xref: /linux/arch/arm/mm/fault-armv.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/gfp.h>
20 
21 #include <asm/bugs.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cachetype.h>
24 #include <asm/pgtable.h>
25 #include <asm/tlbflush.h>
26 
27 #include "mm.h"
28 
29 static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE;
30 
31 /*
32  * We take the easy way out of this problem - we make the
33  * PTE uncacheable.  However, we leave the write buffer on.
34  *
35  * Note that the pte lock held when calling update_mmu_cache must also
36  * guard the pte (somewhere else in the same mm) that we modify here.
37  * Therefore those configurations which might call adjust_pte (those
38  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
39  */
40 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
41 	unsigned long pfn, pte_t *ptep)
42 {
43 	pte_t entry = *ptep;
44 	int ret;
45 
46 	/*
47 	 * If this page is present, it's actually being shared.
48 	 */
49 	ret = pte_present(entry);
50 
51 	/*
52 	 * If this page isn't present, or is already setup to
53 	 * fault (ie, is old), we can safely ignore any issues.
54 	 */
55 	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
56 		flush_cache_page(vma, address, pfn);
57 		outer_flush_range((pfn << PAGE_SHIFT),
58 				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
59 		pte_val(entry) &= ~L_PTE_MT_MASK;
60 		pte_val(entry) |= shared_pte_mask;
61 		set_pte_at(vma->vm_mm, address, ptep, entry);
62 		flush_tlb_page(vma, address);
63 	}
64 
65 	return ret;
66 }
67 
68 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
69 	unsigned long pfn)
70 {
71 	spinlock_t *ptl;
72 	pgd_t *pgd;
73 	pmd_t *pmd;
74 	pte_t *pte;
75 	int ret;
76 
77 	pgd = pgd_offset(vma->vm_mm, address);
78 	if (pgd_none_or_clear_bad(pgd))
79 		return 0;
80 
81 	pmd = pmd_offset(pgd, address);
82 	if (pmd_none_or_clear_bad(pmd))
83 		return 0;
84 
85 	/*
86 	 * This is called while another page table is mapped, so we
87 	 * must use the nested version.  This also means we need to
88 	 * open-code the spin-locking.
89 	 */
90 	ptl = pte_lockptr(vma->vm_mm, pmd);
91 	pte = pte_offset_map_nested(pmd, address);
92 	spin_lock(ptl);
93 
94 	ret = do_adjust_pte(vma, address, pfn, pte);
95 
96 	spin_unlock(ptl);
97 	pte_unmap_nested(pte);
98 
99 	return ret;
100 }
101 
102 static void
103 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
104 	unsigned long addr, pte_t *ptep, unsigned long pfn)
105 {
106 	struct mm_struct *mm = vma->vm_mm;
107 	struct vm_area_struct *mpnt;
108 	struct prio_tree_iter iter;
109 	unsigned long offset;
110 	pgoff_t pgoff;
111 	int aliases = 0;
112 
113 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
114 
115 	/*
116 	 * If we have any shared mappings that are in the same mm
117 	 * space, then we need to handle them specially to maintain
118 	 * cache coherency.
119 	 */
120 	flush_dcache_mmap_lock(mapping);
121 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
122 		/*
123 		 * If this VMA is not in our MM, we can ignore it.
124 		 * Note that we intentionally mask out the VMA
125 		 * that we are fixing up.
126 		 */
127 		if (mpnt->vm_mm != mm || mpnt == vma)
128 			continue;
129 		if (!(mpnt->vm_flags & VM_MAYSHARE))
130 			continue;
131 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
132 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
133 	}
134 	flush_dcache_mmap_unlock(mapping);
135 	if (aliases)
136 		do_adjust_pte(vma, addr, pfn, ptep);
137 }
138 
139 /*
140  * Take care of architecture specific things when placing a new PTE into
141  * a page table, or changing an existing PTE.  Basically, there are two
142  * things that we need to take care of:
143  *
144  *  1. If PG_dcache_dirty is set for the page, we need to ensure
145  *     that any cache entries for the kernels virtual memory
146  *     range are written back to the page.
147  *  2. If we have multiple shared mappings of the same space in
148  *     an object, we need to deal with the cache aliasing issues.
149  *
150  * Note that the pte lock will be held.
151  */
152 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
153 	pte_t *ptep)
154 {
155 	unsigned long pfn = pte_pfn(*ptep);
156 	struct address_space *mapping;
157 	struct page *page;
158 
159 	if (!pfn_valid(pfn))
160 		return;
161 
162 	/*
163 	 * The zero page is never written to, so never has any dirty
164 	 * cache lines, and therefore never needs to be flushed.
165 	 */
166 	page = pfn_to_page(pfn);
167 	if (page == ZERO_PAGE(0))
168 		return;
169 
170 	mapping = page_mapping(page);
171 #ifndef CONFIG_SMP
172 	if (test_and_clear_bit(PG_dcache_dirty, &page->flags))
173 		__flush_dcache_page(mapping, page);
174 #endif
175 	if (mapping) {
176 		if (cache_is_vivt())
177 			make_coherent(mapping, vma, addr, ptep, pfn);
178 		else if (vma->vm_flags & VM_EXEC)
179 			__flush_icache_all();
180 	}
181 }
182 
183 /*
184  * Check whether the write buffer has physical address aliasing
185  * issues.  If it has, we need to avoid them for the case where
186  * we have several shared mappings of the same object in user
187  * space.
188  */
189 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
190 {
191 	register unsigned long zero = 0, one = 1, val;
192 
193 	local_irq_disable();
194 	mb();
195 	*p1 = one;
196 	mb();
197 	*p2 = zero;
198 	mb();
199 	val = *p1;
200 	mb();
201 	local_irq_enable();
202 	return val != zero;
203 }
204 
205 void __init check_writebuffer_bugs(void)
206 {
207 	struct page *page;
208 	const char *reason;
209 	unsigned long v = 1;
210 
211 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
212 
213 	page = alloc_page(GFP_KERNEL);
214 	if (page) {
215 		unsigned long *p1, *p2;
216 		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
217 					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
218 
219 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
220 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
221 
222 		if (p1 && p2) {
223 			v = check_writebuffer(p1, p2);
224 			reason = "enabling work-around";
225 		} else {
226 			reason = "unable to map memory\n";
227 		}
228 
229 		vunmap(p1);
230 		vunmap(p2);
231 		put_page(page);
232 	} else {
233 		reason = "unable to grab page\n";
234 	}
235 
236 	if (v) {
237 		printk("failed, %s\n", reason);
238 		shared_pte_mask = L_PTE_MT_UNCACHED;
239 	} else {
240 		printk("ok\n");
241 	}
242 }
243