xref: /linux/arch/arm/mm/dma-mapping.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 	     unsigned long offset, size_t size, enum dma_data_direction dir,
83 	     struct dma_attrs *attrs)
84 {
85 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87 
88 /**
89  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91  * @handle: DMA address of buffer
92  * @size: size of buffer (same as passed to dma_map_page)
93  * @dir: DMA transfer direction (same as passed to dma_map_page)
94  *
95  * Unmap a page streaming mode DMA translation.  The handle and size
96  * must match what was provided in the previous dma_map_page() call.
97  * All other usages are undefined.
98  *
99  * After this call, reads by the CPU to the buffer are guaranteed to see
100  * whatever the device wrote there.
101  */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 		size_t size, enum dma_data_direction dir,
104 		struct dma_attrs *attrs)
105 {
106 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 				      handle & ~PAGE_MASK, size, dir);
109 }
110 
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 	unsigned int offset = handle & (PAGE_SIZE - 1);
115 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 	__dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118 
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 	unsigned int offset = handle & (PAGE_SIZE - 1);
123 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 	__dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126 
127 struct dma_map_ops arm_dma_ops = {
128 	.alloc			= arm_dma_alloc,
129 	.free			= arm_dma_free,
130 	.mmap			= arm_dma_mmap,
131 	.get_sgtable		= arm_dma_get_sgtable,
132 	.map_page		= arm_dma_map_page,
133 	.unmap_page		= arm_dma_unmap_page,
134 	.map_sg			= arm_dma_map_sg,
135 	.unmap_sg		= arm_dma_unmap_sg,
136 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
137 	.sync_single_for_device	= arm_dma_sync_single_for_device,
138 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
139 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
140 	.set_dma_mask		= arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143 
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 				  dma_addr_t handle, struct dma_attrs *attrs);
148 
149 struct dma_map_ops arm_coherent_dma_ops = {
150 	.alloc			= arm_coherent_dma_alloc,
151 	.free			= arm_coherent_dma_free,
152 	.mmap			= arm_dma_mmap,
153 	.get_sgtable		= arm_dma_get_sgtable,
154 	.map_page		= arm_coherent_dma_map_page,
155 	.map_sg			= arm_dma_map_sg,
156 	.set_dma_mask		= arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159 
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 	u64 mask = (u64)arm_dma_limit;
163 
164 	if (dev) {
165 		mask = dev->coherent_dma_mask;
166 
167 		/*
168 		 * Sanity check the DMA mask - it must be non-zero, and
169 		 * must be able to be satisfied by a DMA allocation.
170 		 */
171 		if (mask == 0) {
172 			dev_warn(dev, "coherent DMA mask is unset\n");
173 			return 0;
174 		}
175 
176 		if ((~mask) & (u64)arm_dma_limit) {
177 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 				 "than system GFP_DMA mask %#llx\n",
179 				 mask, (u64)arm_dma_limit);
180 			return 0;
181 		}
182 	}
183 
184 	return mask;
185 }
186 
187 static void __dma_clear_buffer(struct page *page, size_t size)
188 {
189 	/*
190 	 * Ensure that the allocated pages are zeroed, and that any data
191 	 * lurking in the kernel direct-mapped region is invalidated.
192 	 */
193 	if (PageHighMem(page)) {
194 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 		phys_addr_t end = base + size;
196 		while (size > 0) {
197 			void *ptr = kmap_atomic(page);
198 			memset(ptr, 0, PAGE_SIZE);
199 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 			kunmap_atomic(ptr);
201 			page++;
202 			size -= PAGE_SIZE;
203 		}
204 		outer_flush_range(base, end);
205 	} else {
206 		void *ptr = page_address(page);
207 		memset(ptr, 0, size);
208 		dmac_flush_range(ptr, ptr + size);
209 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
210 	}
211 }
212 
213 /*
214  * Allocate a DMA buffer for 'dev' of size 'size' using the
215  * specified gfp mask.  Note that 'size' must be page aligned.
216  */
217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
218 {
219 	unsigned long order = get_order(size);
220 	struct page *page, *p, *e;
221 
222 	page = alloc_pages(gfp, order);
223 	if (!page)
224 		return NULL;
225 
226 	/*
227 	 * Now split the huge page and free the excess pages
228 	 */
229 	split_page(page, order);
230 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 		__free_page(p);
232 
233 	__dma_clear_buffer(page, size);
234 
235 	return page;
236 }
237 
238 /*
239  * Free a DMA buffer.  'size' must be page aligned.
240  */
241 static void __dma_free_buffer(struct page *page, size_t size)
242 {
243 	struct page *e = page + (size >> PAGE_SHIFT);
244 
245 	while (page < e) {
246 		__free_page(page);
247 		page++;
248 	}
249 }
250 
251 #ifdef CONFIG_MMU
252 #ifdef CONFIG_HUGETLB_PAGE
253 #warning ARM Coherent DMA allocator does not (yet) support huge TLB
254 #endif
255 
256 static void *__alloc_from_contiguous(struct device *dev, size_t size,
257 				     pgprot_t prot, struct page **ret_page,
258 				     const void *caller);
259 
260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 				 pgprot_t prot, struct page **ret_page,
262 				 const void *caller);
263 
264 static void *
265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 	const void *caller)
267 {
268 	struct vm_struct *area;
269 	unsigned long addr;
270 
271 	/*
272 	 * DMA allocation can be mapped to user space, so lets
273 	 * set VM_USERMAP flags too.
274 	 */
275 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 				  caller);
277 	if (!area)
278 		return NULL;
279 	addr = (unsigned long)area->addr;
280 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
281 
282 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 		vunmap((void *)addr);
284 		return NULL;
285 	}
286 	return (void *)addr;
287 }
288 
289 static void __dma_free_remap(void *cpu_addr, size_t size)
290 {
291 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 	struct vm_struct *area = find_vm_area(cpu_addr);
293 	if (!area || (area->flags & flags) != flags) {
294 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 		return;
296 	}
297 	unmap_kernel_range((unsigned long)cpu_addr, size);
298 	vunmap(cpu_addr);
299 }
300 
301 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
302 
303 struct dma_pool {
304 	size_t size;
305 	spinlock_t lock;
306 	unsigned long *bitmap;
307 	unsigned long nr_pages;
308 	void *vaddr;
309 	struct page **pages;
310 };
311 
312 static struct dma_pool atomic_pool = {
313 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
314 };
315 
316 static int __init early_coherent_pool(char *p)
317 {
318 	atomic_pool.size = memparse(p, &p);
319 	return 0;
320 }
321 early_param("coherent_pool", early_coherent_pool);
322 
323 void __init init_dma_coherent_pool_size(unsigned long size)
324 {
325 	/*
326 	 * Catch any attempt to set the pool size too late.
