1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault-armv.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2002 Russell King 7 */ 8 #include <linux/sched.h> 9 #include <linux/kernel.h> 10 #include <linux/mm.h> 11 #include <linux/bitops.h> 12 #include <linux/vmalloc.h> 13 #include <linux/init.h> 14 #include <linux/pagemap.h> 15 #include <linux/gfp.h> 16 17 #include <asm/bugs.h> 18 #include <asm/cacheflush.h> 19 #include <asm/cachetype.h> 20 #include <asm/tlbflush.h> 21 22 #include "mm.h" 23 24 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE; 25 26 #if __LINUX_ARM_ARCH__ < 6 27 /* 28 * We take the easy way out of this problem - we make the 29 * PTE uncacheable. However, we leave the write buffer on. 30 * 31 * Note that the pte lock held when calling update_mmu_cache must also 32 * guard the pte (somewhere else in the same mm) that we modify here. 33 * Therefore those configurations which might call adjust_pte (those 34 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. 35 */ 36 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address, 37 unsigned long pfn, pte_t *ptep) 38 { 39 pte_t entry = *ptep; 40 int ret; 41 42 /* 43 * If this page is present, it's actually being shared. 44 */ 45 ret = pte_present(entry); 46 47 /* 48 * If this page isn't present, or is already setup to 49 * fault (ie, is old), we can safely ignore any issues. 50 */ 51 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) { 52 flush_cache_page(vma, address, pfn); 53 outer_flush_range((pfn << PAGE_SHIFT), 54 (pfn << PAGE_SHIFT) + PAGE_SIZE); 55 pte_val(entry) &= ~L_PTE_MT_MASK; 56 pte_val(entry) |= shared_pte_mask; 57 set_pte_at(vma->vm_mm, address, ptep, entry); 58 flush_tlb_page(vma, address); 59 } 60 61 return ret; 62 } 63 64 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 65 /* 66 * If we are using split PTE locks, then we need to take the page 67 * lock here. Otherwise we are using shared mm->page_table_lock 68 * which is already locked, thus cannot take it. 69 */ 70 static inline void do_pte_lock(spinlock_t *ptl) 71 { 72 /* 73 * Use nested version here to indicate that we are already 74 * holding one similar spinlock. 75 */ 76 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 77 } 78 79 static inline void do_pte_unlock(spinlock_t *ptl) 80 { 81 spin_unlock(ptl); 82 } 83 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 84 static inline void do_pte_lock(spinlock_t *ptl) {} 85 static inline void do_pte_unlock(spinlock_t *ptl) {} 86 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 87 88 static int adjust_pte(struct vm_area_struct *vma, unsigned long address, 89 unsigned long pfn) 90 { 91 spinlock_t *ptl; 92 pgd_t *pgd; 93 p4d_t *p4d; 94 pud_t *pud; 95 pmd_t *pmd; 96 pte_t *pte; 97 int ret; 98 99 pgd = pgd_offset(vma->vm_mm, address); 100 if (pgd_none_or_clear_bad(pgd)) 101 return 0; 102 103 p4d = p4d_offset(pgd, address); 104 if (p4d_none_or_clear_bad(p4d)) 105 return 0; 106 107 pud = pud_offset(p4d, address); 108 if (pud_none_or_clear_bad(pud)) 109 return 0; 110 111 pmd = pmd_offset(pud, address); 112 if (pmd_none_or_clear_bad(pmd)) 113 return 0; 114 115 /* 116 * This is called while another page table is mapped, so we 117 * must use the nested version. This also means we need to 118 * open-code the spin-locking. 119 */ 120 pte = pte_offset_map_nolock(vma->vm_mm, pmd, address, &ptl); 121 if (!pte) 122 return 0; 123 124 do_pte_lock(ptl); 125 126 ret = do_adjust_pte(vma, address, pfn, pte); 127 128 do_pte_unlock(ptl); 129 pte_unmap(pte); 130 131 return ret; 132 } 133 134 static void 135 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, 136 unsigned long addr, pte_t *ptep, unsigned long pfn) 137 { 138 struct mm_struct *mm = vma->vm_mm; 139 struct vm_area_struct *mpnt; 140 unsigned long offset; 141 pgoff_t pgoff; 142 int aliases = 0; 143 144 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); 145 146 /* 147 * If we have any shared mappings that are in the same mm 148 * space, then we need to handle them specially to maintain 149 * cache coherency. 