1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/highmem.h> 21 #include <linux/slab.h> 22 23 #include <asm/memory.h> 24 #include <asm/highmem.h> 25 #include <asm/cacheflush.h> 26 #include <asm/tlbflush.h> 27 #include <asm/sizes.h> 28 #include <asm/mach/arch.h> 29 30 #include "mm.h" 31 32 static u64 get_coherent_dma_mask(struct device *dev) 33 { 34 u64 mask = (u64)arm_dma_limit; 35 36 if (dev) { 37 mask = dev->coherent_dma_mask; 38 39 /* 40 * Sanity check the DMA mask - it must be non-zero, and 41 * must be able to be satisfied by a DMA allocation. 42 */ 43 if (mask == 0) { 44 dev_warn(dev, "coherent DMA mask is unset\n"); 45 return 0; 46 } 47 48 if ((~mask) & (u64)arm_dma_limit) { 49 dev_warn(dev, "coherent DMA mask %#llx is smaller " 50 "than system GFP_DMA mask %#llx\n", 51 mask, (u64)arm_dma_limit); 52 return 0; 53 } 54 } 55 56 return mask; 57 } 58 59 /* 60 * Allocate a DMA buffer for 'dev' of size 'size' using the 61 * specified gfp mask. Note that 'size' must be page aligned. 62 */ 63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 64 { 65 unsigned long order = get_order(size); 66 struct page *page, *p, *e; 67 void *ptr; 68 u64 mask = get_coherent_dma_mask(dev); 69 70 #ifdef CONFIG_DMA_API_DEBUG 71 u64 limit = (mask + 1) & ~mask; 72 if (limit && size >= limit) { 73 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 74 size, mask); 75 return NULL; 76 } 77 #endif 78 79 if (!mask) 80 return NULL; 81 82 if (mask < 0xffffffffULL) 83 gfp |= GFP_DMA; 84 85 page = alloc_pages(gfp, order); 86 if (!page) 87 return NULL; 88 89 /* 90 * Now split the huge page and free the excess pages 91 */ 92 split_page(page, order); 93 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 94 __free_page(p); 95 96 /* 97 * Ensure that the allocated pages are zeroed, and that any data 98 * lurking in the kernel direct-mapped region is invalidated. 99 */ 100 ptr = page_address(page); 101 memset(ptr, 0, size); 102 dmac_flush_range(ptr, ptr + size); 103 outer_flush_range(__pa(ptr), __pa(ptr) + size); 104 105 return page; 106 } 107 108 /* 109 * Free a DMA buffer. 'size' must be page aligned. 110 */ 111 static void __dma_free_buffer(struct page *page, size_t size) 112 { 113 struct page *e = page + (size >> PAGE_SHIFT); 114 115 while (page < e) { 116 __free_page(page); 117 page++; 118 } 119 } 120 121 #ifdef CONFIG_MMU 122 123 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT) 124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT) 125 126 /* 127 * These are the page tables (2MB each) covering uncached, DMA consistent allocations 128 */ 129 static pte_t **consistent_pte; 130 131 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M 132 133 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE; 134 135 void __init init_consistent_dma_size(unsigned long size) 136 { 137 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M); 138 139 BUG_ON(consistent_pte); /* Check we're called before DMA region init */ 140 BUG_ON(base < VMALLOC_END); 141 142 /* Grow region to accommodate specified size */ 143 if (base < consistent_base) 144 consistent_base = base; 145 } 146 147 #include "vmregion.h" 148 149 static struct arm_vmregion_head consistent_head = { 150 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock), 151 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), 152 .vm_end = CONSISTENT_END, 153 }; 154 155 #ifdef CONFIG_HUGETLB_PAGE 156 #error ARM Coherent DMA allocator does not (yet) support huge TLB 157 #endif 158 159 /* 160 * Initialise the consistent memory allocation. 