xref: /linux/arch/arm/mm/fault-armv.c (revision 0a670e151a71434765de69590944e18c08ee08cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault-armv.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2002 Russell King
7  */
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/mm.h>
11 #include <linux/bitops.h>
12 #include <linux/vmalloc.h>
13 #include <linux/init.h>
14 #include <linux/pagemap.h>
15 #include <linux/gfp.h>
16 
17 #include <asm/bugs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cachetype.h>
20 #include <asm/tlbflush.h>
21 
22 #include "mm.h"
23 
24 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
25 
26 #if __LINUX_ARM_ARCH__ < 6
27 /*
28  * We take the easy way out of this problem - we make the
29  * PTE uncacheable.  However, we leave the write buffer on.
30  *
31  * Note that the pte lock held when calling update_mmu_cache must also
32  * guard the pte (somewhere else in the same mm) that we modify here.
33  * Therefore those configurations which might call adjust_pte (those
34  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
35  */
36 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
37 	unsigned long pfn, pte_t *ptep)
38 {
39 	pte_t entry = *ptep;
40 	int ret;
41 
42 	/*
43 	 * If this page is present, it's actually being shared.
44 	 */
45 	ret = pte_present(entry);
46 
47 	/*
48 	 * If this page isn't present, or is already setup to
49 	 * fault (ie, is old), we can safely ignore any issues.
50 	 */
51 	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
52 		flush_cache_page(vma, address, pfn);
53 		outer_flush_range((pfn << PAGE_SHIFT),
54 				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
55 		pte_val(entry) &= ~L_PTE_MT_MASK;
56 		pte_val(entry) |= shared_pte_mask;
57 		set_pte_at(vma->vm_mm, address, ptep, entry);
58 		flush_tlb_page(vma, address);
59 	}
60 
61 	return ret;
62 }
63 
64 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
65 		      unsigned long pfn, struct vm_fault *vmf)
66 {
67 	spinlock_t *ptl;
68 	pgd_t *pgd;
69 	p4d_t *p4d;
70 	pud_t *pud;
71 	pmd_t *pmd;
72 	pte_t *pte;
73 	pmd_t pmdval;
74 	int ret;
75 
76 	pgd = pgd_offset(vma->vm_mm, address);
77 	if (pgd_none_or_clear_bad(pgd))
78 		return 0;
79 
80 	p4d = p4d_offset(pgd, address);
81 	if (p4d_none_or_clear_bad(p4d))
82 		return 0;
83 
84 	pud = pud_offset(p4d, address);
85 	if (pud_none_or_clear_bad(pud))
86 		return 0;
87 
88 	pmd = pmd_offset(pud, address);
89 	if (pmd_none_or_clear_bad(pmd))
90 		return 0;
91 
92 again:
93 	/*
94 	 * This is called while another page table is mapped, so we
95 	 * must use the nested version.  This also means we need to
96 	 * open-code the spin-locking.
97 	 */
98 	pte = pte_offset_map_rw_nolock(vma->vm_mm, pmd, address, &pmdval, &ptl);
99 	if (!pte)
100 		return 0;
101 
102 	/*
103 	 * If we are using split PTE locks, then we need to take the page
104 	 * lock here.  Otherwise we are using shared mm->page_table_lock
105 	 * which is already locked, thus cannot take it.
106 	 */
107 	if (ptl != vmf->ptl) {
108 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
109 		if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
110 			pte_unmap_unlock(pte, ptl);
111 			goto again;
112 		}
113 	}
114 
115 	ret = do_adjust_pte(vma, address, pfn, pte);
116 
117 	if (ptl != vmf->ptl)
118 		spin_unlock(ptl);
119 	pte_unmap(pte);
120 
121 	return ret;
122 }
123 
124 static void
125 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
126 	      unsigned long addr, pte_t *ptep, unsigned long pfn,
127 	      struct vm_fault *vmf)
128 {
129 	struct mm_struct *mm = vma->vm_mm;
130 	struct vm_area_struct *mpnt;
131 	unsigned long offset;
132 	pgoff_t pgoff;
133 	int aliases = 0;
134 
135 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
136 
137 	/*
138 	 * If we have any shared mappings that are in the same mm
139 	 * space, then we need to handle them specially to maintain
140 	 * cache coherency.
