1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dma-contiguous.h> 21 #include <linux/highmem.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/iommu.h> 25 #include <linux/io.h> 26 #include <linux/vmalloc.h> 27 #include <linux/sizes.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "mm.h" 40 41 /* 42 * The DMA API is built upon the notion of "buffer ownership". A buffer 43 * is either exclusively owned by the CPU (and therefore may be accessed 44 * by it) or exclusively owned by the DMA device. These helper functions 45 * represent the transitions between these two ownership states. 46 * 47 * Note, however, that on later ARMs, this notion does not work due to 48 * speculative prefetches. We model our approach on the assumption that 49 * the CPU does do speculative prefetches, which means we clean caches 50 * before transfers and delay cache invalidation until transfer completion. 51 * 52 */ 53 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 54 size_t, enum dma_data_direction); 55 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 56 size_t, enum dma_data_direction); 57 58 /** 59 * arm_dma_map_page - map a portion of a page for streaming DMA 60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 61 * @page: page that buffer resides in 62 * @offset: offset into page for start of buffer 63 * @size: size of buffer to map 64 * @dir: DMA transfer direction 65 * 66 * Ensure that any data held in the cache is appropriately discarded 67 * or written back. 68 * 69 * The device owns this memory once this call has completed. The CPU 70 * can regain ownership by calling dma_unmap_page(). 71 */ 72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 73 unsigned long offset, size_t size, enum dma_data_direction dir, 74 struct dma_attrs *attrs) 75 { 76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 77 __dma_page_cpu_to_dev(page, offset, size, dir); 78 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 79 } 80 81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 82 unsigned long offset, size_t size, enum dma_data_direction dir, 83 struct dma_attrs *attrs) 84 { 85 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 86 } 87 88 /** 89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 91 * @handle: DMA address of buffer 92 * @size: size of buffer (same as passed to dma_map_page) 93 * @dir: DMA transfer direction (same as passed to dma_map_page) 94 * 95 * Unmap a page streaming mode DMA translation. The handle and size 96 * must match what was provided in the previous dma_map_page() call. 97 * All other usages are undefined. 98 * 99 * After this call, reads by the CPU to the buffer are guaranteed to see 100 * whatever the device wrote there. 101 */ 102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 103 size_t size, enum dma_data_direction dir, 104 struct dma_attrs *attrs) 105 { 106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 108 handle & ~PAGE_MASK, size, dir); 109 } 110 111 static void arm_dma_sync_single_for_cpu(struct device *dev, 112 dma_addr_t handle, size_t size, enum dma_data_direction dir) 113 { 114 unsigned int offset = handle & (PAGE_SIZE - 1); 115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 116 __dma_page_dev_to_cpu(page, offset, size, dir); 117 } 118 119 static void arm_dma_sync_single_for_device(struct device *dev, 120 dma_addr_t handle, size_t size, enum dma_data_direction dir) 121 { 122 unsigned int offset = handle & (PAGE_SIZE - 1); 123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 124 __dma_page_cpu_to_dev(page, offset, size, dir); 125 } 126 127 struct dma_map_ops arm_dma_ops = { 128 .alloc = arm_dma_alloc, 129 .free = arm_dma_free, 130 .mmap = arm_dma_mmap, 131 .get_sgtable = arm_dma_get_sgtable, 132 .map_page = arm_dma_map_page, 133 .unmap_page = arm_dma_unmap_page, 134 .map_sg = arm_dma_map_sg, 135 .unmap_sg = arm_dma_unmap_sg, 136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 137 .sync_single_for_device = arm_dma_sync_single_for_device, 138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 139 .sync_sg_for_device = arm_dma_sync_sg_for_device, 140 .set_dma_mask = arm_dma_set_mask, 141 }; 142 EXPORT_SYMBOL(arm_dma_ops); 143 144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 147 dma_addr_t handle, struct dma_attrs *attrs); 148 149 struct dma_map_ops arm_coherent_dma_ops = { 150 .alloc = arm_coherent_dma_alloc, 151 .free = arm_coherent_dma_free, 152 .mmap = arm_dma_mmap, 153 .get_sgtable = arm_dma_get_sgtable, 154 .map_page = arm_coherent_dma_map_page, 155 .map_sg = arm_dma_map_sg, 156 .set_dma_mask = arm_dma_set_mask, 157 }; 158 EXPORT_SYMBOL(arm_coherent_dma_ops); 159 160 static u64 get_coherent_dma_mask(struct device *dev) 161 { 162 u64 mask = (u64)arm_dma_limit; 163 164 if (dev) { 165 mask = dev->coherent_dma_mask; 166 167 /* 168 * Sanity check the DMA mask - it must be non-zero, and 169 * must be able to be satisfied by a DMA allocation. 170 */ 171 if (mask == 0) { 172 dev_warn(dev, "coherent DMA mask is unset\n"); 173 return 0; 174 } 175 176 if ((~mask) & (u64)arm_dma_limit) { 177 dev_warn(dev, "coherent DMA mask %#llx is smaller " 178 "than system GFP_DMA mask %#llx\n", 179 mask, (u64)arm_dma_limit); 180 return 0; 181 } 182 } 183 184 return mask; 185 } 186 187 static void __dma_clear_buffer(struct page *page, size_t size) 188 { 189 /* 190 * Ensure that the allocated pages are zeroed, and that any data 191 * lurking in the kernel direct-mapped region is invalidated. 192 */ 193 if (PageHighMem(page)) { 194 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 195 phys_addr_t end = base + size; 196 while (size > 0) { 197 void *ptr = kmap_atomic(page); 198 memset(ptr, 0, PAGE_SIZE); 199 dmac_flush_range(ptr, ptr + PAGE_SIZE); 200 kunmap_atomic(ptr); 201 page++; 202 size -= PAGE_SIZE; 203 } 204 outer_flush_range(base, end); 205 } else { 206 void *ptr = page_address(page); 207 memset(ptr, 0, size); 208 dmac_flush_range(ptr, ptr + size); 209 outer_flush_range(__pa(ptr), __pa(ptr) + size); 210 } 211 } 212 213 /* 214 * Allocate a DMA buffer for 'dev' of size 'size' using the 215 * specified gfp mask. Note that 'size' must be page aligned. 216 */ 217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 218 { 219 unsigned long order = get_order(size); 220 struct page *page, *p, *e; 221 222 page = alloc_pages(gfp, order); 223 if (!page) 224 return NULL; 225 226 /* 227 * Now split the huge page and free the excess pages 228 */ 229 split_page(page, order); 230 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 231 __free_page(p); 232 233 __dma_clear_buffer(page, size); 234 235 return page; 236 } 237 238 /* 239 * Free a DMA buffer. 'size' must be page aligned. 