xref: /linux/arch/arm/mm/fault-armv.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/tlbflush.h>
23 
24 static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
25 
26 /*
27  * We take the easy way out of this problem - we make the
28  * PTE uncacheable.  However, we leave the write buffer on.
29  */
30 static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
31 {
32 	pgd_t *pgd;
33 	pmd_t *pmd;
34 	pte_t *pte, entry;
35 	int ret = 0;
36 
37 	pgd = pgd_offset(vma->vm_mm, address);
38 	if (pgd_none(*pgd))
39 		goto no_pgd;
40 	if (pgd_bad(*pgd))
41 		goto bad_pgd;
42 
43 	pmd = pmd_offset(pgd, address);
44 	if (pmd_none(*pmd))
45 		goto no_pmd;
46 	if (pmd_bad(*pmd))
47 		goto bad_pmd;
48 
49 	pte = pte_offset_map(pmd, address);
50 	entry = *pte;
51 
52 	/*
53 	 * If this page isn't present, or is already setup to
54 	 * fault (ie, is old), we can safely ignore any issues.
55 	 */
56 	if (pte_present(entry) && pte_val(entry) & shared_pte_mask) {
57 		flush_cache_page(vma, address, pte_pfn(entry));
58 		pte_val(entry) &= ~shared_pte_mask;
59 		set_pte(pte, entry);
60 		flush_tlb_page(vma, address);
61 		ret = 1;
62 	}
63 	pte_unmap(pte);
64 	return ret;
65 
66 bad_pgd:
67 	pgd_ERROR(*pgd);
68 	pgd_clear(pgd);
69 no_pgd:
70 	return 0;
71 
72 bad_pmd:
73 	pmd_ERROR(*pmd);
74 	pmd_clear(pmd);
75 no_pmd:
76 	return 0;
77 }
78 
79 static void
80 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
81 {
82 	struct mm_struct *mm = vma->vm_mm;
83 	struct vm_area_struct *mpnt;
84 	struct prio_tree_iter iter;
85 	unsigned long offset;
86 	pgoff_t pgoff;
87 	int aliases = 0;
88 
89 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
90 
91 	/*
92 	 * If we have any shared mappings that are in the same mm
93 	 * space, then we need to handle them specially to maintain
94 	 * cache coherency.
95 	 */
96 	flush_dcache_mmap_lock(mapping);
97 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
98 		/*
99 		 * If this VMA is not in our MM, we can ignore it.
100 		 * Note that we intentionally mask out the VMA
101 		 * that we are fixing up.
102 		 */
103 		if (mpnt->vm_mm != mm || mpnt == vma)
104 			continue;
105 		if (!(mpnt->vm_flags & VM_MAYSHARE))
106 			continue;
107 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
108 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
109 	}
110 	flush_dcache_mmap_unlock(mapping);
111 	if (aliases)
112 		adjust_pte(vma, addr);
113 	else
114 		flush_cache_page(vma, addr, pfn);
115 }
116 
117 void __flush_dcache_page(struct address_space *mapping, struct page *page);
118 
119 /*
120  * Take care of architecture specific things when placing a new PTE into
121  * a page table, or changing an existing PTE.  Basically, there are two
122  * things that we need to take care of:
123  *
124  *  1. If PG_dcache_dirty is set for the page, we need to ensure
125  *     that any cache entries for the kernels virtual memory
126  *     range are written back to the page.
127  *  2. If we have multiple shared mappings of the same space in
128  *     an object, we need to deal with the cache aliasing issues.
129  *
130  * Note that the page_table_lock will be held.
131  */
132 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
133 {
134 	unsigned long pfn = pte_pfn(pte);
135 	struct address_space *mapping;
136 	struct page *page;
137 
138 	if (!pfn_valid(pfn))
139 		return;
140 
141 	page = pfn_to_page(pfn);
142 	mapping = page_mapping(page);
143 	if (mapping) {
144 		int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
145 
146 		if (dirty)
147 			__flush_dcache_page(mapping, page);
148 
149 		if (cache_is_vivt())
150 			make_coherent(mapping, vma, addr, pfn);
151 	}
152 }
153 
154 /*
155  * Check whether the write buffer has physical address aliasing
156  * issues.  If it has, we need to avoid them for the case where
157  * we have several shared mappings of the same object in user
158  * space.
159  */
160 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
161 {
162 	register unsigned long zero = 0, one = 1, val;
163 
164 	local_irq_disable();
165 	mb();
166 	*p1 = one;
167 	mb();
168 	*p2 = zero;
169 	mb();
170 	val = *p1;
171 	mb();
172 	local_irq_enable();
173 	return val != zero;
174 }
175 
176 void __init check_writebuffer_bugs(void)
177 {
178 	struct page *page;
179 	const char *reason;
180 	unsigned long v = 1;
181 
182 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
183 
184 	page = alloc_page(GFP_KERNEL);
185 	if (page) {
186 		unsigned long *p1, *p2;
187 		pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
188 					 L_PTE_DIRTY|L_PTE_WRITE|
189 					 L_PTE_BUFFERABLE);
190 
191 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
192 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
193 
194 		if (p1 && p2) {
195 			v = check_writebuffer(p1, p2);
196 			reason = "enabling work-around";
197 		} else {
198 			reason = "unable to map memory\n";
199 		}
200 
201 		vunmap(p1);
202 		vunmap(p2);
203 		put_page(page);
204 	} else {
205 		reason = "unable to grab page\n";
206 	}
207 
208 	if (v) {
209 		printk("failed, %s\n", reason);
210 		shared_pte_mask |= L_PTE_BUFFERABLE;
211 	} else {
212 		printk("ok\n");
213 	}
214 }
215