327 	 */
328 	BUG_ON(atomic_pool.vaddr);
329 
330 	/*
331 	 * Set architecture specific coherent pool size only if
332 	 * it has not been changed by kernel command line parameter.
333 	 */
334 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 		atomic_pool.size = size;
336 }
337 
338 /*
339  * Initialise the coherent pool for atomic allocations.
340  */
341 static int __init atomic_pool_init(void)
342 {
343 	struct dma_pool *pool = &atomic_pool;
344 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
345 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
346 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
347 	unsigned long *bitmap;
348 	struct page *page;
349 	struct page **pages;
350 	void *ptr;
351 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
352 
353 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
354 	if (!bitmap)
355 		goto no_bitmap;
356 
357 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
358 	if (!pages)
359 		goto no_pages;
360 
361 	if (IS_ENABLED(CONFIG_CMA))
362 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
363 					      atomic_pool_init);
364 	else
365 		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
366 					   atomic_pool_init);
367 	if (ptr) {
368 		int i;
369 
370 		for (i = 0; i < nr_pages; i++)
371 			pages[i] = page + i;
372 
373 		spin_lock_init(&pool->lock);
374 		pool->vaddr = ptr;
375 		pool->pages = pages;
376 		pool->bitmap = bitmap;
377 		pool->nr_pages = nr_pages;
378 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
379 		       (unsigned)pool->size / 1024);
380 		return 0;
381 	}
382 
383 	kfree(pages);
384 no_pages:
385 	kfree(bitmap);
386 no_bitmap:
387 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
388 	       (unsigned)pool->size / 1024);
389 	return -ENOMEM;
390 }
391 /*
392  * CMA is activated by core_initcall, so we must be called after it.
393  */
394 postcore_initcall(atomic_pool_init);
395 
396 struct dma_contig_early_reserve {
397 	phys_addr_t base;
398 	unsigned long size;
399 };
400 
401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
402 
403 static int dma_mmu_remap_num __initdata;
404 
405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
406 {
407 	dma_mmu_remap[dma_mmu_remap_num].base = base;
408 	dma_mmu_remap[dma_mmu_remap_num].size = size;
409 	dma_mmu_remap_num++;
410 }
411 
412 void __init dma_contiguous_remap(void)
413 {
414 	int i;
415 	for (i = 0; i < dma_mmu_remap_num; i++) {
416 		phys_addr_t start = dma_mmu_remap[i].base;
417 		phys_addr_t end = start + dma_mmu_remap[i].size;
418 		struct map_desc map;
419 		unsigned long addr;
420 
421 		if (end > arm_lowmem_limit)
422 			end = arm_lowmem_limit;
423 		if (start >= end)
424 			continue;
425 
426 		map.pfn = __phys_to_pfn(start);
427 		map.virtual = __phys_to_virt(start);
428 		map.length = end - start;
429 		map.type = MT_MEMORY_DMA_READY;
430 
431 		/*
432 		 * Clear previous low-memory mapping
433 		 */
434 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
435 		     addr += PMD_SIZE)
436 			pmd_clear(pmd_off_k(addr));
437 
438 		iotable_init(&map, 1);
439 	}
440 }
441 
442 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
443 			    void *data)
444 {
445 	struct page *page = virt_to_page(addr);
446 	pgprot_t prot = *(pgprot_t *)data;
447 
448 	set_pte_ext(pte, mk_pte(page, prot), 0);
449 	return 0;
450 }
451 
452 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
453 {
454 	unsigned long start = (unsigned long) page_address(page);
455 	unsigned end = start + size;
456 
457 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
458 	dsb();
459 	flush_tlb_kernel_range(start, end);
460 }
461 
462 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
463 				 pgprot_t prot, struct page **ret_page,
464 				 const void *caller)
465 {
466 	struct page *page;
467 	void *ptr;
468 	page = __dma_alloc_buffer(dev, size, gfp);
469 	if (!page)
470 		return NULL;
471 
472 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
473 	if (!ptr) {
474 		__dma_free_buffer(page, size);
475 		return NULL;
476 	}
477 
478 	*ret_page = page;
479 	return ptr;
480 }
481 
482 static void *__alloc_from_pool(size_t size, struct page **ret_page)
483 {
484 	struct dma_pool *pool = &atomic_pool;
485 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
486 	unsigned int pageno;
487 	unsigned long flags;
488 	void *ptr = NULL;
489 	unsigned long align_mask;
490 
491 	if (!pool->vaddr) {
492 		WARN(1, "coherent pool not initialised!\n");
493 		return NULL;
494 	}
495 
496 	/*
497 	 * Align the region allocation - allocations from pool are rather
498 	 * small, so align them to their order in pages, minimum is a page
499 	 * size. This helps reduce fragmentation of the DMA space.