240 */ 241 static void __dma_free_buffer(struct page *page, size_t size) 242 { 243 struct page *e = page + (size >> PAGE_SHIFT); 244 245 while (page < e) { 246 __free_page(page); 247 page++; 248 } 249 } 250 251 #ifdef CONFIG_MMU 252 #ifdef CONFIG_HUGETLB_PAGE 253 #warning ARM Coherent DMA allocator does not (yet) support huge TLB 254 #endif 255 256 static void *__alloc_from_contiguous(struct device *dev, size_t size, 257 pgprot_t prot, struct page **ret_page, 258 const void *caller); 259 260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 261 pgprot_t prot, struct page **ret_page, 262 const void *caller); 263 264 static void * 265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 266 const void *caller) 267 { 268 struct vm_struct *area; 269 unsigned long addr; 270 271 /* 272 * DMA allocation can be mapped to user space, so lets 273 * set VM_USERMAP flags too. 274 */ 275 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 276 caller); 277 if (!area) 278 return NULL; 279 addr = (unsigned long)area->addr; 280 area->phys_addr = __pfn_to_phys(page_to_pfn(page)); 281 282 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { 283 vunmap((void *)addr); 284 return NULL; 285 } 286 return (void *)addr; 287 } 288 289 static void __dma_free_remap(void *cpu_addr, size_t size) 290 { 291 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; 292 struct vm_struct *area = find_vm_area(cpu_addr); 293 if (!area || (area->flags & flags) != flags) { 294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 295 return; 296 } 297 unmap_kernel_range((unsigned long)cpu_addr, size); 298 vunmap(cpu_addr); 299 } 300 301 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 302 303 struct dma_pool { 304 size_t size; 305 spinlock_t lock; 306 unsigned long *bitmap; 307 unsigned long nr_pages; 308 void *vaddr; 309 struct page **pages; 310 }; 311 312 static struct dma_pool atomic_pool = { 313 .size = DEFAULT_DMA_COHERENT_POOL_SIZE, 314 }; 315 316 static int __init early_coherent_pool(char *p) 317 { 318 atomic_pool.size = memparse(p, &p); 319 return 0; 320 } 321 early_param("coherent_pool", early_coherent_pool); 322 323 void __init init_dma_coherent_pool_size(unsigned long size) 324 { 325 /* 326 * Catch any attempt to set the pool size too late. 327 */ 328 BUG_ON(atomic_pool.vaddr); 329 330 /* 331 * Set architecture specific coherent pool size only if 332 * it has not been changed by kernel command line parameter. 333 */ 334 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE) 335 atomic_pool.size = size; 336 } 337 338 /* 339 * Initialise the coherent pool for atomic allocations. 340 */ 341 static int __init atomic_pool_init(void) 342 { 343 struct dma_pool *pool = &atomic_pool; 344 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); 345 gfp_t gfp = GFP_KERNEL | GFP_DMA; 346 unsigned long nr_pages = pool->size >> PAGE_SHIFT; 347 unsigned long *bitmap; 348 struct page *page; 349 struct page **pages; 350 void *ptr; 351 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); 352 353 bitmap = kzalloc(bitmap_size, GFP_KERNEL); 354 if (!bitmap) 355 goto no_bitmap; 356 357 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); 358 if (!pages) 359 goto no_pages; 360 361 if (IS_ENABLED(CONFIG_CMA)) 362 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page, 363 atomic_pool_init); 364 else 365 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page, 366 atomic_pool_init); 367 if (ptr) { 368 int i; 369 370 for (i = 0; i < nr_pages; i++) 371 pages[i] = page + i; 372 373 spin_lock_init(&pool->lock); 374 pool->vaddr = ptr; 375 pool->pages = pages; 376 pool->bitmap = bitmap; 377 pool->nr_pages = nr_pages; 378 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", 379 (unsigned)pool->size / 1024); 380 return 0; 381 } 382 383 kfree(pages); 384 no_pages: 385 kfree(bitmap); 386 no_bitmap: 387 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", 388 (unsigned)pool->size / 1024); 389 return -ENOMEM; 390 } 391 /* 392 * CMA is activated by core_initcall, so we must be called after it. 393 */ 394 postcore_initcall(atomic_pool_init); 395 396 struct dma_contig_early_reserve { 397 phys_addr_t base; 398 unsigned long size; 399 }; 400 401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 402 403 static int dma_mmu_remap_num __initdata; 404 405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 406 { 407 dma_mmu_remap[dma_mmu_remap_num].base = base; 408 dma_mmu_remap[dma_mmu_remap_num].size = size; 409 dma_mmu_remap_num++; 410 } 411 412 void __init dma_contiguous_remap(void) 413 { 414 int i; 415 for (i = 0; i < dma_mmu_remap_num; i++) { 416 phys_addr_t start = dma_mmu_remap[i].base; 417 phys_addr_t end = start + dma_mmu_remap[i].size; 418 struct map_desc map; 419 unsigned long addr; 420 421 if (end > arm_lowmem_limit) 422 end = arm_lowmem_limit; 423 if (start >= end) 424 continue; 425 426 map.pfn = __phys_to_pfn(start); 427 map.virtual = __phys_to_virt(start); 428 map.length = end - start; 429 map.type = MT_MEMORY_DMA_READY; 430 431 /* 432 * Clear previous low-memory mapping 433 */ 434 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 435 addr += PMD_SIZE) 436 pmd_clear(pmd_off_k(addr)); 437 438 iotable_init(&map, 1); 439 } 440 } 441 442 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 443 void *data) 444 { 445 struct page *page = virt_to_page(addr); 446 pgprot_t prot = *(pgprot_t *)data; 447 448 set_pte_ext(pte, mk_pte(page, prot), 0); 449 return 0; 450 } 451 452 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 453 { 454 unsigned long start = (unsigned long) page_address(page); 455 unsigned end = start + size; 456 457 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 458 dsb(); 459 flush_tlb_kernel_range(start, end); 460 } 461 462 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 463 pgprot_t prot, struct page **ret_page, 464 const void *caller) 465 { 466 struct page *page; 467 void *ptr; 468 page = __dma_alloc_buffer(dev, size, gfp); 469 if (!page) 470 return NULL; 471 472 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 473 if (!ptr) { 474 __dma_free_buffer(page, size); 475 return NULL; 476 } 477 478 *ret_page = page; 479 return ptr; 480 } 481 482 static void *__alloc_from_pool(size_t size, struct page **ret_page) 483 { 484 struct dma_pool *pool = &atomic_pool; 485 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 486 unsigned int pageno; 487 unsigned long flags; 488 void *ptr = NULL; 489 unsigned long align_mask; 490 491 if (!pool->vaddr) { 492 WARN(1, "coherent pool not initialised!\n"); 493 return NULL; 494 } 495 496 /* 497 * Align the region allocation - allocations from pool are rather 498 * small, so align them to their order in pages, minimum is a page 499 * size. This helps reduce fragmentation of the DMA space. 500 */ 501 align_mask = (1 << get_order(size)) - 1; 502 503 spin_lock_irqsave(&pool->lock, flags); 504 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, 505 0, count, align_mask); 506 if (pageno < pool->nr_pages) { 507 bitmap_set(pool->bitmap, pageno, count); 508 ptr = pool->vaddr + PAGE_SIZE * pageno; 509 *ret_page = pool->pages[pageno]; 510 } else { 511 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n" 512 "Please increase it with coherent_pool= kernel parameter!