;
33 
34 	return addr >= TASK_SIZE && ULONG_MAX - addr >= size;
35 }
36 
37 /*
38  * This is useful to dump out the page tables associated with
39  * 'addr' in mm 'mm'.
40  */
show_pte(const char * lvl,struct mm_struct * mm,unsigned long addr)41 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
42 {
43 	pgd_t *pgd;
44 
45 	if (!mm)
46 		mm = &init_mm;
47 
48 	pgd = pgd_offset(mm, addr);
49 	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
50 
51 	do {
52 		p4d_t *p4d;
53 		pud_t *pud;
54 		pmd_t *pmd;
55 		pte_t *pte;
56 
57 		p4d = p4d_offset(pgd, addr);
58 		if (p4d_none(*p4d))
59 			break;
60 
61 		if (p4d_bad(*p4d)) {
62 			pr_cont("(bad)");
63 			break;
64 		}
65 
66 		pud = pud_offset(p4d, addr);
67 		if (PTRS_PER_PUD != 1)
68 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
69 
70 		if (pud_none(*pud))
71 			break;
72 
73 		if (pud_bad(*pud)) {
74 			pr_cont("(bad)");
75 			break;
76 		}
77 
78 		pmd = pmd_offset(pud, addr);
79 		if (PTRS_PER_PMD != 1)
80 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
81 
82 		if (pmd_none(*pmd))
83 			break;
84 
85 		if (pmd_bad(*pmd)) {
86 			pr_cont("(bad)");
87 			break;
88 		}
89 
90 		/* We must not map this if we have highmem enabled */
91 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
92 			break;
93 
94 		pte = pte_offset_map(pmd, addr);
95 		if (!pte)
96 			break;
97 
98 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
99 #ifndef CONFIG_ARM_LPAE
100 		pr_cont(", *ppte=%08llx",
101 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
102 #endif
103 		pte_unmap(pte);
104 	} while(0);
105 
106 	pr_cont("\n");
107 }
108 #else					/* CONFIG_MMU */
show_pte(const char * lvl,struct mm_struct * mm,unsigned long addr)109 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
110 { }
111 #endif					/* CONFIG_MMU */
112 
is_write_fault(unsigned int fsr)113 static inline bool is_write_fault(unsigned int fsr)
114 {
115 	return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
116 }
117 
is_translation_fault(unsigned int fsr)118 static inline bool is_translation_fault(unsigned int fsr)
119 {
120 	int fs = fsr_fs(fsr);
121 #ifdef CONFIG_ARM_LPAE
122 	if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL)
123 		return true;
124 #else
125 	if (fs == FS_L1_TRANS || fs == FS_L2_TRANS)
126 		return true;
127 #endif
128 	return false;
129 }
130 
is_permission_fault(unsigned int fsr)131 static inline bool is_permission_fault(unsigned int fsr)
132 {
133 	int fs = fsr_fs(fsr);
134 #ifdef CONFIG_ARM_LPAE
135 	if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL)
136 		return true;
137 #else
138 	if (fs == FS_L1_PERM || fs == FS_L2_PERM)
139 		return true;
140 #endif
141 	return false;
142 }
143 
die_kernel_fault(const char * msg,struct mm_struct * mm,unsigned long addr,unsigned int fsr,struct pt_regs * regs)144 static void die_kernel_fault(const char *msg, struct mm_struct *mm,
145 			     unsigned long addr, unsigned int fsr,
146 			     struct pt_regs *regs)
147 {
148 	bust_spinlocks(1);
149 	pr_alert("8<--- cut here ---\n");
150 	pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n",
151 		 msg, addr, fsr & FSR_LNX_PF ? "execute" : str_write_read(fsr & FSR_WRITE));
152 
153 	show_pte(KERN_ALERT, mm, addr);
154 	die("Oops", regs, fsr);
155 	bust_spinlocks(0);
156 	make_task_dead(SIGKILL);
157 }
158 
159 /*
160  * Oops.  The kernel tried to access some page that wasn't present.
161  */
162 static void
__do_kernel_fault(struct mm_struct * mm,unsigned long addr,unsigned int fsr,struct pt_regs * regs)163 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
164 		  struct pt_regs *regs)
165 {
166 	const char *msg;
167 	/*
168 	 * Are we prepared to handle this kernel fault?
169 	 */
170 	if (fixup_exception(regs))
171 		return;
172 
173 	/*
174 	 * No handler, we'll have to terminate things with extreme prejudice.