161 */ 162 static int __init consistent_init(void) 163 { 164 int ret = 0; 165 pgd_t *pgd; 166 pud_t *pud; 167 pmd_t *pmd; 168 pte_t *pte; 169 int i = 0; 170 unsigned long base = consistent_base; 171 unsigned long num_ptes = (CONSISTENT_END - base) >> PGDIR_SHIFT; 172 173 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL); 174 if (!consistent_pte) { 175 pr_err("%s: no memory\n", __func__); 176 return -ENOMEM; 177 } 178 179 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END); 180 consistent_head.vm_start = base; 181 182 do { 183 pgd = pgd_offset(&init_mm, base); 184 185 pud = pud_alloc(&init_mm, pgd, base); 186 if (!pud) { 187 printk(KERN_ERR "%s: no pud tables\n", __func__); 188 ret = -ENOMEM; 189 break; 190 } 191 192 pmd = pmd_alloc(&init_mm, pud, base); 193 if (!pmd) { 194 printk(KERN_ERR "%s: no pmd tables\n", __func__); 195 ret = -ENOMEM; 196 break; 197 } 198 WARN_ON(!pmd_none(*pmd)); 199 200 pte = pte_alloc_kernel(pmd, base); 201 if (!pte) { 202 printk(KERN_ERR "%s: no pte tables\n", __func__); 203 ret = -ENOMEM; 204 break; 205 } 206 207 consistent_pte[i++] = pte; 208 base += PMD_SIZE; 209 } while (base < CONSISTENT_END); 210 211 return ret; 212 } 213 214 core_initcall(consistent_init); 215 216 static void * 217 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot) 218 { 219 struct arm_vmregion *c; 220 size_t align; 221 int bit; 222 223 if (!consistent_pte) { 224 printk(KERN_ERR "%s: not initialised\n", __func__); 225 dump_stack(); 226 return NULL; 227 } 228 229 /* 230 * Align the virtual region allocation - maximum alignment is 231 * a section size, minimum is a page size. This helps reduce 232 * fragmentation of the DMA space, and also prevents allocations 233 * smaller than a section from crossing a section boundary. 234 */ 235 bit = fls(size - 1); 236 if (bit > SECTION_SHIFT) 237 bit = SECTION_SHIFT; 238 align = 1 << bit; 239 240 /* 241 * Allocate a virtual address in the consistent mapping region. 242 */ 243 c = arm_vmregion_alloc(&consistent_head, align, size, 244 gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); 245 if (c) { 246 pte_t *pte; 247 int idx = CONSISTENT_PTE_INDEX(c->vm_start); 248 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); 249 250 pte = consistent_pte[idx] + off; 251 c->vm_pages = page; 252 253 do { 254 BUG_ON(!pte_none(*pte)); 255 256 set_pte_ext(pte, mk_pte(page, prot), 0); 257 page++; 258 pte++; 259 off++; 260 if (off >= PTRS_PER_PTE) { 261 off = 0; 262 pte = consistent_pte[++idx]; 263 } 264 } while (size -= PAGE_SIZE); 265 266 dsb(); 267 268 return (void *)c->vm_start; 269 } 270 return NULL; 271 } 272 273 static void __dma_free_remap(void *cpu_addr, size_t size) 274 { 275 struct arm_vmregion *c; 276 unsigned long addr; 277 pte_t *ptep; 278 int idx; 279 u32 off; 280 281 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr); 282 if (!c) { 283 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", 284 __func__, cpu_addr); 285 dump_stack(); 286 return; 287 } 288 289 if ((c->vm_end - c->vm_start) != size) { 290 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", 291 __func__, c->vm_end - c->vm_start, size); 292 dump_stack(); 293 size = c->vm_end - c->vm_start; 294 } 295 296 idx = CONSISTENT_PTE_INDEX(c->vm_start); 297 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); 298 ptep = consistent_pte[idx] + off; 299 addr = c->vm_start; 300 do { 301 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); 302 303 ptep++; 304 addr += PAGE_SIZE; 305 off++; 306 if (off >= PTRS_PER_PTE) { 307 off = 0; 308 ptep = consistent_pte[++idx]; 309 } 310 311 if (pte_none(pte) || !pte_present(pte)) 312 printk(KERN_CRIT "%s: bad page in kernel page table\n", 313 __func__); 314 } while (size -= PAGE_SIZE); 315 316 flush_tlb_kernel_range(c->vm_start, c->vm_end); 317 318 arm_vmregion_free(&consistent_head, c); 319 } 320 321 #else /* !CONFIG_MMU */ 322 323 #define __dma_alloc_remap(page, size, gfp, prot) page_address(page) 