\n", 513 (unsigned)pool->size / 1024); 514 } 515 spin_unlock_irqrestore(&pool->lock, flags); 516 517 return ptr; 518 } 519 520 static bool __in_atomic_pool(void *start, size_t size) 521 { 522 struct dma_pool *pool = &atomic_pool; 523 void *end = start + size; 524 void *pool_start = pool->vaddr; 525 void *pool_end = pool->vaddr + pool->size; 526 527 if (start < pool_start || start >= pool_end) 528 return false; 529 530 if (end <= pool_end) 531 return true; 532 533 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n", 534 start, end - 1, pool_start, pool_end - 1); 535 536 return false; 537 } 538 539 static int __free_from_pool(void *start, size_t size) 540 { 541 struct dma_pool *pool = &atomic_pool; 542 unsigned long pageno, count; 543 unsigned long flags; 544 545 if (!__in_atomic_pool(start, size)) 546 return 0; 547 548 pageno = (start - pool->vaddr) >> PAGE_SHIFT; 549 count = size >> PAGE_SHIFT; 550 551 spin_lock_irqsave(&pool->lock, flags); 552 bitmap_clear(pool->bitmap, pageno, count); 553 spin_unlock_irqrestore(&pool->lock, flags); 554 555 return 1; 556 } 557 558 static void *__alloc_from_contiguous(struct device *dev, size_t size, 559 pgprot_t prot, struct page **ret_page, 560 const void *caller) 561 { 562 unsigned long order = get_order(size); 563 size_t count = size >> PAGE_SHIFT; 564 struct page *page; 565 void *ptr; 566 567 page = dma_alloc_from_contiguous(dev, count, order); 568 if (!page) 569 return NULL; 570 571 __dma_clear_buffer(page, size); 572 573 if (PageHighMem(page)) { 574 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 575 if (!ptr) { 576 dma_release_from_contiguous(dev, page, count); 577 return NULL; 578 } 579 } else { 580 __dma_remap(page, size, prot); 581 ptr = page_address(page); 582 } 583 *ret_page = page; 584 return ptr; 585 } 586 587 static void __free_from_contiguous(struct device *dev, struct page *page, 588 void *cpu_addr, size_t size) 589 { 590 if (PageHighMem(page)) 591 __dma_free_remap(cpu_addr, size); 592 else 593 __dma_remap(page, size, pgprot_kernel); 594 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 595 } 596 597 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 598 { 599 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 600 pgprot_writecombine(prot) : 601 pgprot_dmacoherent(prot); 602 return prot; 603 } 604 605 #define nommu() 0 606 607 #else /* !CONFIG_MMU */ 608 609 #define nommu() 1 610 611 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 612 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL 613 #define __alloc_from_pool(size, ret_page) NULL 614 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL 615 #define __free_from_pool(cpu_addr, size) 0 616 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0) 617 #define __dma_free_remap(cpu_addr, size) do { } while (0) 618 619 #endif /* CONFIG_MMU */ 620 621 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 622 struct page **ret_page) 623 { 624 struct page *page; 625 page = __dma_alloc_buffer(dev, size, gfp); 626 if (!page) 627 return NULL; 628 629 *ret_page = page; 630 return page_address(page); 631 } 632 633 634 635 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 636 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller) 637 { 638 u64 mask = get_coherent_dma_mask(dev); 639 struct page *page = NULL; 640 void *addr; 641 642 #ifdef CONFIG_DMA_API_DEBUG 643 u64 limit = (mask + 1) & ~mask; 644 if (limit && size >= limit) { 645 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 646 size, mask); 647 return NULL; 648 } 649 #endif 650 651 if (!mask) 652 return NULL; 653 654 if (mask < 0xffffffffULL) 655 gfp |= GFP_DMA; 656 657 /* 658 * Following is a work-around (a.k.a. hack) to prevent pages 659 * with __GFP_COMP being passed to split_page() which cannot 660 * handle them. The real problem is that this flag probably 661 * should be 0 on ARM as it is not supported on this 662 * platform; see CONFIG_HUGETLBFS. 663 */ 664 gfp &= ~(__GFP_COMP); 665 666 *handle = DMA_ERROR_CODE; 667 size = PAGE_ALIGN(size); 668 669 if (is_coherent || nommu()) 670 addr = __alloc_simple_buffer(dev, size, gfp, &page); 671 else if (!(gfp & __GFP_WAIT)) 672 addr = __alloc_from_pool(size, &page); 673 else if (!IS_ENABLED(CONFIG_CMA)) 674 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); 675 else 676 addr = __alloc_from_contiguous(dev, size, prot, &page, caller); 677 678 if (addr) 679 *handle = pfn_to_dma(dev, page_to_pfn(page)); 680 681 return addr; 682 } 683 684 /* 685 * Allocate DMA-coherent memory space and return both the kernel remapped 686 * virtual and bus address for that space. 687 */ 688 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 689 gfp_t gfp, struct dma_attrs *attrs) 690 { 691 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 692 void *memory; 693 694 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 695 return memory; 696 697 return __dma_alloc(dev, size, handle, gfp, prot, false, 698 __builtin_return_address(0)); 699 } 700 701 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 702 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 703 { 704 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 705 void *memory; 706 707 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 708 return memory; 709 710 return __dma_alloc(dev, size, handle, gfp, prot, true, 711 __builtin_return_address(0)); 712 } 713 714 /* 715 * Create userspace mapping for the DMA-coherent memory. 716 */ 717 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 718 void *cpu_addr, dma_addr_t dma_addr, size_t size, 719 struct dma_attrs *attrs) 720 { 721 int ret = -ENXIO; 722 #ifdef CONFIG_MMU 723 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 724 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 725 unsigned long pfn = dma_to_pfn(dev, dma_addr); 726 unsigned long off = vma->vm_pgoff; 727 728 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 729 730 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 731 return ret; 732 733 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 734 ret = remap_pfn_range(vma, vma->vm_start, 735 pfn + off, 736 vma->vm_end - vma->vm_start, 737 vma->vm_page_prot); 738 } 739 #endif /* CONFIG_MMU */ 740 741 return ret; 742 } 743 744 /* 745 * Free a buffer as defined by the above mapping. 