1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/genalloc.h> 16 #include <linux/gfp.h> 17 #include <linux/errno.h> 18 #include <linux/list.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-contiguous.h> 23 #include <linux/highmem.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 #include <linux/iommu.h> 27 #include <linux/io.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sizes.h> 30 #include <linux/cma.h> 31 32 #include <asm/memory.h> 33 #include <asm/highmem.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mach/arch.h> 37 #include <asm/dma-iommu.h> 38 #include <asm/mach/map.h> 39 #include <asm/system_info.h> 40 #include <asm/dma-contiguous.h> 41 42 #include "dma.h" 43 #include "mm.h" 44 45 struct arm_dma_alloc_args { 46 struct device *dev; 47 size_t size; 48 gfp_t gfp; 49 pgprot_t prot; 50 const void *caller; 51 bool want_vaddr; 52 int coherent_flag; 53 }; 54 55 struct arm_dma_free_args { 56 struct device *dev; 57 size_t size; 58 void *cpu_addr; 59 struct page *page; 60 bool want_vaddr; 61 }; 62 63 #define NORMAL 0 64 #define COHERENT 1 65 66 struct arm_dma_allocator { 67 void *(*alloc)(struct arm_dma_alloc_args *args, 68 struct page **ret_page); 69 void (*free)(struct arm_dma_free_args *args); 70 }; 71 72 struct arm_dma_buffer { 73 struct list_head list; 74 void *virt; 75 struct arm_dma_allocator *allocator; 76 }; 77 78 static LIST_HEAD(arm_dma_bufs); 79 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 80 81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 82 { 83 struct arm_dma_buffer *buf, *found = NULL; 84 unsigned long flags; 85 86 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 87 list_for_each_entry(buf, &arm_dma_bufs, list) { 88 if (buf->virt == virt) { 89 list_del(&buf->list); 90 found = buf; 91 break; 92 } 93 } 94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 95 return found; 96 } 97 98 /* 99 * The DMA API is built upon the notion of "buffer ownership". A buffer 100 * is either exclusively owned by the CPU (and therefore may be accessed 101 * by it) or exclusively owned by the DMA device. These helper functions 102 * represent the transitions between these two ownership states. 103 * 104 * Note, however, that on later ARMs, this notion does not work due to 105 * speculative prefetches. We model our approach on the assumption that 106 * the CPU does do speculative prefetches, which means we clean caches 107 * before transfers and delay cache invalidation until transfer completion. 108 * 109 */ 110 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 111 size_t, enum dma_data_direction); 112 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 113 size_t, enum dma_data_direction); 114 115 /** 116 * arm_dma_map_page - map a portion of a page for streaming DMA 117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 118 * @page: page that buffer resides in 119 * @offset: offset into page for start of buffer 120 * @size: size of buffer to map 121 * @dir: DMA transfer direction 122 * 123 * Ensure that any data held in the cache is appropriately discarded 124 * or written back. 125 * 126 * The device owns this memory once this call has completed. The CPU 127 * can regain ownership by calling dma_unmap_page(). 128 */ 129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 130 unsigned long offset, size_t size, enum dma_data_direction dir, 131 unsigned long attrs) 132 { 133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 134 __dma_page_cpu_to_dev(page, offset, size, dir); 135 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 136 } 137 138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 139 unsigned long offset, size_t size, enum dma_data_direction dir, 140 unsigned long attrs) 141 { 142 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 143 } 144 145 /** 146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 148 * @handle: DMA address of buffer 149 * @size: size of buffer (same as passed to dma_map_page) 150 * @dir: DMA transfer direction (same as passed to dma_map_page) 151 * 152 * Unmap a page streaming mode DMA translation. The handle and size 153 * must match what was provided in the previous dma_map_page() call. 154 * All other usages are undefined. 155 * 156 * After this call, reads by the CPU to the buffer are guaranteed to see 157 * whatever the device wrote there. 