xref: /linux/arch/arm/mm/fault-armv.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 
20 #include <asm/bugs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cachetype.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 
26 static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE;
27 
28 /*
29  * We take the easy way out of this problem - we make the
30  * PTE uncacheable.  However, we leave the write buffer on.
31  *
32  * Note that the pte lock held when calling update_mmu_cache must also
33  * guard the pte (somewhere else in the same mm) that we modify here.
34  * Therefore those configurations which might call adjust_pte (those
35  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
36  */
37 static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
38 {
39 	pgd_t *pgd;
40 	pmd_t *pmd;
41 	pte_t *pte, entry;
42 	int ret;
43 
44 	pgd = pgd_offset(vma->vm_mm, address);
45 	if (pgd_none(*pgd))
46 		goto no_pgd;
47 	if (pgd_bad(*pgd))
48 		goto bad_pgd;
49 
50 	pmd = pmd_offset(pgd, address);
51 	if (pmd_none(*pmd))
52 		goto no_pmd;
53 	if (pmd_bad(*pmd))
54 		goto bad_pmd;
55 
56 	pte = pte_offset_map(pmd, address);
57 	entry = *pte;
58 
59 	/*
60 	 * If this page is present, it's actually being shared.
61 	 */
62 	ret = pte_present(entry);
63 
64 	/*
65 	 * If this page isn't present, or is already setup to
66 	 * fault (ie, is old), we can safely ignore any issues.
67 	 */
68 	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
69 		flush_cache_page(vma, address, pte_pfn(entry));
70 		pte_val(entry) &= ~L_PTE_MT_MASK;
71 		pte_val(entry) |= shared_pte_mask;
72 		set_pte_at(vma->vm_mm, address, pte, entry);
73 		flush_tlb_page(vma, address);
74 	}
75 	pte_unmap(pte);
76 	return ret;
77 
78 bad_pgd:
79 	pgd_ERROR(*pgd);
80 	pgd_clear(pgd);
81 no_pgd:
82 	return 0;
83 
84 bad_pmd:
85 	pmd_ERROR(*pmd);
86 	pmd_clear(pmd);
87 no_pmd:
88 	return 0;
89 }
90 
91 static void
92 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
93 {
94 	struct mm_struct *mm = vma->vm_mm;
95 	struct vm_area_struct *mpnt;
96 	struct prio_tree_iter iter;
97 	unsigned long offset;
98 	pgoff_t pgoff;
99 	int aliases = 0;
100 
101 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
102 
103 	/*
104 	 * If we have any shared mappings that are in the same mm
105 	 * space, then we need to handle them specially to maintain
106 	 * cache coherency.
107 	 */
108 	flush_dcache_mmap_lock(mapping);
109 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
110 		/*
111 		 * If this VMA is not in our MM, we can ignore it.
112 		 * Note that we intentionally mask out the VMA
113 		 * that we are fixing up.
114 		 */
115 		if (mpnt->vm_mm != mm || mpnt == vma)
116 			continue;
117 		if (!(mpnt->vm_flags & VM_MAYSHARE))
118 			continue;
119 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
120 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
121 	}
122 	flush_dcache_mmap_unlock(mapping);
123 	if (aliases)
124 		adjust_pte(vma, addr);
125 	else
126 		flush_cache_page(vma, addr, pfn);
127 }
128 
129 /*
130  * Take care of architecture specific things when placing a new PTE into
131  * a page table, or changing an existing PTE.  Basically, there are two
132  * things that we need to take care of:
133  *
134  *  1. If PG_dcache_dirty is set for the page, we need to ensure
135  *     that any cache entries for the kernels virtual memory
136  *     range are written back to the page.
137  *  2. If we have multiple shared mappings of the same space in
138  *     an object, we need to deal with the cache aliasing issues.
139  *
140  * Note that the pte lock will be held.
141  */
142 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
143 {
144 	unsigned long pfn = pte_pfn(pte);
145 	struct address_space *mapping;
146 	struct page *page;
147 
148 	if (!pfn_valid(pfn))
149 		return;
150 
151 	page = pfn_to_page(pfn);
152 	mapping = page_mapping(page);
153 	if (mapping) {
154 #ifndef CONFIG_SMP
155 		int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
156 
157 		if (dirty)
158 			__flush_dcache_page(mapping, page);
159 #endif
160 
161 		if (cache_is_vivt())
162 			make_coherent(mapping, vma, addr, pfn);
163 		else if (vma->vm_flags & VM_EXEC)
164 			__flush_icache_all();
165 	}
166 }
167 
168 /*
169  * Check whether the write buffer has physical address aliasing
170  * issues.  If it has, we need to avoid them for the case where
171  * we have several shared mappings of the same object in user
172  * space.
173  */
174 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
175 {
176 	register unsigned long zero = 0, one = 1, val;
177 
178 	local_irq_disable();
179 	mb();
180 	*p1 = one;
181 	mb();
182 	*p2 = zero;
183 	mb();
184 	val = *p1;
185 	mb();
186 	local_irq_enable();
187 	return val != zero;
188 }
189 
190 void __init check_writebuffer_bugs(void)
191 {
192 	struct page *page;
193 	const char *reason;
194 	unsigned long v = 1;
195 
196 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
197 
198 	page = alloc_page(GFP_KERNEL);
199 	if (page) {
200 		unsigned long *p1, *p2;
201 		pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
202 					 L_PTE_DIRTY|L_PTE_WRITE|
203 					 L_PTE_MT_BUFFERABLE);
204 
205 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
206 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
207 
208 		if (p1 && p2) {
209 			v = check_writebuffer(p1, p2);
210 			reason = "enabling work-around";
211 		} else {
212 			reason = "unable to map memory\n";
213 		}
214 
215 		vunmap(p1);
216 		vunmap(p2);
217 		put_page(page);
218 	} else {
219 		reason = "unable to grab page\n";
220 	}
221 
222 	if (v) {
223 		printk("failed, %s\n", reason);
224 		shared_pte_mask = L_PTE_MT_UNCACHED;
225 	} else {
226 		printk("ok\n");
227 	}
228 }
229