175 	 */
176 	if (addr < PAGE_SIZE) {
177 		msg = "NULL pointer dereference";
178 	} else if (is_permission_fault(fsr) && fsr & FSR_LNX_PF) {
179 		msg = "execution of memory";
180 	} else {
181 		if (is_translation_fault(fsr) &&
182 		    kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
183 			return;
184 
185 		msg = "paging request";
186 	}
187 
188 	die_kernel_fault(msg, mm, addr, fsr, regs);
189 }
190 
191 /*
192  * Something tried to access memory that isn't in our memory map..
193  * User mode accesses just cause a SIGSEGV
194  */
195 static void
__do_user_fault(unsigned long addr,unsigned int fsr,unsigned int sig,int code,struct pt_regs * regs)196 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
197 		int code, struct pt_regs *regs)
198 {
199 	struct task_struct *tsk = current;
200 
201 #ifdef CONFIG_DEBUG_USER
202 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
203 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
204 		pr_err("8<--- cut here ---\n");
205 		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
206 		       tsk->comm, sig, addr, fsr);
207 		show_pte(KERN_ERR, tsk->mm, addr);
208 		show_regs(regs);
209 	}
210 #endif
211 #ifndef CONFIG_KUSER_HELPERS
212 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
213 		printk_ratelimited(KERN_DEBUG
214 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
215 				   tsk->comm, addr);
216 #endif
217 
218 	tsk->thread.address = addr;
219 	tsk->thread.error_code = fsr;
220 	tsk->thread.trap_no = 14;
221 	force_sig_fault(sig, code, (void __user *)addr);
222 }
223 
do_bad_area(unsigned long addr,unsigned int fsr,struct pt_regs * regs)224 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
225 {
226 	struct task_struct *tsk = current;
227 	struct mm_struct *mm = tsk->active_mm;
228 
229 	/*
230 	 * If we are in kernel mode at this point, we
231 	 * have no context to handle this fault with.
232 	 */
233 	if (user_mode(regs))
234 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
235 	else
236 		__do_kernel_fault(mm, addr, fsr, regs);
237 }
238 
239 #ifdef CONFIG_MMU
240 #ifdef CONFIG_CPU_TTBR0_PAN
ttbr0_usermode_access_allowed(struct pt_regs * regs)241 static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs)
242 {
243 	struct svc_pt_regs *svcregs;
244 
245 	/* If we are in user mode: permission granted */
246 	if (user_mode(regs))
247 		return true;
248 
249 	/* uaccess state saved above pt_regs on SVC exception entry */
250 	svcregs = to_svc_pt_regs(regs);
251 
252 	return !(svcregs->ttbcr & TTBCR_EPD0);
253 }
254 #else
ttbr0_usermode_access_allowed(struct pt_regs * regs)255 static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs)
256 {
257 	return true;
258 }
259 #endif
260 
261 static int __kprobes
do_kernel_address_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int fsr,struct pt_regs * regs)262 do_kernel_address_page_fault(struct mm_struct *mm, unsigned long addr,
263 			     unsigned int fsr, struct pt_regs *regs)
264 {
265 	if (user_mode(regs)) {
266 		/*
267 		 * Fault from user mode for a kernel space address. User mode
268 		 * should not be faulting in kernel space, which includes the
269 		 * vector/khelper page. Handle the branch predictor hardening
270 		 * while interrupts are still disabled, then send a SIGSEGV.
271 		 */
272 		harden_branch_predictor();
273 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
274 	} else {
275 		/*
276 		 * Fault from kernel mode. Enable interrupts if they were
277 		 * enabled in the parent context. Section (upper page table)
278 		 * translation faults are handled via do_translation_fault(),
279 		 * so we will only get here for a non-present kernel space
280 		 * PTE or PTE permission fault. This may happen in exceptional
281 		 * circumstances and need the fixup tables to be walked.
282 		 */
283 		if (interrupts_enabled(regs))
284 			local_irq_enable();
285 
286 		__do_kernel_fault(mm, addr, fsr, regs);
287 	}
288 
289 	return 0;
290 }
291 
292 static int __kprobes
do_page_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)293 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
294 {
295 	struct mm_struct *mm = current->mm;
296 	struct vm_area_struct *vma;
297 	int sig, code;
298 	vm_fault_t fault;
299 	unsigned int flags = FAULT_FLAG_DEFAULT;
300 	vm_flags_t vm_flags = VM_ACCESS_FLAGS;
301 
302 	if (kprobe_page_fault(regs, fsr))
303 		return 0;
304 
305 	/*
306 	 * Handle kernel addresses faults separately, which avoids touching
307 	 * the mmap lock from contexts that are not able to sleep.