500 	 */
501 	align_mask = (1 << get_order(size)) - 1;
502 
503 	spin_lock_irqsave(&pool->lock, flags);
504 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
505 					    0, count, align_mask);
506 	if (pageno < pool->nr_pages) {
507 		bitmap_set(pool->bitmap, pageno, count);
508 		ptr = pool->vaddr + PAGE_SIZE * pageno;
509 		*ret_page = pool->pages[pageno];
510 	} else {
511 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
512 			    "Please increase it with coherent_pool= kernel parameter!\n",
513 			    (unsigned)pool->size / 1024);
514 	}
515 	spin_unlock_irqrestore(&pool->lock, flags);
516 
517 	return ptr;
518 }
519 
520 static bool __in_atomic_pool(void *start, size_t size)
521 {
522 	struct dma_pool *pool = &atomic_pool;
523 	void *end = start + size;
524 	void *pool_start = pool->vaddr;
525 	void *pool_end = pool->vaddr + pool->size;
526 
527 	if (start < pool_start || start >= pool_end)
528 		return false;
529 
530 	if (end <= pool_end)
531 		return true;
532 
533 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
534 	     start, end - 1, pool_start, pool_end - 1);
535 
536 	return false;
537 }
538 
539 static int __free_from_pool(void *start, size_t size)
540 {
541 	struct dma_pool *pool = &atomic_pool;
542 	unsigned long pageno, count;
543 	unsigned long flags;
544 
545 	if (!__in_atomic_pool(start, size))
546 		return 0;
547 
548 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
549 	count = size >> PAGE_SHIFT;
550 
551 	spin_lock_irqsave(&pool->lock, flags);
552 	bitmap_clear(pool->bitmap, pageno, count);
553 	spin_unlock_irqrestore(&pool->lock, flags);
554 
555 	return 1;
556 }
557 
558 static void *__alloc_from_contiguous(struct device *dev, size_t size,
559 				     pgprot_t prot, struct page **ret_page,
560 				     const void *caller)
561 {
562 	unsigned long order = get_order(size);
563 	size_t count = size >> PAGE_SHIFT;
564 	struct page *page;
565 	void *ptr;
566 
567 	page = dma_alloc_from_contiguous(dev, count, order);
568 	if (!page)
569 		return NULL;
570 
571 	__dma_clear_buffer(page, size);
572 
573 	if (PageHighMem(page)) {
574 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
575 		if (!ptr) {
576 			dma_release_from_contiguous(dev, page, count);
577 			return NULL;
578 		}
579 	} else {
580 		__dma_remap(page, size, prot);
581 		ptr = page_address(page);
582 	}
583 	*ret_page = page;
584 	return ptr;
585 }
586 
587 static void __free_from_contiguous(struct device *dev, struct page *page,
588 				   void *cpu_addr, size_t size)
589 {
590 	if (PageHighMem(page))
591 		__dma_free_remap(cpu_addr, size);
592 	else
593 		__dma_remap(page, size, pgprot_kernel);
594 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
595 }
596 
597 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
598 {
599 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
600 			    pgprot_writecombine(prot) :
601 			    pgprot_dmacoherent(prot);
602 	return prot;
603 }
604 
605 #define nommu() 0
606 
607 #else	/* !CONFIG_MMU */
608 
609 #define nommu() 1
610 
611 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
612 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
613 #define __alloc_from_pool(size, ret_page)			NULL
614 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
615 #define __free_from_pool(cpu_addr, size)			0
616 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
617 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
618 
619 #endif	/* CONFIG_MMU */
620 
621 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
622 				   struct page **ret_page)
623 {
624 	struct page *page;
625 	page = __dma_alloc_buffer(dev, size, gfp);
626 	if (!page)
627 		return NULL;
628 
629 	*ret_page = page;
630 	return page_address(page);
631 }
632 
633 
634 
635 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
636 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
637 {
638 	u64 mask = get_coherent_dma_mask(dev);
639 	struct page *page = NULL;
640 	void *addr;
641 
642 #ifdef CONFIG_DMA_API_DEBUG
643 	u64 limit = (mask + 1) & ~mask;
644 	if (limit && size >= limit) {
645 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
646 			size, mask);
647 		return NULL;
648 	}
649 #endif
650 
651 	if (!mask)
652 		return NULL;
653 
654 	if (mask < 0xffffffffULL)
655 		gfp |= GFP_DMA;
656 
657 	/*
658 	 * Following is a work-around (a.k.a. hack) to prevent pages
659 	 * with __GFP_COMP being passed to split_page() which cannot
660 	 * handle them.  The real problem is that this flag probably
661 	 * should be 0 on ARM as it is not supported on this
662 	 * platform; see CONFIG_HUGETLBFS.
663 	 */
664 	gfp &= ~(__GFP_COMP);
665 
666 	*handle = DMA_ERROR_CODE;
667 	size = PAGE_ALIGN(size);
668 
669 	if (is_coherent || nommu())
670 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
671 	else if (!(gfp & __GFP_WAIT))
672 		addr = __alloc_from_pool(size, &page);
673 	else if (!IS_ENABLED(CONFIG_CMA))
674 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
675 	else
676 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
677 
678 	if (addr)
679 		*handle = pfn_to_dma(dev, page_to_pfn(page));
680 
681 	return addr;
682 }
683 
684 /*
685  * Allocate DMA-coherent memory space and return both the kernel remapped
686  * virtual and bus address for that space.
687  */
688 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
689 		    gfp_t gfp, struct dma_attrs *attrs)
690 {
691 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
692 	void *memory;
693 
694 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
695 		return memory;
696 
697 	return __dma_alloc(dev, size, handle, gfp, prot, false,
698 			   __builtin_return_address(0));
699 }
700 
701 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
702 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
703 {
704 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
705 	void *memory;
706 
707 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
708 		return memory;
709 
710 	return __dma_alloc(dev, size, handle, gfp, prot, true,
711 			   __builtin_return_address(0));
712 }
713 
714 /*
715  * Create userspace mapping for the DMA-coherent memory.
716  */
717 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
718 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
719 		 struct dma_attrs *attrs)
720 {
721 	int ret = -ENXIO;
722 #ifdef CONFIG_MMU
723 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
724 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
725 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
726 	unsigned long off = vma->vm_pgoff;
727 
728 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
729 
730 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
731 		return ret;
732 
733 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
734 		ret = remap_pfn_range(vma, vma->vm_start,
735 				      pfn + off,
736 				      vma->vm_end - vma->vm_start,
737 				      vma->vm_page_prot);
738 	}
739 #endif	/* CONFIG_MMU */
740 
741 	return ret;
742 }
743 
744 /*
745  * Free a buffer as defined by the above mapping.
746  */
747 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
748 			   dma_addr_t handle, struct dma_attrs *attrs,
749 			   bool is_coherent)
750 {
751 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
752 
753 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
754 		return;
755 
756 	size = PAGE_ALIGN(size);
757 
758 	if (is_coherent || nommu()) {
759 		__dma_free_buffer(page, size);
760 	} else if (__free_from_pool(cpu_addr, size)) {
761 		return;
762 	} else if (!IS_ENABLED(CONFIG_CMA)) {
763 		__dma_free_remap(cpu_addr, size);
764 		__dma_free_buffer(page, size);
765 	} else {
766 		/*
767 		 * Non-atomic allocations cannot be freed with IRQs disabled
768 		 */
769 		WARN_ON(irqs_disabled());
770 		__free_from_contiguous(dev, page, cpu_addr, size);
771 	}
772 }
773 
774 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
775 		  dma_addr_t handle, struct dma_attrs *attrs)
776 {
777 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
778 }
779 
780 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
781 				  dma_addr_t handle, struct dma_attrs *attrs)
782 {
783 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
784 }
785 
786 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
787 		 void *cpu_addr, dma_addr_t handle, size_t size,
788 		 struct dma_attrs *attrs)
789 {
790 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
791 	int ret;
792 
793 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
794 	if (unlikely(ret))
795 		return ret;
796 
797 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
798 	return 0;
799 }
800 
801 static void dma_cache_maint_page(struct page *page, unsigned long offset,
802 	size_t size, enum dma_data_direction dir,
803 	void (*op)(const void *, size_t, int))
804 {
805 	unsigned long pfn;
806 	size_t left = size;
807 
808 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
809 	offset %= PAGE_SIZE;
810 
811 	/*
812 	 * A single sg entry may refer to multiple physically contiguous
813 	 * pages.  But we still need to process highmem pages individually.