324 #define __dma_free_remap(addr, size) do { } while (0) 325 326 #endif /* CONFIG_MMU */ 327 328 static void * 329 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, 330 pgprot_t prot) 331 { 332 struct page *page; 333 void *addr; 334 335 *handle = ~0; 336 size = PAGE_ALIGN(size); 337 338 page = __dma_alloc_buffer(dev, size, gfp); 339 if (!page) 340 return NULL; 341 342 if (!arch_is_coherent()) 343 addr = __dma_alloc_remap(page, size, gfp, prot); 344 else 345 addr = page_address(page); 346 347 if (addr) 348 *handle = pfn_to_dma(dev, page_to_pfn(page)); 349 else 350 __dma_free_buffer(page, size); 351 352 return addr; 353 } 354 355 /* 356 * Allocate DMA-coherent memory space and return both the kernel remapped 357 * virtual and bus address for that space. 358 */ 359 void * 360 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) 361 { 362 void *memory; 363 364 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 365 return memory; 366 367 return __dma_alloc(dev, size, handle, gfp, 368 pgprot_dmacoherent(pgprot_kernel)); 369 } 370 EXPORT_SYMBOL(dma_alloc_coherent); 371 372 /* 373 * Allocate a writecombining region, in much the same way as 374 * dma_alloc_coherent above. 375 */ 376 void * 377 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) 378 { 379 return __dma_alloc(dev, size, handle, gfp, 380 pgprot_writecombine(pgprot_kernel)); 381 } 382 EXPORT_SYMBOL(dma_alloc_writecombine); 383 384 static int dma_mmap(struct device *dev, struct vm_area_struct *vma, 385 void *cpu_addr, dma_addr_t dma_addr, size_t size) 386 { 387 int ret = -ENXIO; 388 #ifdef CONFIG_MMU 389 unsigned long user_size, kern_size; 390 struct arm_vmregion *c; 391 392 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 393 394 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); 395 if (c) { 396 unsigned long off = vma->vm_pgoff; 397 398 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; 399 400 if (off < kern_size && 401 user_size <= (kern_size - off)) { 402 ret = remap_pfn_range(vma, vma->vm_start, 403 page_to_pfn(c->vm_pages) + off, 404 user_size << PAGE_SHIFT, 405 vma->vm_page_prot); 406 } 407 } 408 #endif /* CONFIG_MMU */ 409 410 return ret; 411 } 412 413 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, 414 void *cpu_addr, dma_addr_t dma_addr, size_t size) 415 { 416 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot); 417 return dma_mmap(dev, vma, cpu_addr, dma_addr, size); 418 } 419 EXPORT_SYMBOL(dma_mmap_coherent); 420 421 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, 422 void *cpu_addr, dma_addr_t dma_addr, size_t size) 423 { 424 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 425 return dma_mmap(dev, vma, cpu_addr, dma_addr, size); 426 } 427 EXPORT_SYMBOL(dma_mmap_writecombine); 428 429 /* 430 * free a page as defined by the above mapping. 431 * Must not be called with IRQs disabled. 432 */ 433 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) 434 { 435 WARN_ON(irqs_disabled()); 436 437 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 438 return; 439 440 size = PAGE_ALIGN(size); 441 442 if (!arch_is_coherent()) 443 __dma_free_remap(cpu_addr, size); 444 445 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size); 446 } 447 EXPORT_SYMBOL(dma_free_coherent); 448 449 /* 450 * Make an area consistent for devices. 451 * Note: Drivers should NOT use this function directly, as it will break 452 * platforms with CONFIG_DMABOUNCE. 