746 */ 747 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 748 dma_addr_t handle, struct dma_attrs *attrs, 749 bool is_coherent) 750 { 751 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 752 753 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 754 return; 755 756 size = PAGE_ALIGN(size); 757 758 if (is_coherent || nommu()) { 759 __dma_free_buffer(page, size); 760 } else if (__free_from_pool(cpu_addr, size)) { 761 return; 762 } else if (!IS_ENABLED(CONFIG_CMA)) { 763 __dma_free_remap(cpu_addr, size); 764 __dma_free_buffer(page, size); 765 } else { 766 /* 767 * Non-atomic allocations cannot be freed with IRQs disabled 768 */ 769 WARN_ON(irqs_disabled()); 770 __free_from_contiguous(dev, page, cpu_addr, size); 771 } 772 } 773 774 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 775 dma_addr_t handle, struct dma_attrs *attrs) 776 { 777 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 778 } 779 780 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 781 dma_addr_t handle, struct dma_attrs *attrs) 782 { 783 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 784 } 785 786 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 787 void *cpu_addr, dma_addr_t handle, size_t size, 788 struct dma_attrs *attrs) 789 { 790 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 791 int ret; 792 793 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 794 if (unlikely(ret)) 795 return ret; 796 797 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 798 return 0; 799 } 800 801 static void dma_cache_maint_page(struct page *page, unsigned long offset, 802 size_t size, enum dma_data_direction dir, 803 void (*op)(const void *, size_t, int)) 804 { 805 unsigned long pfn; 806 size_t left = size; 807 808 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 809 offset %= PAGE_SIZE; 810 811 /* 812 * A single sg entry may refer to multiple physically contiguous 813 * pages. But we still need to process highmem pages individually. 814 * If highmem is not configured then the bulk of this loop gets 815 * optimized out. 816 */ 817 do { 818 size_t len = left; 819 void *vaddr; 820 821 page = pfn_to_page(pfn); 822 823 if (PageHighMem(page)) { 824 if (len + offset > PAGE_SIZE) 825 len = PAGE_SIZE - offset; 826 827 if (cache_is_vipt_nonaliasing()) { 828 vaddr = kmap_atomic(page); 829 op(vaddr + offset, len, dir); 830 kunmap_atomic(vaddr); 831 } else { 832 vaddr = kmap_high_get(page); 833 if (vaddr) { 834 op(vaddr + offset, len, dir); 835 kunmap_high(page); 836 } 837 } 838 } else { 839 vaddr = page_address(page) + offset; 840 op(vaddr, len, dir); 841 } 842 offset = 0; 843 pfn++; 844 left -= len; 845 } while (left); 846 } 847 848 /* 849 * Make an area consistent for devices. 850 * Note: Drivers should NOT use this function directly, as it will break 851 * platforms with CONFIG_DMABOUNCE. 852 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 853 */ 854 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 855 size_t size, enum dma_data_direction dir) 856 { 857 unsigned long paddr; 858 859 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 860 861 paddr = page_to_phys(page) + off; 862 if (dir == DMA_FROM_DEVICE) { 863 outer_inv_range(paddr, paddr + size); 864 } else { 865 outer_clean_range(paddr, paddr + size); 866 } 867 /* FIXME: non-speculating: flush on bidirectional mappings? */ 868 } 869 870 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 871 size_t size, enum dma_data_direction dir) 872 { 873 unsigned long paddr = page_to_phys(page) + off; 874 875 /* FIXME: non-speculating: not required */ 876 /* don't bother invalidating if DMA to device */ 877 if (dir != DMA_TO_DEVICE) 878 outer_inv_range(paddr, paddr + size); 879 880 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 881 882 /* 883 * Mark the D-cache clean for these pages to avoid extra flushing. 884 */ 885 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 886 unsigned long pfn; 887 size_t left = size; 888 889 pfn = page_to_pfn(page) + off / PAGE_SIZE; 890 off %= PAGE_SIZE; 891 if (off) { 892 pfn++; 893 left -= PAGE_SIZE - off; 894 } 895 while (left >= PAGE_SIZE) { 896 page = pfn_to_page(pfn++); 897 set_bit(PG_dcache_clean, &page->flags); 898 left -= PAGE_SIZE; 899 } 900 } 901 } 902 903 /** 904 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 905 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 906 * @sg: list of buffers 907 * @nents: number of buffers to map 908 * @dir: DMA transfer direction 909 * 910 * Map a set of buffers described by scatterlist in streaming mode for DMA. 911 * This is the scatter-gather version of the dma_map_single interface. 912 * Here the scatter gather list elements are each tagged with the 913 * appropriate dma address and length. They are obtained via 914 * sg_dma_{address,length}. 915 * 916 * Device ownership issues as mentioned for dma_map_single are the same 917 * here. 918 */ 919 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 920 enum dma_data_direction dir, struct dma_attrs *attrs) 921 { 922 struct dma_map_ops *ops = get_dma_ops(dev); 923 struct scatterlist *s; 924 int i, j; 925 926 for_each_sg(sg, s, nents, i) { 927 #ifdef CONFIG_NEED_SG_DMA_LENGTH 928 s->dma_length = s->length; 929 #endif 930 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 931 s->length, dir, attrs); 932 if (dma_mapping_error(dev, s->dma_address)) 933 goto bad_mapping; 934 } 935 return nents; 936 937 bad_mapping: 938 for_each_sg(sg, s, i, j) 939 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 940 return 0; 941 } 942 943 /** 944 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 945 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 946 * @sg: list of buffers 947 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 948 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 949 * 950 * Unmap a set of streaming mode DMA translations. Again, CPU access 951 * rules concerning calls here are the same as for dma_unmap_single(). 952 */ 953 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 954 enum dma_data_direction dir, struct dma_attrs *attrs) 955 { 956 struct dma_map_ops *ops = get_dma_ops(dev); 957 struct scatterlist *s; 958 959 int i; 960 961 for_each_sg(sg, s, nents, i) 962 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 963 } 964 965 /** 966 * arm_dma_sync_sg_for_cpu 967 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 968 * @sg: list of buffers 969 * @nents: number of buffers to map (returned from dma_map_sg) 970 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 971 */ 972 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 973 int nents, enum dma_data_direction dir) 974 { 975 struct dma_map_ops *ops = get_dma_ops(dev); 976 struct scatterlist *s; 977 int i; 978 979 for_each_sg(sg, s, nents, i) 980 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 981 dir); 982 } 983 984 /** 985 * arm_dma_sync_sg_for_device 986 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 987 * @sg: list of buffers 988 * @nents: number of buffers to map (returned from dma_map_sg) 989 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 990 */ 991 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 992 int nents, enum dma_data_direction dir) 993 { 994 struct dma_map_ops *ops = get_dma_ops(dev); 995 struct scatterlist *s; 996 int i; 997 998 for_each_sg(sg, s, nents, i) 999 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1000 dir); 1001 } 1002 1003 /* 1004 * Return whether the given device DMA address mask can be supported 1005 * properly. For example, if your device can only drive the low 24-bits 1006 * during bus mastering, then you would pass 0x00ffffff as the mask 1007 * to this function. 