814 	 * If highmem is not configured then the bulk of this loop gets
815 	 * optimized out.
816 	 */
817 	do {
818 		size_t len = left;
819 		void *vaddr;
820 
821 		page = pfn_to_page(pfn);
822 
823 		if (PageHighMem(page)) {
824 			if (len + offset > PAGE_SIZE)
825 				len = PAGE_SIZE - offset;
826 
827 			if (cache_is_vipt_nonaliasing()) {
828 				vaddr = kmap_atomic(page);
829 				op(vaddr + offset, len, dir);
830 				kunmap_atomic(vaddr);
831 			} else {
832 				vaddr = kmap_high_get(page);
833 				if (vaddr) {
834 					op(vaddr + offset, len, dir);
835 					kunmap_high(page);
836 				}
837 			}
838 		} else {
839 			vaddr = page_address(page) + offset;
840 			op(vaddr, len, dir);
841 		}
842 		offset = 0;
843 		pfn++;
844 		left -= len;
845 	} while (left);
846 }
847 
848 /*
849  * Make an area consistent for devices.
850  * Note: Drivers should NOT use this function directly, as it will break
851  * platforms with CONFIG_DMABOUNCE.
852  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
853  */
854 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
855 	size_t size, enum dma_data_direction dir)
856 {
857 	unsigned long paddr;
858 
859 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
860 
861 	paddr = page_to_phys(page) + off;
862 	if (dir == DMA_FROM_DEVICE) {
863 		outer_inv_range(paddr, paddr + size);
864 	} else {
865 		outer_clean_range(paddr, paddr + size);
866 	}
867 	/* FIXME: non-speculating: flush on bidirectional mappings? */
868 }
869 
870 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
871 	size_t size, enum dma_data_direction dir)
872 {
873 	unsigned long paddr = page_to_phys(page) + off;
874 
875 	/* FIXME: non-speculating: not required */
876 	/* don't bother invalidating if DMA to device */
877 	if (dir != DMA_TO_DEVICE)
878 		outer_inv_range(paddr, paddr + size);
879 
880 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
881 
882 	/*
883 	 * Mark the D-cache clean for these pages to avoid extra flushing.
884 	 */
885 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
886 		unsigned long pfn;
887 		size_t left = size;
888 
889 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
890 		off %= PAGE_SIZE;
891 		if (off) {
892 			pfn++;
893 			left -= PAGE_SIZE - off;
894 		}
895 		while (left >= PAGE_SIZE) {
896 			page = pfn_to_page(pfn++);
897 			set_bit(PG_dcache_clean, &page->flags);
898 			left -= PAGE_SIZE;
899 		}
900 	}
901 }
902 
903 /**
904  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
905  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
906  * @sg: list of buffers
907  * @nents: number of buffers to map
908  * @dir: DMA transfer direction
909  *
910  * Map a set of buffers described by scatterlist in streaming mode for DMA.
911  * This is the scatter-gather version of the dma_map_single interface.
912  * Here the scatter gather list elements are each tagged with the
913  * appropriate dma address and length.  They are obtained via
914  * sg_dma_{address,length}.
915  *
916  * Device ownership issues as mentioned for dma_map_single are the same
917  * here.
918  */
919 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
920 		enum dma_data_direction dir, struct dma_attrs *attrs)
921 {
922 	struct dma_map_ops *ops = get_dma_ops(dev);
923 	struct scatterlist *s;
924 	int i, j;
925 
926 	for_each_sg(sg, s, nents, i) {
927 #ifdef CONFIG_NEED_SG_DMA_LENGTH
928 		s->dma_length = s->length;
929 #endif
930 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
931 						s->length, dir, attrs);
932 		if (dma_mapping_error(dev, s->dma_address))
933 			goto bad_mapping;
934 	}
935 	return nents;
936 
937  bad_mapping:
938 	for_each_sg(sg, s, i, j)
939 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
940 	return 0;
941 }
942 
943 /**
944  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
945  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
946  * @sg: list of buffers
947  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
948  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
949  *
950  * Unmap a set of streaming mode DMA translations.  Again, CPU access
951  * rules concerning calls here are the same as for dma_unmap_single().
952  */
953 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
954 		enum dma_data_direction dir, struct dma_attrs *attrs)
955 {
956 	struct dma_map_ops *ops = get_dma_ops(dev);
957 	struct scatterlist *s;
958 
959 	int i;
960 
961 	for_each_sg(sg, s, nents, i)
962 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
963 }
964 
965 /**
966  * arm_dma_sync_sg_for_cpu
967  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
968  * @sg: list of buffers
969  * @nents: number of buffers to map (returned from dma_map_sg)
970  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
971  */
972 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
973 			int nents, enum dma_data_direction dir)
974 {
975 	struct dma_map_ops *ops = get_dma_ops(dev);
976 	struct scatterlist *s;
977 	int i;
978 
979 	for_each_sg(sg, s, nents, i)
980 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
981 					 dir);
982 }
983 
984 /**
985  * arm_dma_sync_sg_for_device
986  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
987  * @sg: list of buffers
988  * @nents: number of buffers to map (returned from dma_map_sg)
989  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
990  */
991 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
992 			int nents, enum dma_data_direction dir)
993 {
994 	struct dma_map_ops *ops = get_dma_ops(dev);
995 	struct scatterlist *s;
996 	int i;
997 
998 	for_each_sg(sg, s, nents, i)
999 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1000 					    dir);
1001 }
1002 
1003 /*
1004  * Return whether the given device DMA address mask can be supported
1005  * properly.  For example, if your device can only drive the low 24-bits
1006  * during bus mastering, then you would pass 0x00ffffff as the mask
1007  * to this function.
