xref: /linux/arch/arm/mm/dma-mapping.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 
23 #include <asm/memory.h>
24 #include <asm/highmem.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sizes.h>
28 #include <asm/mach/arch.h>
29 
30 #include "mm.h"
31 
32 static u64 get_coherent_dma_mask(struct device *dev)
33 {
34 	u64 mask = (u64)arm_dma_limit;
35 
36 	if (dev) {
37 		mask = dev->coherent_dma_mask;
38 
39 		/*
40 		 * Sanity check the DMA mask - it must be non-zero, and
41 		 * must be able to be satisfied by a DMA allocation.
42 		 */
43 		if (mask == 0) {
44 			dev_warn(dev, "coherent DMA mask is unset\n");
45 			return 0;
46 		}
47 
48 		if ((~mask) & (u64)arm_dma_limit) {
49 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
50 				 "than system GFP_DMA mask %#llx\n",
51 				 mask, (u64)arm_dma_limit);
52 			return 0;
53 		}
54 	}
55 
56 	return mask;
57 }
58 
59 /*
60  * Allocate a DMA buffer for 'dev' of size 'size' using the
61  * specified gfp mask.  Note that 'size' must be page aligned.
62  */
63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
64 {
65 	unsigned long order = get_order(size);
66 	struct page *page, *p, *e;
67 	void *ptr;
68 	u64 mask = get_coherent_dma_mask(dev);
69 
70 #ifdef CONFIG_DMA_API_DEBUG
71 	u64 limit = (mask + 1) & ~mask;
72 	if (limit && size >= limit) {
73 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
74 			size, mask);
75 		return NULL;
76 	}
77 #endif
78 
79 	if (!mask)
80 		return NULL;
81 
82 	if (mask < 0xffffffffULL)
83 		gfp |= GFP_DMA;
84 
85 	page = alloc_pages(gfp, order);
86 	if (!page)
87 		return NULL;
88 
89 	/*
90 	 * Now split the huge page and free the excess pages
91 	 */
92 	split_page(page, order);
93 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
94 		__free_page(p);
95 
96 	/*
97 	 * Ensure that the allocated pages are zeroed, and that any data
98 	 * lurking in the kernel direct-mapped region is invalidated.
99 	 */
100 	ptr = page_address(page);
101 	memset(ptr, 0, size);
102 	dmac_flush_range(ptr, ptr + size);
103 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
104 
105 	return page;
106 }
107 
108 /*
109  * Free a DMA buffer.  'size' must be page aligned.
110  */
111 static void __dma_free_buffer(struct page *page, size_t size)
112 {
113 	struct page *e = page + (size >> PAGE_SHIFT);
114 
115 	while (page < e) {
116 		__free_page(page);
117 		page++;
118 	}
119 }
120 
121 #ifdef CONFIG_MMU
122 
123 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
125 
126 /*
127  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128  */
129 static pte_t **consistent_pte;
130 
131 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
132 
133 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
134 
135 void __init init_consistent_dma_size(unsigned long size)
136 {
137 	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
138 
139 	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
140 	BUG_ON(base < VMALLOC_END);
141 
142 	/* Grow region to accommodate specified size  */
143 	if (base < consistent_base)
144 		consistent_base = base;
145 }
146 
147 #include "vmregion.h"
148 
149 static struct arm_vmregion_head consistent_head = {
150 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
151 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
152 	.vm_end		= CONSISTENT_END,
153 };
154 
155 #ifdef CONFIG_HUGETLB_PAGE
156 #error ARM Coherent DMA allocator does not (yet) support huge TLB
157 #endif
158 
159 /*
160  * Initialise the consistent memory allocation.
161  */
162 static int __init consistent_init(void)
163 {
164 	int ret = 0;
165 	pgd_t *pgd;
166 	pud_t *pud;
167 	pmd_t *pmd;
168 	pte_t *pte;
169 	int i = 0;
170 	unsigned long base = consistent_base;
171 	unsigned long num_ptes = (CONSISTENT_END - base) >> PGDIR_SHIFT;
172 
173 	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
174 	if (!consistent_pte) {
175 		pr_err("%s: no memory\n", __func__);
176 		return -ENOMEM;
177 	}
178 
179 	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
180 	consistent_head.vm_start = base;
181 
182 	do {
183 		pgd = pgd_offset(&init_mm, base);
184 
185 		pud = pud_alloc(&init_mm, pgd, base);
186 		if (!pud) {
187 			printk(KERN_ERR "%s: no pud tables\n", __func__);
188 			ret = -ENOMEM;
189 			break;
190 		}
191 
192 		pmd = pmd_alloc(&init_mm, pud, base);
193 		if (!pmd) {
194 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
195 			ret = -ENOMEM;
196 			break;
197 		}
198 		WARN_ON(!pmd_none(*pmd));
199 
200 		pte = pte_alloc_kernel(pmd, base);
201 		if (!pte) {
202 			printk(KERN_ERR "%s: no pte tables\n", __func__);
203 			ret = -ENOMEM;
204 			break;
205 		}
206 
207 		consistent_pte[i++] = pte;
208 		base += PMD_SIZE;
209 	} while (base < CONSISTENT_END);
210 
211 	return ret;
212 }
213 
214 core_initcall(consistent_init);
215 
216 static void *
217 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
218 {
219 	struct arm_vmregion *c;
220 	size_t align;
221 	int bit;
222 
223 	if (!consistent_pte) {
224 		printk(KERN_ERR "%s: not initialised\n", __func__);
225 		dump_stack();
226 		return NULL;
227 	}
228 
229 	/*
230 	 * Align the virtual region allocation - maximum alignment is
231 	 * a section size, minimum is a page size.  This helps reduce
232 	 * fragmentation of the DMA space, and also prevents allocations
233 	 * smaller than a section from crossing a section boundary.