150 */ 151 flush_dcache_mmap_lock(mapping); 152 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) { 153 /* 154 * If this VMA is not in our MM, we can ignore it. 155 * Note that we intentionally mask out the VMA 156 * that we are fixing up. 157 */ 158 if (mpnt->vm_mm != mm || mpnt == vma) 159 continue; 160 if (!(mpnt->vm_flags & VM_MAYSHARE)) 161 continue; 162 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; 163 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn); 164 } 165 flush_dcache_mmap_unlock(mapping); 166 if (aliases) 167 do_adjust_pte(vma, addr, pfn, ptep); 168 } 169 170 /* 171 * Take care of architecture specific things when placing a new PTE into 172 * a page table, or changing an existing PTE. Basically, there are two 173 * things that we need to take care of: 174 * 175 * 1. If PG_dcache_clean is not set for the page, we need to ensure 176 * that any cache entries for the kernels virtual memory 177 * range are written back to the page. 178 * 2. If we have multiple shared mappings of the same space in 179 * an object, we need to deal with the cache aliasing issues. 180 * 181 * Note that the pte lock will be held. 182 */ 183 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, 184 unsigned long addr, pte_t *ptep, unsigned int nr) 185 { 186 unsigned long pfn = pte_pfn(*ptep); 187 struct address_space *mapping; 188 struct folio *folio; 189 190 if (!pfn_valid(pfn)) 191 return; 192 193 /* 194 * The zero page is never written to, so never has any dirty 195 * cache lines, and therefore never needs to be flushed. 196 */ 197 if (is_zero_pfn(pfn)) 198 return; 199 200 folio = page_folio(pfn_to_page(pfn)); 201 mapping = folio_flush_mapping(folio); 202 if (!test_and_set_bit(PG_dcache_clean, &folio->flags)) 203 __flush_dcache_folio(mapping, folio); 204 if (mapping) { 205 if (cache_is_vivt()) 206 make_coherent(mapping, vma, addr, ptep, pfn); 207 else if (vma->vm_flags & VM_EXEC) 208 __flush_icache_all(); 209 } 210 } 211 #endif /* __LINUX_ARM_ARCH__ < 6 */ 212 213 /* 214 * Check whether the write buffer has physical address aliasing 215 * issues. If it has, we need to avoid them for the case where 216 * we have several shared mappings of the same object in user 217 * space. 218 */ 219 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) 220 { 221 register unsigned long zero = 0, one = 1, val; 222 223 local_irq_disable(); 224 mb(); 225 *p1 = one; 226 mb(); 227 *p2 = zero; 228 mb(); 229 val = *p1; 230 mb(); 231 local_irq_enable(); 232 return val != zero; 233 } 234 235 void __init check_writebuffer_bugs(void) 236 { 237 struct page *page; 238 const char *reason; 239 unsigned long v = 1; 240 241 pr_info("CPU: Testing write buffer coherency: "); 242 243 page = alloc_page(GFP_KERNEL); 244 if (page) { 245 unsigned long *p1, *p2; 246 pgprot_t prot = __pgprot_modify(PAGE_KERNEL, 247 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE); 248 249 p1 = vmap(&page, 1, VM_IOREMAP, prot); 250 p2 = vmap(&page, 1, VM_IOREMAP, prot); 251 252 if (p1 && p2) { 253 v = check_writebuffer(p1, p2); 254 reason = "enabling work-around"; 255 } else { 256 reason = "unable to map memory\n"; 257 } 258 259 vunmap(p1); 260 vunmap(p2); 261 put_page(page); 262 } else { 263 reason = "unable to grab page\n"; 264 } 265 266 if (v) { 267 pr_cont("failed, %s\n", reason); 268 shared_pte_mask = L_PTE_MT_UNCACHED; 269 } else { 270 pr_cont("ok\n"); 271 } 272 } 273