1008  */
1009 int dma_supported(struct device *dev, u64 mask)
1010 {
1011 	if (mask < (u64)arm_dma_limit)
1012 		return 0;
1013 	return 1;
1014 }
1015 EXPORT_SYMBOL(dma_supported);
1016 
1017 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1018 {
1019 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1020 		return -EIO;
1021 
1022 	*dev->dma_mask = dma_mask;
1023 
1024 	return 0;
1025 }
1026 
1027 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1028 
1029 static int __init dma_debug_do_init(void)
1030 {
1031 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1032 	return 0;
1033 }
1034 fs_initcall(dma_debug_do_init);
1035 
1036 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1037 
1038 /* IOMMU */
1039 
1040 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1041 				      size_t size)
1042 {
1043 	unsigned int order = get_order(size);
1044 	unsigned int align = 0;
1045 	unsigned int count, start;
1046 	unsigned long flags;
1047 
1048 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1049 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1050 
1051 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1052 		 (1 << mapping->order) - 1) >> mapping->order;
1053 
1054 	if (order > mapping->order)
1055 		align = (1 << (order - mapping->order)) - 1;
1056 
1057 	spin_lock_irqsave(&mapping->lock, flags);
1058 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1059 					   count, align);
1060 	if (start > mapping->bits) {
1061 		spin_unlock_irqrestore(&mapping->lock, flags);
1062 		return DMA_ERROR_CODE;
1063 	}
1064 
1065 	bitmap_set(mapping->bitmap, start, count);
1066 	spin_unlock_irqrestore(&mapping->lock, flags);
1067 
1068 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1069 }
1070 
1071 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1072 			       dma_addr_t addr, size_t size)
1073 {
1074 	unsigned int start = (addr - mapping->base) >>
1075 			     (mapping->order + PAGE_SHIFT);
1076 	unsigned int count = ((size >> PAGE_SHIFT) +
1077 			      (1 << mapping->order) - 1) >> mapping->order;
1078 	unsigned long flags;
1079 
1080 	spin_lock_irqsave(&mapping->lock, flags);
1081 	bitmap_clear(mapping->bitmap, start, count);
1082 	spin_unlock_irqrestore(&mapping->lock, flags);
1083 }
1084 
1085 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1086 					  gfp_t gfp, struct dma_attrs *attrs)
1087 {
1088 	struct page **pages;
1089 	int count = size >> PAGE_SHIFT;
1090 	int array_size = count * sizeof(struct page *);
1091 	int i = 0;
1092 
1093 	if (array_size <= PAGE_SIZE)
1094 		pages = kzalloc(array_size, gfp);
1095 	else
1096 		pages = vzalloc(array_size);
1097 	if (!pages)
1098 		return NULL;
1099 
1100 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1101 	{
1102 		unsigned long order = get_order(size);
1103 		struct page *page;
1104 
1105 		page = dma_alloc_from_contiguous(dev, count, order);
1106 		if (!page)
1107 			goto error;
1108 
1109 		__dma_clear_buffer(page, size);
1110 
1111 		for (i = 0; i < count; i++)
1112 			pages[i] = page + i;
1113 
1114 		return pages;
1115 	}
1116 
1117 	/*
1118 	 * IOMMU can map any pages, so himem can also be used here
1119 	 */
1120 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1121 
1122 	while (count) {
1123 		int j, order = __fls(count);
1124 
1125 		pages[i] = alloc_pages(gfp, order);
1126 		while (!pages[i] && order)
1127 			pages[i] = alloc_pages(gfp, --order);
1128 		if (!pages[i])
1129 			goto error;
1130 
1131 		if (order) {
1132 			split_page(pages[i], order);
1133 			j = 1 << order;
1134 			while (--j)
1135 				pages[i + j] = pages[i] + j;
1136 		}
1137 
1138 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1139 		i += 1 << order;
1140 		count -= 1 << order;
1141 	}
1142 
1143 	return pages;
1144 error:
1145 	while (i--)
1146 		if (pages[i])
1147 			__free_pages(pages[i], 0);
1148 	if (array_size <= PAGE_SIZE)
1149 		kfree(pages);
1150 	else
1151 		vfree(pages);
1152 	return NULL;
1153 }
1154 
1155 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1156 			       size_t size, struct dma_attrs *attrs)
1157 {
1158 	int count = size >> PAGE_SHIFT;
1159 	int array_size = count * sizeof(struct page *);
1160 	int i;
1161 
1162 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1163 		dma_release_from_contiguous(dev, pages[0], count);
1164 	} else {
1165 		for (i = 0; i < count; i++)
1166 			if (pages[i])
1167 				__free_pages(pages[i], 0);
1168 	}
1169 
1170 	if (array_size <= PAGE_SIZE)
1171 		kfree(pages);
1172 	else
1173 		vfree(pages);
1174 	return 0;
1175 }
1176 
1177 /*
1178  * Create a CPU mapping for a specified pages
1179  */
1180 static void *
1181 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1182 		    const void *caller)
1183 {
1184 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1185 	struct vm_struct *area;
1186 	unsigned long p;
1187 
1188 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1189 				  caller);
1190 	if (!area)
1191 		return NULL;
1192 
1193 	area->pages = pages;
1194 	area->nr_pages = nr_pages;
1195 	p = (unsigned long)area->addr;
1196 
1197 	for (i = 0; i < nr_pages; i++) {
1198 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1199 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1200 			goto err;
1201 		p += PAGE_SIZE;
1202 	}
1203 	return area->addr;
1204 err:
1205 	unmap_kernel_range((unsigned long)area->addr, size);
1206 	vunmap(area->addr);
1207 	return NULL;
1208 }
1209 
1210 /*
1211  * Create a mapping in device IO address space for specified pages
1212  */
1213 static dma_addr_t
1214 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1215 {
1216 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1217 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1218 	dma_addr_t dma_addr, iova;
1219 	int i, ret = DMA_ERROR_CODE;
1220 
1221 	dma_addr = __alloc_iova(mapping, size);
1222 	if (dma_addr == DMA_ERROR_CODE)
1223 		return dma_addr;
1224 
1225 	iova = dma_addr;
1226 	for (i = 0; i < count; ) {
1227 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1228 		phys_addr_t phys = page_to_phys(pages[i]);
1229 		unsigned int len, j;
1230 
1231 		for (j = i + 1; j < count; j++, next_pfn++)
1232 			if (page_to_pfn(pages[j]) != next_pfn)
1233 				break;
1234 
1235 		len = (j - i) << PAGE_SHIFT;
1236 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1237 		if (ret < 0)
1238 			goto fail;
1239 		iova += len;
1240 		i = j;
1241 	}
1242 	return dma_addr;
1243 fail:
1244 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1245 	__free_iova(mapping, dma_addr, size);
1246 	return DMA_ERROR_CODE;
1247 }
1248 
1249 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1250 {
1251 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1252 
1253 	/*
1254 	 * add optional in-page offset from iova to size and align
1255 	 * result to page size
1256 	 */
1257 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1258 	iova &= PAGE_MASK;
1259 
1260 	iommu_unmap(mapping->domain, iova, size);
1261 	__free_iova(mapping, iova, size);
1262 	return 0;
1263 }
1264 
1265 static struct page **__atomic_get_pages(void *addr)
1266 {
1267 	struct dma_pool *pool = &atomic_pool;
1268 	struct page **pages = pool->pages;
1269 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1270 
1271 	return pages + offs;
1272 }
1273 
1274 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1275 {
1276 	struct vm_struct *area;
1277 
1278 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1279 		return __atomic_get_pages(cpu_addr);
1280 
1281 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1282 		return cpu_addr;
1283 
1284 	area = find_vm_area(cpu_addr);
1285 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1286 		return area->pages;
1287 	return NULL;
1288 }
1289 
1290 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1291 				  dma_addr_t *handle)
1292 {
1293 	struct page *page;
1294 	void *addr;
1295 
1296 	addr = __alloc_from_pool(size, &page);
1297 	if (!addr)
1298 		return NULL;
1299 
1300 	*handle = __iommu_create_mapping(dev, &page, size);
1301 	if (*handle == DMA_ERROR_CODE)
1302 		goto err_mapping;
1303 
1304 	return addr;
1305 
1306 err_mapping:
1307 	__free_from_pool(addr, size);
1308 	return NULL;
1309 }
1310 
1311 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1312 				dma_addr_t handle, size_t size)
1313 {
1314 	__iommu_remove_mapping(dev, handle, size);
1315 	__free_from_pool(cpu_addr, size);
1316 }
1317 
1318 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1319 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1320 {
1321 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1322 	struct page **pages;
1323 	void *addr = NULL;
1324 
1325 	*handle = DMA_ERROR_CODE;
1326 	size = PAGE_ALIGN(size);
1327 
1328 	if (gfp & GFP_ATOMIC)
1329 		return __iommu_alloc_atomic(dev, size, handle);
1330 
1331 	/*
1332 	 * Following is a work-around (a.k.a. hack) to prevent pages
1333 	 * with __GFP_COMP being passed to split_page() which cannot
1334 	 * handle them.  The real problem is that this flag probably
1335 	 * should be 0 on ARM as it is not supported on this
1336 	 * platform; see CONFIG_HUGETLBFS.