453 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 454 */ 455 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size, 456 enum dma_data_direction dir) 457 { 458 unsigned long paddr; 459 460 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); 461 462 dmac_map_area(kaddr, size, dir); 463 464 paddr = __pa(kaddr); 465 if (dir == DMA_FROM_DEVICE) { 466 outer_inv_range(paddr, paddr + size); 467 } else { 468 outer_clean_range(paddr, paddr + size); 469 } 470 /* FIXME: non-speculating: flush on bidirectional mappings? */ 471 } 472 EXPORT_SYMBOL(___dma_single_cpu_to_dev); 473 474 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size, 475 enum dma_data_direction dir) 476 { 477 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); 478 479 /* FIXME: non-speculating: not required */ 480 /* don't bother invalidating if DMA to device */ 481 if (dir != DMA_TO_DEVICE) { 482 unsigned long paddr = __pa(kaddr); 483 outer_inv_range(paddr, paddr + size); 484 } 485 486 dmac_unmap_area(kaddr, size, dir); 487 } 488 EXPORT_SYMBOL(___dma_single_dev_to_cpu); 489 490 static void dma_cache_maint_page(struct page *page, unsigned long offset, 491 size_t size, enum dma_data_direction dir, 492 void (*op)(const void *, size_t, int)) 493 { 494 /* 495 * A single sg entry may refer to multiple physically contiguous 496 * pages. But we still need to process highmem pages individually. 497 * If highmem is not configured then the bulk of this loop gets 498 * optimized out. 499 */ 500 size_t left = size; 501 do { 502 size_t len = left; 503 void *vaddr; 504 505 if (PageHighMem(page)) { 506 if (len + offset > PAGE_SIZE) { 507 if (offset >= PAGE_SIZE) { 508 page += offset / PAGE_SIZE; 509 offset %= PAGE_SIZE; 510 } 511 len = PAGE_SIZE - offset; 512 } 513 vaddr = kmap_high_get(page); 514 if (vaddr) { 515 vaddr += offset; 516 op(vaddr, len, dir); 517 kunmap_high(page); 518 } else if (cache_is_vipt()) { 519 /* unmapped pages might still be cached */ 520 vaddr = kmap_atomic(page); 521 op(vaddr + offset, len, dir); 522 kunmap_atomic(vaddr); 523 } 524 } else { 525 vaddr = page_address(page) + offset; 526 op(vaddr, len, dir); 527 } 528 offset = 0; 529 page++; 530 left -= len; 531 } while (left); 532 } 533 534 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off, 535 size_t size, enum dma_data_direction dir) 536 { 537 unsigned long paddr; 538 539 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 540 541 paddr = page_to_phys(page) + off; 542 if (dir == DMA_FROM_DEVICE) { 543 outer_inv_range(paddr, paddr + size); 544 } else { 545 outer_clean_range(paddr, paddr + size); 546 } 547 /* FIXME: non-speculating: flush on bidirectional mappings? */ 548 } 549 EXPORT_SYMBOL(___dma_page_cpu_to_dev); 550 551 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off, 552 size_t size, enum dma_data_direction dir) 553 { 554 unsigned long paddr = page_to_phys(page) + off; 555 556 /* FIXME: non-speculating: not required */ 557 /* don't bother invalidating if DMA to device */ 558 if (dir != DMA_TO_DEVICE) 559 outer_inv_range(paddr, paddr + size); 560 561 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 562 563 /* 564 * Mark the D-cache clean for this page to avoid extra flushing. 565 */ 566 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) 567 set_bit(PG_dcache_clean, &page->flags); 568 } 569 EXPORT_SYMBOL(___dma_page_dev_to_cpu); 570 571 /** 572 * dma_map_sg - map a set of SG buffers for streaming mode DMA 573 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 574 * @sg: list of buffers 575 * @nents: number of buffers to map 576 * @dir: DMA transfer direction 577 * 578 * Map a set of buffers described by scatterlist in streaming mode for DMA. 579 * This is the scatter-gather version of the dma_map_single interface. 580 * Here the scatter gather list elements are each tagged with the 581 * appropriate dma address and length. They are obtained via 582 * sg_dma_{address,length}. 