1008 */ 1009 int dma_supported(struct device *dev, u64 mask) 1010 { 1011 if (mask < (u64)arm_dma_limit) 1012 return 0; 1013 return 1; 1014 } 1015 EXPORT_SYMBOL(dma_supported); 1016 1017 int arm_dma_set_mask(struct device *dev, u64 dma_mask) 1018 { 1019 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 1020 return -EIO; 1021 1022 *dev->dma_mask = dma_mask; 1023 1024 return 0; 1025 } 1026 1027 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1028 1029 static int __init dma_debug_do_init(void) 1030 { 1031 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1032 return 0; 1033 } 1034 fs_initcall(dma_debug_do_init); 1035 1036 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1037 1038 /* IOMMU */ 1039 1040 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1041 size_t size) 1042 { 1043 unsigned int order = get_order(size); 1044 unsigned int align = 0; 1045 unsigned int count, start; 1046 unsigned long flags; 1047 1048 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1049 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1050 1051 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + 1052 (1 << mapping->order) - 1) >> mapping->order; 1053 1054 if (order > mapping->order) 1055 align = (1 << (order - mapping->order)) - 1; 1056 1057 spin_lock_irqsave(&mapping->lock, flags); 1058 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, 1059 count, align); 1060 if (start > mapping->bits) { 1061 spin_unlock_irqrestore(&mapping->lock, flags); 1062 return DMA_ERROR_CODE; 1063 } 1064 1065 bitmap_set(mapping->bitmap, start, count); 1066 spin_unlock_irqrestore(&mapping->lock, flags); 1067 1068 return mapping->base + (start << (mapping->order + PAGE_SHIFT)); 1069 } 1070 1071 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1072 dma_addr_t addr, size_t size) 1073 { 1074 unsigned int start = (addr - mapping->base) >> 1075 (mapping->order + PAGE_SHIFT); 1076 unsigned int count = ((size >> PAGE_SHIFT) + 1077 (1 << mapping->order) - 1) >> mapping->order; 1078 unsigned long flags; 1079 1080 spin_lock_irqsave(&mapping->lock, flags); 1081 bitmap_clear(mapping->bitmap, start, count); 1082 spin_unlock_irqrestore(&mapping->lock, flags); 1083 } 1084 1085 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1086 gfp_t gfp, struct dma_attrs *attrs) 1087 { 1088 struct page **pages; 1089 int count = size >> PAGE_SHIFT; 1090 int array_size = count * sizeof(struct page *); 1091 int i = 0; 1092 1093 if (array_size <= PAGE_SIZE) 1094 pages = kzalloc(array_size, gfp); 1095 else 1096 pages = vzalloc(array_size); 1097 if (!pages) 1098 return NULL; 1099 1100 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) 1101 { 1102 unsigned long order = get_order(size); 1103 struct page *page; 1104 1105 page = dma_alloc_from_contiguous(dev, count, order); 1106 if (!page) 1107 goto error; 1108 1109 __dma_clear_buffer(page, size); 1110 1111 for (i = 0; i < count; i++) 1112 pages[i] = page + i; 1113 1114 return pages; 1115 } 1116 1117 /* 1118 * IOMMU can map any pages, so himem can also be used here 1119 */ 1120 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1121 1122 while (count) { 1123 int j, order = __fls(count); 1124 1125 pages[i] = alloc_pages(gfp, order); 1126 while (!pages[i] && order) 1127 pages[i] = alloc_pages(gfp, --order); 1128 if (!pages[i]) 1129 goto error; 1130 1131 if (order) { 1132 split_page(pages[i], order); 1133 j = 1 << order; 1134 while (--j) 1135 pages[i + j] = pages[i] + j; 1136 } 1137 1138 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1139 i += 1 << order; 1140 count -= 1 << order; 1141 } 1142 1143 return pages; 1144 error: 1145 while (i--) 1146 if (pages[i]) 1147 __free_pages(pages[i], 0); 1148 if (array_size <= PAGE_SIZE) 1149 kfree(pages); 1150 else 1151 vfree(pages); 1152 return NULL; 1153 } 1154 1155 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1156 size_t size, struct dma_attrs *attrs) 1157 { 1158 int count = size >> PAGE_SHIFT; 1159 int array_size = count * sizeof(struct page *); 1160 int i; 1161 1162 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { 1163 dma_release_from_contiguous(dev, pages[0], count); 1164 } else { 1165 for (i = 0; i < count; i++) 1166 if (pages[i]) 1167 __free_pages(pages[i], 0); 1168 } 1169 1170 if (array_size <= PAGE_SIZE) 1171 kfree(pages); 1172 else 1173 vfree(pages); 1174 return 0; 1175 } 1176 1177 /* 1178 * Create a CPU mapping for a specified pages 1179 */ 1180 static void * 1181 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1182 const void *caller) 1183 { 1184 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1185 struct vm_struct *area; 1186 unsigned long p; 1187 1188 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 1189 caller); 1190 if (!area) 1191 return NULL; 1192 1193 area->pages = pages; 1194 area->nr_pages = nr_pages; 1195 p = (unsigned long)area->addr; 1196 1197 for (i = 0; i < nr_pages; i++) { 1198 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); 1199 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) 1200 goto err; 1201 p += PAGE_SIZE; 1202 } 1203 return area->addr; 1204 err: 1205 unmap_kernel_range((unsigned long)area->addr, size); 1206 vunmap(area->addr); 1207 return NULL; 1208 } 1209 1210 /* 1211 * Create a mapping in device IO address space for specified pages 1212 */ 1213 static dma_addr_t 1214 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1215 { 1216 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1217 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1218 dma_addr_t dma_addr, iova; 1219 int i, ret = DMA_ERROR_CODE; 1220 1221 dma_addr = __alloc_iova(mapping, size); 1222 if (dma_addr == DMA_ERROR_CODE) 1223 return dma_addr; 1224 1225 iova = dma_addr; 1226 for (i = 0; i < count; ) { 1227 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1228 phys_addr_t phys = page_to_phys(pages[i]); 1229 unsigned int len, j; 1230 1231 for (j = i + 1; j < count; j++, next_pfn++) 1232 if (page_to_pfn(pages[j]) != next_pfn) 1233 break; 1234 1235 len = (j - i) << PAGE_SHIFT; 1236 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1237 if (ret < 0) 1238 goto fail; 1239 iova += len; 1240 i = j; 1241 } 1242 return dma_addr; 1243 fail: 1244 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1245 __free_iova(mapping, dma_addr, size); 1246 return DMA_ERROR_CODE; 1247 } 1248 1249 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1250 { 1251 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1252 1253 /* 1254 * add optional in-page offset from iova to size and align 1255 * result to page size 1256 */ 1257 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1258 iova &= PAGE_MASK; 1259 1260 iommu_unmap(mapping->domain, iova, size); 