1337 	 */
1338 	gfp &= ~(__GFP_COMP);
1339 
1340 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1341 	if (!pages)
1342 		return NULL;
1343 
1344 	*handle = __iommu_create_mapping(dev, pages, size);
1345 	if (*handle == DMA_ERROR_CODE)
1346 		goto err_buffer;
1347 
1348 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1349 		return pages;
1350 
1351 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1352 				   __builtin_return_address(0));
1353 	if (!addr)
1354 		goto err_mapping;
1355 
1356 	return addr;
1357 
1358 err_mapping:
1359 	__iommu_remove_mapping(dev, *handle, size);
1360 err_buffer:
1361 	__iommu_free_buffer(dev, pages, size, attrs);
1362 	return NULL;
1363 }
1364 
1365 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1366 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1367 		    struct dma_attrs *attrs)
1368 {
1369 	unsigned long uaddr = vma->vm_start;
1370 	unsigned long usize = vma->vm_end - vma->vm_start;
1371 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1372 
1373 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1374 
1375 	if (!pages)
1376 		return -ENXIO;
1377 
1378 	do {
1379 		int ret = vm_insert_page(vma, uaddr, *pages++);
1380 		if (ret) {
1381 			pr_err("Remapping memory failed: %d\n", ret);
1382 			return ret;
1383 		}
1384 		uaddr += PAGE_SIZE;
1385 		usize -= PAGE_SIZE;
1386 	} while (usize > 0);
1387 
1388 	return 0;
1389 }
1390 
1391 /*
1392  * free a page as defined by the above mapping.
1393  * Must not be called with IRQs disabled.
1394  */
1395 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1396 			  dma_addr_t handle, struct dma_attrs *attrs)
1397 {
1398 	struct page **pages;
1399 	size = PAGE_ALIGN(size);
1400 
1401 	if (__in_atomic_pool(cpu_addr, size)) {
1402 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1403 		return;
1404 	}
1405 
1406 	pages = __iommu_get_pages(cpu_addr, attrs);
1407 	if (!pages) {
1408 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1409 		return;
1410 	}
1411 
1412 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1413 		unmap_kernel_range((unsigned long)cpu_addr, size);
1414 		vunmap(cpu_addr);
1415 	}
1416 
1417 	__iommu_remove_mapping(dev, handle, size);
1418 	__iommu_free_buffer(dev, pages, size, attrs);
1419 }
1420 
1421 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1422 				 void *cpu_addr, dma_addr_t dma_addr,
1423 				 size_t size, struct dma_attrs *attrs)
1424 {
1425 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1426 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1427 
1428 	if (!pages)
1429 		return -ENXIO;
1430 
1431 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1432 					 GFP_KERNEL);
1433 }
1434 
1435 /*
1436  * Map a part of the scatter-gather list into contiguous io address space
1437  */
1438 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1439 			  size_t size, dma_addr_t *handle,
1440 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1441 			  bool is_coherent)
1442 {
1443 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1444 	dma_addr_t iova, iova_base;
1445 	int ret = 0;
1446 	unsigned int count;
1447 	struct scatterlist *s;
1448 
1449 	size = PAGE_ALIGN(size);
1450 	*handle = DMA_ERROR_CODE;
1451 
1452 	iova_base = iova = __alloc_iova(mapping, size);
1453 	if (iova == DMA_ERROR_CODE)
1454 		return -ENOMEM;
1455 
1456 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1457 		phys_addr_t phys = page_to_phys(sg_page(s));
1458 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1459 
1460 		if (!is_coherent &&
1461 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1462 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1463 
1464 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1465 		if (ret < 0)
1466 			goto fail;
1467 		count += len >> PAGE_SHIFT;
1468 		iova += len;
1469 	}
1470 	*handle = iova_base;
1471 
1472 	return 0;
1473 fail:
1474 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1475 	__free_iova(mapping, iova_base, size);
1476 	return ret;
1477 }
1478 
1479 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1480 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1481 		     bool is_coherent)
1482 {
1483 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1484 	int i, count = 0;
1485 	unsigned int offset = s->offset;
1486 	unsigned int size = s->offset + s->length;
1487 	unsigned int max = dma_get_max_seg_size(dev);
1488 
1489 	for (i = 1; i < nents; i++) {
1490 		s = sg_next(s);
1491 
1492 		s->dma_address = DMA_ERROR_CODE;
1493 		s->dma_length = 0;
1494 
1495 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1496 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1497 			    dir, attrs, is_coherent) < 0)
1498 				goto bad_mapping;
1499 
1500 			dma->dma_address += offset;
1501 			dma->dma_length = size - offset;
1502 
1503 			size = offset = s->offset;
1504 			start = s;
1505 			dma = sg_next(dma);
1506 			count += 1;
1507 		}
1508 		size += s->length;
1509 	}
1510 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1511 		is_coherent) < 0)
1512 		goto bad_mapping;
1513 
1514 	dma->dma_address += offset;
1515 	dma->dma_length = size - offset;
1516 
1517 	return count+1;
1518 
1519 bad_mapping:
1520 	for_each_sg(sg, s, count, i)
1521 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1522 	return 0;
1523 }
1524 
1525 /**
1526  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1527  * @dev: valid struct device pointer
1528  * @sg: list of buffers
1529  * @nents: number of buffers to map
1530  * @dir: DMA transfer direction
1531  *
1532  * Map a set of i/o coherent buffers described by scatterlist in streaming
1533  * mode for DMA. The scatter gather list elements are merged together (if
1534  * possible) and tagged with the appropriate dma address and length. They are
1535  * obtained via sg_dma_{address,length}.