308 	 */
309 	if (addr >= TASK_SIZE)
310 		return do_kernel_address_page_fault(mm, addr, fsr, regs);
311 
312 	/* Enable interrupts if they were enabled in the parent context. */
313 	if (interrupts_enabled(regs))
314 		local_irq_enable();
315 
316 	/*
317 	 * If we're in an interrupt or have no user
318 	 * context, we must not take the fault..
319 	 */
320 	if (faulthandler_disabled() || !mm)
321 		goto no_context;
322 
323 	if (user_mode(regs))
324 		flags |= FAULT_FLAG_USER;
325 
326 	if (is_write_fault(fsr)) {
327 		flags |= FAULT_FLAG_WRITE;
328 		vm_flags = VM_WRITE;
329 	}
330 
331 	if (fsr & FSR_LNX_PF) {
332 		vm_flags = VM_EXEC;
333 
334 		if (is_permission_fault(fsr) && !user_mode(regs))
335 			die_kernel_fault("execution of memory",
336 					 mm, addr, fsr, regs);
337 	}
338 
339 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
340 
341 	/*
342 	 * Privileged access aborts with CONFIG_CPU_TTBR0_PAN enabled are
343 	 * routed via the translation fault mechanism. Check whether uaccess
344 	 * is disabled while in kernel mode.
345 	 */
346 	if (!ttbr0_usermode_access_allowed(regs))
347 		goto no_context;
348 
349 	if (!(flags & FAULT_FLAG_USER))
350 		goto lock_mmap;
351 
352 	vma = lock_vma_under_rcu(mm, addr);
353 	if (!vma)
354 		goto lock_mmap;
355 
356 	if (!(vma->vm_flags & vm_flags)) {
357 		vma_end_read(vma);
358 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
359 		fault = 0;
360 		code = SEGV_ACCERR;
361 		goto bad_area;
362 	}
363 	fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs);
364 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
365 		vma_end_read(vma);
366 
367 	if (!(fault & VM_FAULT_RETRY)) {
368 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
369 		goto done;
370 	}
371 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
372 	if (fault & VM_FAULT_MAJOR)
373 		flags |= FAULT_FLAG_TRIED;
374 
375 	/* Quick path to respond to signals */
376 	if (fault_signal_pending(fault, regs)) {
377 		if (!user_mode(regs))
378 			goto no_context;
379 		return 0;
380 	}
381 lock_mmap:
382 
383 retry:
384 	vma = lock_mm_and_find_vma(mm, addr, regs);
385 	if (unlikely(!vma)) {
386 		fault = 0;
387 		code = SEGV_MAPERR;
388 		goto bad_area;
389 	}
390 
391 	/*
392 	 * ok, we have a good vm_area for this memory access, check the
393 	 * permissions on the VMA allow for the fault which occurred.
394 	 */
395 	if (!(vma->vm_flags & vm_flags)) {
396 		mmap_read_unlock(mm);
397 		fault = 0;
398 		code = SEGV_ACCERR;
399 		goto bad_area;
400 	}
401 
402 	fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
403 
404 	/* If we need to retry but a fatal signal is pending, handle the
405 	 * signal first. We do not need to release the mmap_lock because
406 	 * it would already be released in __lock_page_or_retry in
407 	 * mm/filemap.c. */
408 	if (fault_signal_pending(fault, regs)) {
409 		if (!user_mode(regs))
410 			goto no_context;
411 		return 0;
412 	}
413 
414 	/* The fault is fully completed (including releasing mmap lock) */
415 	if (fault & VM_FAULT_COMPLETED)
416 		return 0;
417 
418 	if (!(fault & VM_FAULT_ERROR)) {
419 		if (fault & VM_FAULT_RETRY) {
420 			flags |= FAULT_FLAG_TRIED;
421 			goto retry;
422 		}
423 	}
424 
425 	mmap_read_unlock(mm);
426 done:
427 
428 	/* Handle the "normal" case first */
429 	if (likely(!(fault & VM_FAULT_ERROR)))
430 		return 0;
431 
432 	code = SEGV_MAPERR;
433 bad_area:
434 	/*
435 	 * If we are in kernel mode at this point, we
436 	 * have no context to handle this fault with.