1261 __free_iova(mapping, iova, size); 1262 return 0; 1263 } 1264 1265 static struct page **__atomic_get_pages(void *addr) 1266 { 1267 struct dma_pool *pool = &atomic_pool; 1268 struct page **pages = pool->pages; 1269 int offs = (addr - pool->vaddr) >> PAGE_SHIFT; 1270 1271 return pages + offs; 1272 } 1273 1274 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1275 { 1276 struct vm_struct *area; 1277 1278 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1279 return __atomic_get_pages(cpu_addr); 1280 1281 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1282 return cpu_addr; 1283 1284 area = find_vm_area(cpu_addr); 1285 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1286 return area->pages; 1287 return NULL; 1288 } 1289 1290 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1291 dma_addr_t *handle) 1292 { 1293 struct page *page; 1294 void *addr; 1295 1296 addr = __alloc_from_pool(size, &page); 1297 if (!addr) 1298 return NULL; 1299 1300 *handle = __iommu_create_mapping(dev, &page, size); 1301 if (*handle == DMA_ERROR_CODE) 1302 goto err_mapping; 1303 1304 return addr; 1305 1306 err_mapping: 1307 __free_from_pool(addr, size); 1308 return NULL; 1309 } 1310 1311 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1312 dma_addr_t handle, size_t size) 1313 { 1314 __iommu_remove_mapping(dev, handle, size); 1315 __free_from_pool(cpu_addr, size); 1316 } 1317 1318 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1319 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1320 { 1321 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 1322 struct page **pages; 1323 void *addr = NULL; 1324 1325 *handle = DMA_ERROR_CODE; 1326 size = PAGE_ALIGN(size); 1327 1328 if (gfp & GFP_ATOMIC) 1329 return __iommu_alloc_atomic(dev, size, handle); 1330 1331 /* 1332 * Following is a work-around (a.k.a. hack) to prevent pages 1333 * with __GFP_COMP being passed to split_page() which cannot 1334 * handle them. The real problem is that this flag probably 1335 * should be 0 on ARM as it is not supported on this 1336 * platform; see CONFIG_HUGETLBFS. 1337 */ 1338 gfp &= ~(__GFP_COMP); 1339 1340 pages = __iommu_alloc_buffer(dev, size, gfp, attrs); 1341 if (!pages) 1342 return NULL; 1343 1344 *handle = __iommu_create_mapping(dev, pages, size); 1345 if (*handle == DMA_ERROR_CODE) 1346 goto err_buffer; 1347 1348 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1349 return pages; 1350 1351 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1352 __builtin_return_address(0)); 1353 if (!addr) 1354 goto err_mapping; 1355 1356 return addr; 1357 1358 err_mapping: 1359 __iommu_remove_mapping(dev, *handle, size); 1360 err_buffer: 1361 __iommu_free_buffer(dev, pages, size, attrs); 1362 return NULL; 1363 } 1364 1365 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1366 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1367 struct dma_attrs *attrs) 1368 { 1369 unsigned long uaddr = vma->vm_start; 1370 unsigned long usize = vma->vm_end - vma->vm_start; 1371 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1372 1373 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1374 1375 if (!pages) 1376 return -ENXIO; 1377 1378 do { 1379 int ret = vm_insert_page(vma, uaddr, *pages++); 1380 if (ret) { 1381 pr_err("Remapping memory failed: %d\n", ret); 1382 return ret; 1383 } 1384 uaddr += PAGE_SIZE; 1385 usize -= PAGE_SIZE; 1386 } while (usize > 0); 1387 1388 return 0; 1389 } 1390 1391 /* 1392 * free a page as defined by the above mapping. 1393 * Must not be called with IRQs disabled. 1394 */ 1395 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1396 dma_addr_t handle, struct dma_attrs *attrs) 1397 { 1398 struct page **pages; 1399 size = PAGE_ALIGN(size); 1400 1401 if (__in_atomic_pool(cpu_addr, size)) { 1402 __iommu_free_atomic(dev, cpu_addr, handle, size); 1403 return; 1404 } 1405 1406 pages = __iommu_get_pages(cpu_addr, attrs); 1407 if (!pages) { 1408 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1409 return; 1410 } 1411 1412 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1413 unmap_kernel_range((unsigned long)cpu_addr, size); 1414 vunmap(cpu_addr); 1415 } 1416 1417 __iommu_remove_mapping(dev, handle, size); 1418 __iommu_free_buffer(dev, pages, size, attrs); 1419 } 1420 1421 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1422 void *cpu_addr, dma_addr_t dma_addr, 1423 size_t size, struct dma_attrs *attrs) 1424 { 1425 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1426 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1427 1428 if (!pages) 1429 return -ENXIO; 1430 1431 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1432 GFP_KERNEL); 1433 } 1434 1435 /* 1436 * Map a part of the scatter-gather list into contiguous io address space 1437 */ 1438 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1439 size_t size, dma_addr_t *handle, 1440 enum dma_data_direction dir, struct dma_attrs *attrs, 1441 bool is_coherent) 1442 { 1443 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1444 dma_addr_t iova, iova_base; 1445 int ret = 0; 1446 unsigned int count; 1447 struct scatterlist *s; 1448 1449 size = PAGE_ALIGN(size); 1450 *handle = DMA_ERROR_CODE; 1451 1452 iova_base = iova = __alloc_iova(mapping, size); 1453 if (iova == DMA_ERROR_CODE) 1454 return -ENOMEM; 1455 1456 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1457 phys_addr_t phys = page_to_phys(sg_page(s)); 1458 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1459 1460 if (!is_coherent && 1461 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1462 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1463 1464 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1465 if (ret < 0) 1466 goto fail; 1467 count += len >> PAGE_SHIFT; 1468 iova += len; 1469 } 1470 *handle = iova_base; 1471 1472 return 0; 1473 fail: 1474 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1475 __free_iova(mapping, iova_base, size); 1476 return ret; 1477 } 1478 1479 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1480 enum dma_data_direction dir, struct dma_attrs *attrs, 1481 bool is_coherent) 1482 { 1483 struct scatterlist *s = sg, *dma = sg, *start = sg; 1484 int i, count = 0; 1485 unsigned int offset = s->offset; 1486 unsigned int size = s->offset + s->length; 1487 unsigned int max = dma_get_max_seg_size(dev); 1488 1489 for (i = 1; i < nents; i++) { 1490 s = sg_next(s); 1491 1492 s->dma_address = DMA_ERROR_CODE; 1493 s->dma_length = 0; 1494 1495 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1496 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1497 dir, attrs, is_coherent) < 0) 1498 goto bad_mapping; 1499 1500 dma->dma_address += offset; 1501 dma->dma_length = size - offset; 1502 1503 size = offset = s->offset; 1504 start = s; 1505 dma = sg_next(dma); 1506 count += 1; 1507 } 1508 size += s->length; 1509 } 1510 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1511 is_coherent) < 0) 1512 goto bad_mapping; 1513 1514 dma->dma_address += offset; 1515 dma->dma_length = size - offset; 1516 1517 return count+1; 1518 1519 bad_mapping: 1520 for_each_sg(sg, s, count, i) 1521 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1522 return 0; 1523 } 1524 1525 /** 1526 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1527 * @dev: valid struct device pointer 1528 * @sg: list of buffers 1529 * @nents: number of buffers to map 1530 * @dir: DMA transfer direction 1531 * 1532 * Map a set of i/o coherent buffers described by scatterlist in streaming 1533 * mode for DMA. The scatter gather list elements are merged together (if 1534 * possible) and tagged with the appropriate dma address and length. They are 1535 * obtained via sg_dma_{address,length}. 