141 	 */
142 	flush_dcache_mmap_lock(mapping);
143 	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
144 		/*
145 		 * If this VMA is not in our MM, we can ignore it.
146 		 * Note that we intentionally mask out the VMA
147 		 * that we are fixing up.
148 		 */
149 		if (mpnt->vm_mm != mm || mpnt == vma)
150 			continue;
151 		if (!(mpnt->vm_flags & VM_MAYSHARE))
152 			continue;
153 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
154 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn, vmf);
155 	}
156 	flush_dcache_mmap_unlock(mapping);
157 	if (aliases)
158 		do_adjust_pte(vma, addr, pfn, ptep);
159 }
160 
161 /*
162  * Take care of architecture specific things when placing a new PTE into
163  * a page table, or changing an existing PTE.  Basically, there are two
164  * things that we need to take care of:
165  *
166  *  1. If PG_dcache_clean is not set for the page, we need to ensure
167  *     that any cache entries for the kernels virtual memory
168  *     range are written back to the page.
169  *  2. If we have multiple shared mappings of the same space in
170  *     an object, we need to deal with the cache aliasing issues.
171  *
172  * Note that the pte lock will be held.
173  */
174 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
175 		unsigned long addr, pte_t *ptep, unsigned int nr)
176 {
177 	unsigned long pfn = pte_pfn(*ptep);
178 	struct address_space *mapping;
179 	struct folio *folio;
180 
181 	if (!pfn_valid(pfn))
182 		return;
183 
184 	/*
185 	 * The zero page is never written to, so never has any dirty
186 	 * cache lines, and therefore never needs to be flushed.
187 	 */
188 	if (is_zero_pfn(pfn))
189 		return;
190 
191 	folio = page_folio(pfn_to_page(pfn));
192 	mapping = folio_flush_mapping(folio);
193 	if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
194 		__flush_dcache_folio(mapping, folio);
195 	if (mapping) {
196 		if (cache_is_vivt())
197 			make_coherent(mapping, vma, addr, ptep, pfn, vmf);
198 		else if (vma->vm_flags & VM_EXEC)
199 			__flush_icache_all();
200 	}
201 }
202 #endif	/* __LINUX_ARM_ARCH__ < 6 */
203 
204 /*
205  * Check whether the write buffer has physical address aliasing
206  * issues.  If it has, we need to avoid them for the case where
207  * we have several shared mappings of the same object in user
208  * space.
209  */
210 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
211 {
212 	register unsigned long zero = 0, one = 1, val;
213 
214 	local_irq_disable();
215 	mb();
216 	*p1 = one;
217 	mb();
218 	*p2 = zero;
219 	mb();
220 	val = *p1;
221 	mb();
222 	local_irq_enable();
223 	return val != zero;
224 }
225 
226 void __init check_writebuffer_bugs(void)
227 {
228 	struct page *page;
229 	const char *reason;
230 	unsigned long v = 1;
231 
232 	pr_info("CPU: Testing write buffer coherency: ");
233 
234 	page = alloc_page(GFP_KERNEL);
235 	if (page) {
236 		unsigned long *p1, *p2;
237 		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
238 					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
239 
240 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
241 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
242 
243 		if (p1 && p2) {
244 			v = check_writebuffer(p1, p2);
245 			reason = "enabling work-around";
246 		} else {
247 			reason = "unable to map memory\n";
248 		}
249 
250 		vunmap(p1);
251 		vunmap(p2);
252 		put_page(page);
253 	} else {
254 		reason = "unable to grab page\n";
255 	}
256 
257 	if (v) {
258 		pr_cont("failed, %s\n", reason);
259 		shared_pte_mask = L_PTE_MT_UNCACHED;
260 	} else {
261 		pr_cont("ok\n");
262 	}
263 }
264