437 	 */
438 	if (!user_mode(regs))
439 		goto no_context;
440 
441 	if (fault & VM_FAULT_OOM) {
442 		/*
443 		 * We ran out of memory, call the OOM killer, and return to
444 		 * userspace (which will retry the fault, or kill us if we
445 		 * got oom-killed)
446 		 */
447 		pagefault_out_of_memory();
448 		return 0;
449 	}
450 
451 	if (fault & VM_FAULT_SIGBUS) {
452 		/*
453 		 * We had some memory, but were unable to
454 		 * successfully fix up this page fault.
455 		 */
456 		sig = SIGBUS;
457 		code = BUS_ADRERR;
458 	} else {
459 		/*
460 		 * Something tried to access memory that
461 		 * isn't in our memory map..
462 		 */
463 		sig = SIGSEGV;
464 	}
465 
466 	__do_user_fault(addr, fsr, sig, code, regs);
467 	return 0;
468 
469 no_context:
470 	__do_kernel_fault(mm, addr, fsr, regs);
471 	return 0;
472 }
473 #else					/* CONFIG_MMU */
474 static int
do_page_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)475 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
476 {
477 	return 0;
478 }
479 #endif					/* CONFIG_MMU */
480 
481 /*
482  * First Level Translation Fault Handler
483  *
484  * We enter here because the first level page table doesn't contain
485  * a valid entry for the address.
486  *
487  * If this is a user address (addr < TASK_SIZE), we handle this as a
488  * normal page fault. This leaves the remainder of the function to handle
489  * kernel address translation faults.
490  *
491  * Since user mode is not permitted to access kernel addresses, pass these
492  * directly to do_kernel_address_page_fault() to handle.
493  *
494  * Otherwise, we're probably faulting in the vmalloc() area, so try to fix
495  * that up. Note that we must not take any locks or enable interrupts in
496  * this case.
497  *
498  * If vmalloc() fixup fails, that means the non-leaf page tables did not
499  * contain an entry for this address, so handle this via
500  * do_kernel_address_page_fault().
501  */
502 #ifdef CONFIG_MMU
503 static int __kprobes
do_translation_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)504 do_translation_fault(unsigned long addr, unsigned int fsr,
505 		     struct pt_regs *regs)
506 {
507 	unsigned int index;
508 	pgd_t *pgd, *pgd_k;
509 	p4d_t *p4d, *p4d_k;
510 	pud_t *pud, *pud_k;
511 	pmd_t *pmd, *pmd_k;
512 
513 	if (addr < TASK_SIZE)
514 		return do_page_fault(addr, fsr, regs);
515 
516 	if (user_mode(regs))
517 		goto bad_area;
518 
519 	index = pgd_index(addr);
520 
521 	pgd = cpu_get_pgd() + index;
522 	pgd_k = init_mm.pgd + index;
523 
524 	p4d = p4d_offset(pgd, addr);
525 	p4d_k = p4d_offset(pgd_k, addr);
526 
527 	if (p4d_none(*p4d_k))
528 		goto bad_area;
529 	if (!p4d_present(*p4d))
530 		set_p4d(p4d, *p4d_k);
531 
532 	pud = pud_offset(p4d, addr);
533 	pud_k = pud_offset(p4d_k, addr);
534 
535 	if (pud_none(*pud_k))
536 		goto bad_area;
537 	if (!pud_present(*pud))
538 		set_pud(pud, *pud_k);
539 
540 	pmd = pmd_offset(pud, addr);
541 	pmd_k = pmd_offset(pud_k, addr);
542 
543 #ifdef CONFIG_ARM_LPAE
544 	/*
545 	 * Only one hardware entry per PMD with LPAE.
546 	 */
547 	index = 0;
548 #else
549 	/*
550 	 * On ARM one Linux PGD entry contains two hardware entries (see page
551 	 * tables layout in pgtable.h). We normally guarantee that we always
552 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
553 	 * It can create inidividual L1 entries, so here we have to call
554 	 * pmd_none() check for the entry really corresponded to address, not
555 	 * for the first of pair.