234 	 */
235 	bit = fls(size - 1);
236 	if (bit > SECTION_SHIFT)
237 		bit = SECTION_SHIFT;
238 	align = 1 << bit;
239 
240 	/*
241 	 * Allocate a virtual address in the consistent mapping region.
242 	 */
243 	c = arm_vmregion_alloc(&consistent_head, align, size,
244 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
245 	if (c) {
246 		pte_t *pte;
247 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
248 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
249 
250 		pte = consistent_pte[idx] + off;
251 		c->vm_pages = page;
252 
253 		do {
254 			BUG_ON(!pte_none(*pte));
255 
256 			set_pte_ext(pte, mk_pte(page, prot), 0);
257 			page++;
258 			pte++;
259 			off++;
260 			if (off >= PTRS_PER_PTE) {
261 				off = 0;
262 				pte = consistent_pte[++idx];
263 			}
264 		} while (size -= PAGE_SIZE);
265 
266 		dsb();
267 
268 		return (void *)c->vm_start;
269 	}
270 	return NULL;
271 }
272 
273 static void __dma_free_remap(void *cpu_addr, size_t size)
274 {
275 	struct arm_vmregion *c;
276 	unsigned long addr;
277 	pte_t *ptep;
278 	int idx;
279 	u32 off;
280 
281 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
282 	if (!c) {
283 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
284 		       __func__, cpu_addr);
285 		dump_stack();
286 		return;
287 	}
288 
289 	if ((c->vm_end - c->vm_start) != size) {
290 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
291 		       __func__, c->vm_end - c->vm_start, size);
292 		dump_stack();
293 		size = c->vm_end - c->vm_start;
294 	}
295 
296 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
297 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
298 	ptep = consistent_pte[idx] + off;
299 	addr = c->vm_start;
300 	do {
301 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
302 
303 		ptep++;
304 		addr += PAGE_SIZE;
305 		off++;
306 		if (off >= PTRS_PER_PTE) {
307 			off = 0;
308 			ptep = consistent_pte[++idx];
309 		}
310 
311 		if (pte_none(pte) || !pte_present(pte))
312 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
313 			       __func__);
314 	} while (size -= PAGE_SIZE);
315 
316 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
317 
318 	arm_vmregion_free(&consistent_head, c);
319 }
320 
321 #else	/* !CONFIG_MMU */
322 
323 #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
324 #define __dma_free_remap(addr, size)			do { } while (0)
325 
326 #endif	/* CONFIG_MMU */
327 
328 static void *
329 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
330 	    pgprot_t prot)
331 {
332 	struct page *page;
333 	void *addr;
334 
335 	*handle = ~0;
336 	size = PAGE_ALIGN(size);
337 
338 	page = __dma_alloc_buffer(dev, size, gfp);
339 	if (!page)
340 		return NULL;
341 
342 	if (!arch_is_coherent())
343 		addr = __dma_alloc_remap(page, size, gfp, prot);
344 	else
345 		addr = page_address(page);
346 
347 	if (addr)
348 		*handle = pfn_to_dma(dev, page_to_pfn(page));
349 	else
350 		__dma_free_buffer(page, size);
351 
352 	return addr;
353 }
354 
355 /*
356  * Allocate DMA-coherent memory space and return both the kernel remapped
357  * virtual and bus address for that space.
358  */
359 void *
360 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
361 {
362 	void *memory;
363 
364 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
365 		return memory;
366 
367 	return __dma_alloc(dev, size, handle, gfp,
368 			   pgprot_dmacoherent(pgprot_kernel));
369 }
370 EXPORT_SYMBOL(dma_alloc_coherent);
371 
372 /*
373  * Allocate a writecombining region, in much the same way as
374  * dma_alloc_coherent above.