1536 */ 1537 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1538 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1539 { 1540 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1541 } 1542 1543 /** 1544 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1545 * @dev: valid struct device pointer 1546 * @sg: list of buffers 1547 * @nents: number of buffers to map 1548 * @dir: DMA transfer direction 1549 * 1550 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1551 * The scatter gather list elements are merged together (if possible) and 1552 * tagged with the appropriate dma address and length. They are obtained via 1553 * sg_dma_{address,length}. 1554 */ 1555 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1556 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1557 { 1558 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1559 } 1560 1561 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1562 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1563 bool is_coherent) 1564 { 1565 struct scatterlist *s; 1566 int i; 1567 1568 for_each_sg(sg, s, nents, i) { 1569 if (sg_dma_len(s)) 1570 __iommu_remove_mapping(dev, sg_dma_address(s), 1571 sg_dma_len(s)); 1572 if (!is_coherent && 1573 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1574 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1575 s->length, dir); 1576 } 1577 } 1578 1579 /** 1580 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1581 * @dev: valid struct device pointer 1582 * @sg: list of buffers 1583 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1584 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1585 * 1586 * Unmap a set of streaming mode DMA translations. Again, CPU access 1587 * rules concerning calls here are the same as for dma_unmap_single(). 1588 */ 1589 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1590 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1591 { 1592 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1593 } 1594 1595 /** 1596 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1597 * @dev: valid struct device pointer 1598 * @sg: list of buffers 1599 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1600 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1601 * 1602 * Unmap a set of streaming mode DMA translations. Again, CPU access 1603 * rules concerning calls here are the same as for dma_unmap_single(). 1604 */ 1605 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1606 enum dma_data_direction dir, struct dma_attrs *attrs) 1607 { 1608 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1609 } 1610 1611 /** 1612 * arm_iommu_sync_sg_for_cpu 1613 * @dev: valid struct device pointer 1614 * @sg: list of buffers 1615 * @nents: number of buffers to map (returned from dma_map_sg) 1616 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1617 */ 1618 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1619 int nents, enum dma_data_direction dir) 1620 { 1621 struct scatterlist *s; 1622 int i; 1623 1624 for_each_sg(sg, s, nents, i) 1625 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1626 1627 } 1628 1629 /** 1630 * arm_iommu_sync_sg_for_device 1631 * @dev: valid struct device pointer 1632 * @sg: list of buffers 1633 * @nents: number of buffers to map (returned from dma_map_sg) 1634 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1635 */ 1636 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1637 int nents, enum dma_data_direction dir) 1638 { 1639 struct scatterlist *s; 1640 int i; 1641 1642 for_each_sg(sg, s, nents, i) 1643 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1644 } 1645 1646 1647 /** 1648 * arm_coherent_iommu_map_page 1649 * @dev: valid struct device pointer 1650 * @page: page that buffer resides in 1651 * @offset: offset into page for start of buffer 1652 * @size: size of buffer to map 1653 * @dir: DMA transfer direction 1654 * 1655 * Coherent IOMMU aware version of arm_dma_map_page() 1656 */ 1657 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1658 unsigned long offset, size_t size, enum dma_data_direction dir, 1659 struct dma_attrs *attrs) 1660 { 1661 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1662 dma_addr_t dma_addr; 1663 int ret, prot, len = PAGE_ALIGN(size + offset); 1664 1665 dma_addr = __alloc_iova(mapping, len); 1666 if (dma_addr == DMA_ERROR_CODE) 1667 return dma_addr; 1668 1669 switch (dir) { 1670 case DMA_BIDIRECTIONAL: 1671 prot = IOMMU_READ | IOMMU_WRITE; 1672 break; 1673 case DMA_TO_DEVICE: 1674 prot = IOMMU_READ; 1675 break; 1676 case DMA_FROM_DEVICE: 1677 prot = IOMMU_WRITE; 1678 break; 1679 default: 1680 prot = 0; 1681 } 1682 1683 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1684 if (ret < 0) 1685 goto fail; 1686 1687 return dma_addr + offset; 1688 fail: 1689 __free_iova(mapping, dma_addr, len); 1690 return DMA_ERROR_CODE; 1691 } 1692 1693 /** 1694 * arm_iommu_map_page 1695 * @dev: valid struct device pointer 1696 * @page: page that buffer resides in 1697 * @offset: offset into page for start of buffer 1698 * @size: size of buffer to map 1699 * @dir: DMA transfer direction 1700 * 1701 * IOMMU aware version of arm_dma_map_page() 1702 */ 1703 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1704 unsigned long offset, size_t size, enum dma_data_direction dir, 1705 struct dma_attrs *attrs) 1706 { 1707 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1708 __dma_page_cpu_to_dev(page, offset, size, dir); 1709 1710 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1711 } 1712 1713 /** 1714 * arm_coherent_iommu_unmap_page 1715 * @dev: valid struct device pointer 1716 * @handle: DMA address of buffer 1717 * @size: size of buffer (same as passed to dma_map_page) 1718 * @dir: DMA transfer direction (same as passed to dma_map_page) 1719 * 1720 * Coherent IOMMU aware version of arm_dma_unmap_page() 1721 */ 1722 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1723 size_t size, enum dma_data_direction dir, 1724 struct dma_attrs *attrs) 1725 { 1726 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1727 dma_addr_t iova = handle & PAGE_MASK; 1728 int offset = handle & ~PAGE_MASK; 1729 int len = PAGE_ALIGN(size + offset); 1730 1731 if (!iova) 1732 return; 1733 1734 iommu_unmap(mapping->domain, iova, len); 1735 __free_iova(mapping, iova, len); 1736 } 1737 1738 /** 1739 * arm_iommu_unmap_page 1740 * @dev: valid struct device pointer 1741 * @handle: DMA address of buffer 1742 * @size: size of buffer (same as passed to dma_map_page) 1743 * @dir: DMA transfer direction (same as passed to dma_map_page) 1744 * 1745 * IOMMU aware version of arm_dma_unmap_page() 1746 */ 1747 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1748 size_t size, enum dma_data_direction dir, 1749 struct dma_attrs *attrs) 1750 { 1751 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1752 dma_addr_t iova = handle & PAGE_MASK; 1753 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1754 int offset = handle & ~PAGE_MASK; 1755 int len = PAGE_ALIGN(size + offset); 1756 1757 if (!iova) 1758 return; 1759 1760 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1761 __dma_page_dev_to_cpu(page, offset, size, dir); 1762 1763 iommu_unmap(mapping->domain, iova, len); 1764 __free_iova(mapping, iova, len); 1765 } 1766 1767 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1768 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1769 { 1770 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1771 dma_addr_t iova = handle & PAGE_MASK; 1772 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1773 unsigned int offset = handle & ~PAGE_MASK; 1774 1775 if (!iova) 1776 return; 1777 1778 __dma_page_dev_to_cpu(page, offset, size, dir); 1779 } 1780 1781 static void arm_iommu_sync_single_for_device(struct device *dev, 1782 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1783 { 1784 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1785 dma_addr_t iova = handle & PAGE_MASK; 1786 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1787 unsigned int offset = handle & ~PAGE_MASK; 1788 1789 if (!iova) 1790 return; 1791 1792 __dma_page_cpu_to_dev(page, offset, size, dir); 1793 } 1794 1795 struct dma_map_ops iommu_ops = { 1796 .alloc = arm_iommu_alloc_attrs, 1797 .free = arm_iommu_free_attrs, 1798 .mmap = arm_iommu_mmap_attrs, 1799 .get_sgtable = arm_iommu_get_sgtable, 1800 1801 .map_page = arm_iommu_map_page, 1802 .unmap_page = arm_iommu_unmap_page, 1803 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1804 .sync_single_for_device = arm_iommu_sync_single_for_device, 1805 1806 .map_sg = arm_iommu_map_sg, 1807 .unmap_sg = arm_iommu_unmap_sg, 1808 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1809 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1810 1811 .set_dma_mask = arm_dma_set_mask, 1812 }; 1813 1814 struct dma_map_ops iommu_coherent_ops = { 1815 .alloc = arm_iommu_alloc_attrs, 1816 .free = arm_iommu_free_attrs, 1817 .mmap = arm_iommu_mmap_attrs, 1818 .get_sgtable = arm_iommu_get_sgtable, 1819 1820 .map_page = arm_coherent_iommu_map_page, 1821 .unmap_page = arm_coherent_iommu_unmap_page, 1822 1823 .map_sg = arm_coherent_iommu_map_sg, 1824 .unmap_sg = arm_coherent_iommu_unmap_sg, 1825 1826 .set_dma_mask = arm_dma_set_mask, 1827 }; 1828 1829 /** 1830 * arm_iommu_create_mapping 1831 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1832 * @base: start address of the valid IO address space 1833 * @size: size of the valid IO address space 1834 * @order: accuracy of the IO addresses allocations 1835 * 1836 * Creates a mapping structure which holds information about used/unused 1837 * IO address ranges, which is required to perform memory allocation and 1838 * mapping with IOMMU aware functions. 1839 * 1840 * The client device need to be attached to the mapping with 1841 * arm_iommu_attach_device function. 1842 */ 1843 struct dma_iommu_mapping * 1844 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, 1845 int order) 1846 { 1847 unsigned int count = size >> (PAGE_SHIFT + order); 1848 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); 1849 struct dma_iommu_mapping *mapping; 1850 int err = -ENOMEM; 1851 1852 if (!count) 1853 return ERR_PTR(-EINVAL); 1854 1855 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1856 if (!mapping) 1857 goto err; 1858 1859 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1860 if (!mapping->bitmap) 1861 goto err2; 1862 1863 mapping->base = base; 1864 mapping->bits = BITS_PER_BYTE * bitmap_size; 1865 mapping->order = order; 1866 spin_lock_init(&mapping->lock); 1867 1868 mapping->domain = iommu_domain_alloc(bus); 1869 if (!mapping->domain) 1870 goto err3; 1871 1872 kref_init(&mapping->kref); 1873 return mapping; 1874 err3: 1875 kfree(mapping->bitmap); 1876 err2: 1877 kfree(mapping); 1878 err: 1879 return ERR_PTR(err); 1880 } 1881 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 1882 1883 static void release_iommu_mapping(struct kref *kref) 1884 { 1885 struct dma_iommu_mapping *mapping = 1886 container_of(kref, struct dma_iommu_mapping, kref); 1887 1888 iommu_domain_free(mapping->domain); 1889 kfree(mapping->bitmap); 1890 kfree(mapping); 1891 } 1892 1893 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1894 { 1895 if (mapping) 1896 kref_put(&mapping->kref, release_iommu_mapping); 1897 } 1898 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 1899 1900 /** 1901 * arm_iommu_attach_device 1902 * @dev: valid struct device pointer 1903 * @mapping: io address space mapping structure (returned from 1904 * arm_iommu_create_mapping) 1905 * 1906 * Attaches specified io address space mapping to the provided device, 1907 * this replaces the dma operations (dma_map_ops pointer) with the 1908 * IOMMU aware version. More than one client might be attached to 1909 * the same io address space mapping. 1910 */ 1911 int arm_iommu_attach_device(struct device *dev, 1912 struct dma_iommu_mapping *mapping) 1913 { 1914 int err; 1915 1916 err = iommu_attach_device(mapping->domain, dev); 1917 if (err) 1918 return err; 1919 1920 kref_get(&mapping->kref); 1921 dev->archdata.mapping = mapping; 1922 set_dma_ops(dev, &iommu_ops); 1923 1924 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1925 return 0; 1926 } 1927 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 1928 1929 /** 1930 * arm_iommu_detach_device 1931 * @dev: valid struct device pointer 1932 * 1933 * Detaches the provided device from a previously attached map. 1934 * This voids the dma operations (dma_map_ops pointer) 1935 */ 1936 void arm_iommu_detach_device(struct device *dev) 1937 { 1938 struct dma_iommu_mapping *mapping; 1939 1940 mapping = to_dma_iommu_mapping(dev); 1941 if (!mapping) { 1942 dev_warn(dev, "Not attached\n"); 1943 return; 1944 } 1945 1946 iommu_detach_device(mapping->domain, dev); 1947 kref_put(&mapping->kref, release_iommu_mapping); 1948 dev->archdata.mapping = NULL; 1949 set_dma_ops(dev, NULL); 1950 1951 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 1952 } 1953 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 1954 1955 #endif 1956