556 	 */
557 	index = (addr >> SECTION_SHIFT) & 1;
558 #endif
559 	if (pmd_none(pmd_k[index]))
560 		goto bad_area;
561 
562 	copy_pmd(pmd, pmd_k);
563 	return 0;
564 
565 bad_area:
566 	do_kernel_address_page_fault(current->mm, addr, fsr, regs);
567 
568 	return 0;
569 }
570 #else					/* CONFIG_MMU */
571 static int
do_translation_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)572 do_translation_fault(unsigned long addr, unsigned int fsr,
573 		     struct pt_regs *regs)
574 {
575 	return 0;
576 }
577 #endif					/* CONFIG_MMU */
578 
579 /*
580  * Some section permission faults need to be handled gracefully.
581  * They can happen due to a __{get,put}_user during an oops.
582  */
583 #ifndef CONFIG_ARM_LPAE
584 static int
do_sect_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)585 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
586 {
587 	/*
588 	 * If this is a kernel address, but from user mode, then userspace
589 	 * is trying bad stuff. Invoke the branch predictor handling.
590 	 * Interrupts are disabled here.
591 	 */
592 	if (addr >= TASK_SIZE && user_mode(regs))
593 		harden_branch_predictor();
594 
595 	do_bad_area(addr, fsr, regs);
596 
597 	return 0;
598 }
599 #endif /* CONFIG_ARM_LPAE */
600 
601 /*
602  * This abort handler always returns "fault".
603  */
604 static int
do_bad(unsigned long addr,unsigned int fsr,struct pt_regs * regs)605 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
606 {
607 	return 1;
608 }
609 
610 struct fsr_info {
611 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
612 	int	sig;
613 	int	code;
614 	const char *name;
615 };
616 
617 /* FSR definition */
618 #ifdef CONFIG_ARM_LPAE
619 #include "fsr-3level.c"
620 #else
621 #include "fsr-2level.c"
622 #endif
623 
624 void __init
hook_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)625 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
626 		int sig, int code, const char *name)
627 {
628 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
629 		BUG();
630 
631 	fsr_info[nr].fn   = fn;
632 	fsr_info[nr].sig  = sig;
633 	fsr_info[nr].code = code;
634 	fsr_info[nr].name = name;
635 }
636 
637 /*
638  * Dispatch a data abort to the relevant handler.
639  */
640 asmlinkage void
do_DataAbort(unsigned long addr,unsigned int fsr,struct pt_regs * regs)641 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
642 {
643 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
644 
645 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
646 		return;
647 
648 	pr_alert("8<--- cut here ---\n");
649 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
650 		inf->name, fsr, addr);
651 	show_pte(KERN_ALERT, current->mm, addr);
652 
653 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
654 		       fsr, 0);
655 }
656 
657 void __init
hook_ifault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)658 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
659 		 int sig, int code, const char *name)
660 {
661 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
662 		BUG();
663 
664 	ifsr_info[nr].fn   = fn;
665 	ifsr_info[nr].sig  = sig;
666 	ifsr_info[nr].code = code;
667 	ifsr_info[nr].name = name;
668 }
669 
670 asmlinkage void
do_PrefetchAbort(unsigned long addr,unsigned int ifsr,struct pt_regs * regs)671 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
672 {
673 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
674 
675 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
676 		return;
677 
678 	pr_alert("8<--- cut here ---\n");
679 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
680 		inf->name, ifsr, addr);
681 
682 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
683 		       ifsr, 0);
684 }
685 
686 /*
687  * Abort handler to be used only during first unmasking of asynchronous aborts
688  * on the boot CPU. This makes sure that the machine will not die if the
689  * firmware/bootloader left an imprecise abort pending for us to trip over.
690  */
early_abort_handler(unsigned long addr,unsigned int fsr,struct pt_regs * regs)691 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
692 				      struct pt_regs *regs)
693 {
694 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
695 		"first unmask, this is most likely caused by a "
696 		"firmware/bootloader bug.\n", fsr);
697 
698 	return 0;
699 }
700 
early_abt_enable(void)701 void __init early_abt_enable(void)
702 {
703 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
704 	local_abt_enable();
705 	fsr_info[FSR_FS_AEA].fn = do_bad;
706 }
707 
708 #ifndef CONFIG_ARM_LPAE
exceptions_init(void)709 static int __init exceptions_init(void)
710 {
711 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
712 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
713 				"I-cache maintenance fault");
714 	}
715 
716 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
717 		/*
718 		 * TODO: Access flag faults introduced in ARMv6K.
719 		 * Runtime check for 'K' extension is needed
720 		 */
721 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
722 				"section access flag fault");
723 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
724 				"section access flag fault");
725 	}
726 
727 	return 0;
728 }
729 
730 arch_initcall(exceptions_init);
731 #endif
732