375  */
376 void *
377 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
378 {
379 	return __dma_alloc(dev, size, handle, gfp,
380 			   pgprot_writecombine(pgprot_kernel));
381 }
382 EXPORT_SYMBOL(dma_alloc_writecombine);
383 
384 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
385 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
386 {
387 	int ret = -ENXIO;
388 #ifdef CONFIG_MMU
389 	unsigned long user_size, kern_size;
390 	struct arm_vmregion *c;
391 
392 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
393 
394 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
395 	if (c) {
396 		unsigned long off = vma->vm_pgoff;
397 
398 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
399 
400 		if (off < kern_size &&
401 		    user_size <= (kern_size - off)) {
402 			ret = remap_pfn_range(vma, vma->vm_start,
403 					      page_to_pfn(c->vm_pages) + off,
404 					      user_size << PAGE_SHIFT,
405 					      vma->vm_page_prot);
406 		}
407 	}
408 #endif	/* CONFIG_MMU */
409 
410 	return ret;
411 }
412 
413 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
414 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
415 {
416 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
417 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
418 }
419 EXPORT_SYMBOL(dma_mmap_coherent);
420 
421 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
422 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
423 {
424 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
425 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
426 }
427 EXPORT_SYMBOL(dma_mmap_writecombine);
428 
429 /*
430  * free a page as defined by the above mapping.
431  * Must not be called with IRQs disabled.
432  */
433 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
434 {
435 	WARN_ON(irqs_disabled());
436 
437 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
438 		return;
439 
440 	size = PAGE_ALIGN(size);
441 
442 	if (!arch_is_coherent())
443 		__dma_free_remap(cpu_addr, size);
444 
445 	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
446 }
447 EXPORT_SYMBOL(dma_free_coherent);
448 
449 /*
450  * Make an area consistent for devices.
451  * Note: Drivers should NOT use this function directly, as it will break
452  * platforms with CONFIG_DMABOUNCE.
453  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
454  */
455 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
456 	enum dma_data_direction dir)
457 {
458 	unsigned long paddr;
459 
460 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
461 
462 	dmac_map_area(kaddr, size, dir);
463 
464 	paddr = __pa(kaddr);
465 	if (dir == DMA_FROM_DEVICE) {
466 		outer_inv_range(paddr, paddr + size);
467 	} else {
468 		outer_clean_range(paddr, paddr + size);
469 	}
470 	/* FIXME: non-speculating: flush on bidirectional mappings? */
471 }
472 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
473 
474 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
475 	enum dma_data_direction dir)
476 {
477 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
478 
479 	/* FIXME: non-speculating: not required */
480 	/* don't bother invalidating if DMA to device */
481 	if (dir != DMA_TO_DEVICE) {
482 		unsigned long paddr = __pa(kaddr);
483 		outer_inv_range(paddr, paddr + size);
484 	}
485 
486 	dmac_unmap_area(kaddr, size, dir);
487 }
488 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
489 
490 static void dma_cache_maint_page(struct page *page, unsigned long offset,
491 	size_t size, enum dma_data_direction dir,
492 	void (*op)(const void *, size_t, int))
493 {
494 	/*
495 	 * A single sg entry may refer to multiple physically contiguous
496 	 * pages.  But we still need to process highmem pages individually.
497 	 * If highmem is not configured then the bulk of this loop gets
498 	 * optimized out.
499 	 */
500 	size_t left = size;
501 	do {
502 		size_t len = left;
503 		void *vaddr;
504 
505 		if (PageHighMem(page)) {
506 			if (len + offset > PAGE_SIZE) {
507 				if (offset >= PAGE_SIZE) {
508 					page += offset / PAGE_SIZE;
509 					offset %= PAGE_SIZE;
510 				}
511 				len = PAGE_SIZE - offset;
512 			}
513 			vaddr = kmap_high_get(page);
514 			if (vaddr) {
515 				vaddr += offset;
516 				op(vaddr, len, dir);
517 				kunmap_high(page);
518 			} else if (cache_is_vipt()) {
519 				/* unmapped pages might still be cached */
520 				vaddr = kmap_atomic(page);
521 				op(vaddr + offset, len, dir);
522 				kunmap_atomic(vaddr);
523 			}
524 		} else {
525 			vaddr = page_address(page) + offset;
526 			op(vaddr, len, dir);
527 		}
528 		offset = 0;
529 		page++;
530 		left -= len;
531 	} while (left);
532 }
533 
534 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
535 	size_t size, enum dma_data_direction dir)
536 {
537 	unsigned long paddr;
538 
539 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
540 
541 	paddr = page_to_phys(page) + off;
542 	if (dir == DMA_FROM_DEVICE) {
543 		outer_inv_range(paddr, paddr + size);
544 	} else {
545 		outer_clean_range(paddr, paddr + size);
546 	}
547 	/* FIXME: non-speculating: flush on bidirectional mappings? */
548 }
549 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
550 
551 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
552 	size_t size, enum dma_data_direction dir)
553 {
554 	unsigned long paddr = page_to_phys(page) + off;
555 
556 	/* FIXME: non-speculating: not required */
557 	/* don't bother invalidating if DMA to device */
558 	if (dir != DMA_TO_DEVICE)
559 		outer_inv_range(paddr, paddr + size);
560 
561 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
562 
563 	/*
564 	 * Mark the D-cache clean for this page to avoid extra flushing.