583 * 584 * Device ownership issues as mentioned for dma_map_single are the same 585 * here. 586 */ 587 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 588 enum dma_data_direction dir) 589 { 590 struct scatterlist *s; 591 int i, j; 592 593 BUG_ON(!valid_dma_direction(dir)); 594 595 for_each_sg(sg, s, nents, i) { 596 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset, 597 s->length, dir); 598 if (dma_mapping_error(dev, s->dma_address)) 599 goto bad_mapping; 600 } 601 debug_dma_map_sg(dev, sg, nents, nents, dir); 602 return nents; 603 604 bad_mapping: 605 for_each_sg(sg, s, i, j) 606 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); 607 return 0; 608 } 609 EXPORT_SYMBOL(dma_map_sg); 610 611 /** 612 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 613 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 614 * @sg: list of buffers 615 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 616 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 617 * 618 * Unmap a set of streaming mode DMA translations. Again, CPU access 619 * rules concerning calls here are the same as for dma_unmap_single(). 620 */ 621 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 622 enum dma_data_direction dir) 623 { 624 struct scatterlist *s; 625 int i; 626 627 debug_dma_unmap_sg(dev, sg, nents, dir); 628 629 for_each_sg(sg, s, nents, i) 630 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); 631 } 632 EXPORT_SYMBOL(dma_unmap_sg); 633 634 /** 635 * dma_sync_sg_for_cpu 636 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 637 * @sg: list of buffers 638 * @nents: number of buffers to map (returned from dma_map_sg) 639 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 640 */ 641 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 642 int nents, enum dma_data_direction dir) 643 { 644 struct scatterlist *s; 645 int i; 646 647 for_each_sg(sg, s, nents, i) { 648 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, 649 sg_dma_len(s), dir)) 650 continue; 651 652 __dma_page_dev_to_cpu(sg_page(s), s->offset, 653 s->length, dir); 654 } 655 656 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir); 657 } 658 EXPORT_SYMBOL(dma_sync_sg_for_cpu); 659 660 /** 661 * dma_sync_sg_for_device 662 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 663 * @sg: list of buffers 664 * @nents: number of buffers to map (returned from dma_map_sg) 665 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 666 */ 667 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 668 int nents, enum dma_data_direction dir) 669 { 670 struct scatterlist *s; 671 int i; 672 673 for_each_sg(sg, s, nents, i) { 674 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, 675 sg_dma_len(s), dir)) 676 continue; 677 678 __dma_page_cpu_to_dev(sg_page(s), s->offset, 679 s->length, dir); 680 } 681 682 debug_dma_sync_sg_for_device(dev, sg, nents, dir); 683 } 684 EXPORT_SYMBOL(dma_sync_sg_for_device); 685 686 /* 687 * Return whether the given device DMA address mask can be supported 688 * properly. For example, if your device can only drive the low 24-bits 689 * during bus mastering, then you would pass 0x00ffffff as the mask 690 * to this function. 691 */ 692 int dma_supported(struct device *dev, u64 mask) 693 { 694 if (mask < (u64)arm_dma_limit) 695 return 0; 696 return 1; 697 } 698 EXPORT_SYMBOL(dma_supported); 699 700 int dma_set_mask(struct device *dev, u64 dma_mask) 701 { 702 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 703 return -EIO; 704 705 #ifndef CONFIG_DMABOUNCE 706 *dev->dma_mask = dma_mask; 707 #endif 708 709 return 0; 710 } 711 EXPORT_SYMBOL(dma_set_mask); 712 713 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 714 715 static int __init dma_debug_do_init(void) 716 { 717 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 718 return 0; 719 } 720 fs_initcall(dma_debug_do_init); 721