1536  */
1537 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1538 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1539 {
1540 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1541 }
1542 
1543 /**
1544  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1545  * @dev: valid struct device pointer
1546  * @sg: list of buffers
1547  * @nents: number of buffers to map
1548  * @dir: DMA transfer direction
1549  *
1550  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1551  * The scatter gather list elements are merged together (if possible) and
1552  * tagged with the appropriate dma address and length. They are obtained via
1553  * sg_dma_{address,length}.
1554  */
1555 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1556 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1557 {
1558 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1559 }
1560 
1561 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1562 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1563 		bool is_coherent)
1564 {
1565 	struct scatterlist *s;
1566 	int i;
1567 
1568 	for_each_sg(sg, s, nents, i) {
1569 		if (sg_dma_len(s))
1570 			__iommu_remove_mapping(dev, sg_dma_address(s),
1571 					       sg_dma_len(s));
1572 		if (!is_coherent &&
1573 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1574 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1575 					      s->length, dir);
1576 	}
1577 }
1578 
1579 /**
1580  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1581  * @dev: valid struct device pointer
1582  * @sg: list of buffers
1583  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1584  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1585  *
1586  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1587  * rules concerning calls here are the same as for dma_unmap_single().
1588  */
1589 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1590 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1591 {
1592 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1593 }
1594 
1595 /**
1596  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1597  * @dev: valid struct device pointer
1598  * @sg: list of buffers
1599  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1600  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1601  *
1602  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1603  * rules concerning calls here are the same as for dma_unmap_single().
1604  */
1605 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1606 			enum dma_data_direction dir, struct dma_attrs *attrs)
1607 {
1608 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1609 }
1610 
1611 /**
1612  * arm_iommu_sync_sg_for_cpu
1613  * @dev: valid struct device pointer
1614  * @sg: list of buffers
1615  * @nents: number of buffers to map (returned from dma_map_sg)
1616  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1617  */
1618 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1619 			int nents, enum dma_data_direction dir)
1620 {
1621 	struct scatterlist *s;
1622 	int i;
1623 
1624 	for_each_sg(sg, s, nents, i)
1625 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1626 
1627 }
1628 
1629 /**
1630  * arm_iommu_sync_sg_for_device
1631  * @dev: valid struct device pointer
1632  * @sg: list of buffers
1633  * @nents: number of buffers to map (returned from dma_map_sg)
1634  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1635  */
1636 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1637 			int nents, enum dma_data_direction dir)
1638 {
1639 	struct scatterlist *s;
1640 	int i;
1641 
1642 	for_each_sg(sg, s, nents, i)
1643 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1644 }
1645 
1646 
1647 /**
1648  * arm_coherent_iommu_map_page
1649  * @dev: valid struct device pointer
1650  * @page: page that buffer resides in
1651  * @offset: offset into page for start of buffer
1652  * @size: size of buffer to map
1653  * @dir: DMA transfer direction
1654  *
1655  * Coherent IOMMU aware version of arm_dma_map_page()
1656  */
1657 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1658 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1659 	     struct dma_attrs *attrs)
1660 {
1661 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1662 	dma_addr_t dma_addr;
1663 	int ret, prot, len = PAGE_ALIGN(size + offset);
1664 
1665 	dma_addr = __alloc_iova(mapping, len);
1666 	if (dma_addr == DMA_ERROR_CODE)
1667 		return dma_addr;
1668 
1669 	switch (dir) {
1670 	case DMA_BIDIRECTIONAL:
1671 		prot = IOMMU_READ | IOMMU_WRITE;
1672 		break;
1673 	case DMA_TO_DEVICE:
1674 		prot = IOMMU_READ;
1675 		break;
1676 	case DMA_FROM_DEVICE:
1677 		prot = IOMMU_WRITE;
1678 		break;
1679 	default:
1680 		prot = 0;
1681 	}
1682 
1683 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1684 	if (ret < 0)
1685 		goto fail;
1686 
1687 	return dma_addr + offset;
1688 fail:
1689 	__free_iova(mapping, dma_addr, len);
1690 	return DMA_ERROR_CODE;
1691 }
1692 
1693 /**
1694  * arm_iommu_map_page
1695  * @dev: valid struct device pointer
1696  * @page: page that buffer resides in
1697  * @offset: offset into page for start of buffer
1698  * @size: size of buffer to map
1699  * @dir: DMA transfer direction
1700  *
1701  * IOMMU aware version of arm_dma_map_page()
1702  */
1703 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1704 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1705 	     struct dma_attrs *attrs)
1706 {
1707 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1708 		__dma_page_cpu_to_dev(page, offset, size, dir);
1709 
1710 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1711 }
1712 
1713 /**
1714  * arm_coherent_iommu_unmap_page
1715  * @dev: valid struct device pointer
1716  * @handle: DMA address of buffer
1717  * @size: size of buffer (same as passed to dma_map_page)
1718  * @dir: DMA transfer direction (same as passed to dma_map_page)
1719  *
1720  * Coherent IOMMU aware version of arm_dma_unmap_page()
1721  */
1722 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1723 		size_t size, enum dma_data_direction dir,
1724 		struct dma_attrs *attrs)
1725 {
1726 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1727 	dma_addr_t iova = handle & PAGE_MASK;
1728 	int offset = handle & ~PAGE_MASK;
1729 	int len = PAGE_ALIGN(size + offset);
1730 
1731 	if (!iova)
1732 		return;
1733 
1734 	iommu_unmap(mapping->domain, iova, len);
1735 	__free_iova(mapping, iova, len);
1736 }
1737 
1738 /**
1739  * arm_iommu_unmap_page
1740  * @dev: valid struct device pointer
1741  * @handle: DMA address of buffer
1742  * @size: size of buffer (same as passed to dma_map_page)
1743  * @dir: DMA transfer direction (same as passed to dma_map_page)