565 	 */
566 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
567 		set_bit(PG_dcache_clean, &page->flags);
568 }
569 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
570 
571 /**
572  * dma_map_sg - map a set of SG buffers for streaming mode DMA
573  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
574  * @sg: list of buffers
575  * @nents: number of buffers to map
576  * @dir: DMA transfer direction
577  *
578  * Map a set of buffers described by scatterlist in streaming mode for DMA.
579  * This is the scatter-gather version of the dma_map_single interface.
580  * Here the scatter gather list elements are each tagged with the
581  * appropriate dma address and length.  They are obtained via
582  * sg_dma_{address,length}.
583  *
584  * Device ownership issues as mentioned for dma_map_single are the same
585  * here.
586  */
587 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
588 		enum dma_data_direction dir)
589 {
590 	struct scatterlist *s;
591 	int i, j;
592 
593 	BUG_ON(!valid_dma_direction(dir));
594 
595 	for_each_sg(sg, s, nents, i) {
596 		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
597 						s->length, dir);
598 		if (dma_mapping_error(dev, s->dma_address))
599 			goto bad_mapping;
600 	}
601 	debug_dma_map_sg(dev, sg, nents, nents, dir);
602 	return nents;
603 
604  bad_mapping:
605 	for_each_sg(sg, s, i, j)
606 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
607 	return 0;
608 }
609 EXPORT_SYMBOL(dma_map_sg);
610 
611 /**
612  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
613  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
614  * @sg: list of buffers
615  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
616  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
617  *
618  * Unmap a set of streaming mode DMA translations.  Again, CPU access
619  * rules concerning calls here are the same as for dma_unmap_single().
620  */
621 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
622 		enum dma_data_direction dir)
623 {
624 	struct scatterlist *s;
625 	int i;
626 
627 	debug_dma_unmap_sg(dev, sg, nents, dir);
628 
629 	for_each_sg(sg, s, nents, i)
630 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
631 }
632 EXPORT_SYMBOL(dma_unmap_sg);
633 
634 /**
635  * dma_sync_sg_for_cpu
636  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
637  * @sg: list of buffers
638  * @nents: number of buffers to map (returned from dma_map_sg)
639  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
640  */
641 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
642 			int nents, enum dma_data_direction dir)
643 {
644 	struct scatterlist *s;
645 	int i;
646 
647 	for_each_sg(sg, s, nents, i) {
648 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
649 					    sg_dma_len(s), dir))
650 			continue;
651 
652 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
653 				      s->length, dir);
654 	}
655 
656 	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
657 }
658 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
659 
660 /**
661  * dma_sync_sg_for_device
662  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
663  * @sg: list of buffers
664  * @nents: number of buffers to map (returned from dma_map_sg)
665  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
666  */
667 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
668 			int nents, enum dma_data_direction dir)
669 {
670 	struct scatterlist *s;
671 	int i;
672 
673 	for_each_sg(sg, s, nents, i) {
674 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
675 					sg_dma_len(s), dir))
676 			continue;
677 
678 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
679 				      s->length, dir);
680 	}
681 
682 	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
683 }
684 EXPORT_SYMBOL(dma_sync_sg_for_device);
685 
686 /*
687  * Return whether the given device DMA address mask can be supported
688  * properly.  For example, if your device can only drive the low 24-bits
689  * during bus mastering, then you would pass 0x00ffffff as the mask
690  * to this function.
691  */
692 int dma_supported(struct device *dev, u64 mask)
693 {
694 	if (mask < (u64)arm_dma_limit)
695 		return 0;
696 	return 1;
697 }
698 EXPORT_SYMBOL(dma_supported);
699 
700 int dma_set_mask(struct device *dev, u64 dma_mask)
701 {
702 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
703 		return -EIO;
704 
705 #ifndef CONFIG_DMABOUNCE
706 	*dev->dma_mask = dma_mask;
707 #endif
708 
709 	return 0;
710 }
711 EXPORT_SYMBOL(dma_set_mask);
712 
713 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
714 
715 static int __init dma_debug_do_init(void)
716 {
717 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
718 	return 0;
719 }
720 fs_initcall(dma_debug_do_init);
721