1744  *
1745  * IOMMU aware version of arm_dma_unmap_page()
1746  */
1747 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1748 		size_t size, enum dma_data_direction dir,
1749 		struct dma_attrs *attrs)
1750 {
1751 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1752 	dma_addr_t iova = handle & PAGE_MASK;
1753 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1754 	int offset = handle & ~PAGE_MASK;
1755 	int len = PAGE_ALIGN(size + offset);
1756 
1757 	if (!iova)
1758 		return;
1759 
1760 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1761 		__dma_page_dev_to_cpu(page, offset, size, dir);
1762 
1763 	iommu_unmap(mapping->domain, iova, len);
1764 	__free_iova(mapping, iova, len);
1765 }
1766 
1767 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1768 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1769 {
1770 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1771 	dma_addr_t iova = handle & PAGE_MASK;
1772 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1773 	unsigned int offset = handle & ~PAGE_MASK;
1774 
1775 	if (!iova)
1776 		return;
1777 
1778 	__dma_page_dev_to_cpu(page, offset, size, dir);
1779 }
1780 
1781 static void arm_iommu_sync_single_for_device(struct device *dev,
1782 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1783 {
1784 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1785 	dma_addr_t iova = handle & PAGE_MASK;
1786 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1787 	unsigned int offset = handle & ~PAGE_MASK;
1788 
1789 	if (!iova)
1790 		return;
1791 
1792 	__dma_page_cpu_to_dev(page, offset, size, dir);
1793 }
1794 
1795 struct dma_map_ops iommu_ops = {
1796 	.alloc		= arm_iommu_alloc_attrs,
1797 	.free		= arm_iommu_free_attrs,
1798 	.mmap		= arm_iommu_mmap_attrs,
1799 	.get_sgtable	= arm_iommu_get_sgtable,
1800 
1801 	.map_page		= arm_iommu_map_page,
1802 	.unmap_page		= arm_iommu_unmap_page,
1803 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1804 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1805 
1806 	.map_sg			= arm_iommu_map_sg,
1807 	.unmap_sg		= arm_iommu_unmap_sg,
1808 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1809 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1810 
1811 	.set_dma_mask		= arm_dma_set_mask,
1812 };
1813 
1814 struct dma_map_ops iommu_coherent_ops = {
1815 	.alloc		= arm_iommu_alloc_attrs,
1816 	.free		= arm_iommu_free_attrs,
1817 	.mmap		= arm_iommu_mmap_attrs,
1818 	.get_sgtable	= arm_iommu_get_sgtable,
1819 
1820 	.map_page	= arm_coherent_iommu_map_page,
1821 	.unmap_page	= arm_coherent_iommu_unmap_page,
1822 
1823 	.map_sg		= arm_coherent_iommu_map_sg,
1824 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1825 
1826 	.set_dma_mask	= arm_dma_set_mask,
1827 };
1828 
1829 /**
1830  * arm_iommu_create_mapping
1831  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1832  * @base: start address of the valid IO address space
1833  * @size: size of the valid IO address space
1834  * @order: accuracy of the IO addresses allocations
1835  *
1836  * Creates a mapping structure which holds information about used/unused
1837  * IO address ranges, which is required to perform memory allocation and
1838  * mapping with IOMMU aware functions.
1839  *
1840  * The client device need to be attached to the mapping with
1841  * arm_iommu_attach_device function.
1842  */
1843 struct dma_iommu_mapping *
1844 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1845 			 int order)
1846 {
1847 	unsigned int count = size >> (PAGE_SHIFT + order);
1848 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1849 	struct dma_iommu_mapping *mapping;
1850 	int err = -ENOMEM;
1851 
1852 	if (!count)
1853 		return ERR_PTR(-EINVAL);
1854 
1855 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1856 	if (!mapping)
1857 		goto err;
1858 
1859 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1860 	if (!mapping->bitmap)
1861 		goto err2;
1862 
1863 	mapping->base = base;
1864 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1865 	mapping->order = order;
1866 	spin_lock_init(&mapping->lock);
1867 
1868 	mapping->domain = iommu_domain_alloc(bus);
1869 	if (!mapping->domain)
1870 		goto err3;
1871 
1872 	kref_init(&mapping->kref);
1873 	return mapping;
1874 err3:
1875 	kfree(mapping->bitmap);
1876 err2:
1877 	kfree(mapping);
1878 err:
1879 	return ERR_PTR(err);
1880 }
1881 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1882 
1883 static void release_iommu_mapping(struct kref *kref)
1884 {
1885 	struct dma_iommu_mapping *mapping =
1886 		container_of(kref, struct dma_iommu_mapping, kref);
1887 
1888 	iommu_domain_free(mapping->domain);
1889 	kfree(mapping->bitmap);
1890 	kfree(mapping);
1891 }
1892 
1893 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1894 {
1895 	if (mapping)
1896 		kref_put(&mapping->kref, release_iommu_mapping);
1897 }
1898 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1899 
1900 /**
1901  * arm_iommu_attach_device
1902  * @dev: valid struct device pointer
1903  * @mapping: io address space mapping structure (returned from
1904  *	arm_iommu_create_mapping)
1905  *
1906  * Attaches specified io address space mapping to the provided device,
1907  * this replaces the dma operations (dma_map_ops pointer) with the
1908  * IOMMU aware version. More than one client might be attached to
1909  * the same io address space mapping.
1910  */
1911 int arm_iommu_attach_device(struct device *dev,
1912 			    struct dma_iommu_mapping *mapping)
1913 {
1914 	int err;
1915 
1916 	err = iommu_attach_device(mapping->domain, dev);
1917 	if (err)
1918 		return err;
1919 
1920 	kref_get(&mapping->kref);
1921 	dev->archdata.mapping = mapping;
1922 	set_dma_ops(dev, &iommu_ops);
1923 
1924 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1925 	return 0;
1926 }
1927 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1928 
1929 /**
1930  * arm_iommu_detach_device
1931  * @dev: valid struct device pointer
1932  *
1933  * Detaches the provided device from a previously attached map.
1934  * This voids the dma operations (dma_map_ops pointer)
1935  */
1936 void arm_iommu_detach_device(struct device *dev)
1937 {
1938 	struct dma_iommu_mapping *mapping;
1939 
1940 	mapping = to_dma_iommu_mapping(dev);
1941 	if (!mapping) {
1942 		dev_warn(dev, "Not attached\n");
1943 		return;
1944 	}
1945 
1946 	iommu_detach_device(mapping->domain, dev);
1947 	kref_put(&mapping->kref, release_iommu_mapping);
1948 	dev->archdata.mapping = NULL;
1949 	set_dma_ops(dev, NULL);
1950 
1951 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1952 }
1953 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1954 
1955 #endif
1956