158 */ 159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 160 size_t size, enum dma_data_direction dir, unsigned long attrs) 161 { 162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 164 handle & ~PAGE_MASK, size, dir); 165 } 166 167 static void arm_dma_sync_single_for_cpu(struct device *dev, 168 dma_addr_t handle, size_t size, enum dma_data_direction dir) 169 { 170 unsigned int offset = handle & (PAGE_SIZE - 1); 171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 172 __dma_page_dev_to_cpu(page, offset, size, dir); 173 } 174 175 static void arm_dma_sync_single_for_device(struct device *dev, 176 dma_addr_t handle, size_t size, enum dma_data_direction dir) 177 { 178 unsigned int offset = handle & (PAGE_SIZE - 1); 179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 180 __dma_page_cpu_to_dev(page, offset, size, dir); 181 } 182 183 static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 184 { 185 return dma_addr == ARM_MAPPING_ERROR; 186 } 187 188 const struct dma_map_ops arm_dma_ops = { 189 .alloc = arm_dma_alloc, 190 .free = arm_dma_free, 191 .mmap = arm_dma_mmap, 192 .get_sgtable = arm_dma_get_sgtable, 193 .map_page = arm_dma_map_page, 194 .unmap_page = arm_dma_unmap_page, 195 .map_sg = arm_dma_map_sg, 196 .unmap_sg = arm_dma_unmap_sg, 197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 198 .sync_single_for_device = arm_dma_sync_single_for_device, 199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 200 .sync_sg_for_device = arm_dma_sync_sg_for_device, 201 .mapping_error = arm_dma_mapping_error, 202 .dma_supported = arm_dma_supported, 203 }; 204 EXPORT_SYMBOL(arm_dma_ops); 205 206 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 208 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 209 dma_addr_t handle, unsigned long attrs); 210 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 211 void *cpu_addr, dma_addr_t dma_addr, size_t size, 212 unsigned long attrs); 213 214 const struct dma_map_ops arm_coherent_dma_ops = { 215 .alloc = arm_coherent_dma_alloc, 216 .free = arm_coherent_dma_free, 217 .mmap = arm_coherent_dma_mmap, 218 .get_sgtable = arm_dma_get_sgtable, 219 .map_page = arm_coherent_dma_map_page, 220 .map_sg = arm_dma_map_sg, 221 .mapping_error = arm_dma_mapping_error, 222 .dma_supported = arm_dma_supported, 223 }; 224 EXPORT_SYMBOL(arm_coherent_dma_ops); 225 226 static int __dma_supported(struct device *dev, u64 mask, bool warn) 227 { 228 unsigned long max_dma_pfn; 229 230 /* 231 * If the mask allows for more memory than we can address, 232 * and we actually have that much memory, then we must 233 * indicate that DMA to this device is not supported. 234 */ 235 if (sizeof(mask) != sizeof(dma_addr_t) && 236 mask > (dma_addr_t)~0 && 237 dma_to_pfn(dev, ~0) < max_pfn - 1) { 238 if (warn) { 239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 240 mask); 241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 242 } 243 return 0; 244 } 245 246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 247 248 /* 249 * Translate the device's DMA mask to a PFN limit. This 250 * PFN number includes the page which we can DMA to. 251 */ 252 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 253 if (warn) 254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 255 mask, 256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 257 max_dma_pfn + 1); 258 return 0; 259 } 260 261 return 1; 262 } 263 264 static u64 get_coherent_dma_mask(struct device *dev) 265 { 266 u64 mask = (u64)DMA_BIT_MASK(32); 267 268 if (dev) { 269 mask = dev->coherent_dma_mask; 270 271 /* 272 * Sanity check the DMA mask - it must be non-zero, and 273 * must be able to be satisfied by a DMA allocation. 274 */ 275 if (mask == 0) { 276 dev_warn(dev, "coherent DMA mask is unset\n"); 277 return 0; 278 } 279 280 if (!__dma_supported(dev, mask, true)) 281 return 0; 282 } 283 284 return mask; 285 } 286 287 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 288 { 289 /* 290 * Ensure that the allocated pages are zeroed, and that any data 291 * lurking in the kernel direct-mapped region is invalidated. 292 */ 293 if (PageHighMem(page)) { 294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 295 phys_addr_t end = base + size; 296 while (size > 0) { 297 void *ptr = kmap_atomic(page); 298 memset(ptr, 0, PAGE_SIZE); 299 if (coherent_flag != COHERENT) 300 dmac_flush_range(ptr, ptr + PAGE_SIZE); 301 kunmap_atomic(ptr); 302 page++; 303 size -= PAGE_SIZE; 304 } 305 if (coherent_flag != COHERENT) 306 outer_flush_range(base, end); 307 } else { 308 void *ptr = page_address(page); 309 memset(ptr, 0, size); 310 if (coherent_flag != COHERENT) { 311 dmac_flush_range(ptr, ptr + size); 312 outer_flush_range(__pa(ptr), __pa(ptr) + size); 313 } 314 } 315 } 316 317 /* 318 * Allocate a DMA buffer for 'dev' of size 'size' using the 319 * specified gfp mask. Note that 'size' must be page aligned. 320 */ 321 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 322 gfp_t gfp, int coherent_flag) 323 { 324 unsigned long order = get_order(size); 325 struct page *page, *p, *e; 326 327 page = alloc_pages(gfp, order); 328 if (!page) 329 return NULL; 330 331 /* 332 * Now split the huge page and free the excess pages 333 */ 334 split_page(page, order); 335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 336 __free_page(p); 337 338 __dma_clear_buffer(page, size, coherent_flag); 339 340 return page; 341 } 342 343 /* 344 * Free a DMA buffer. 'size' must be page aligned. 345 */ 346 static void __dma_free_buffer(struct page *page, size_t size) 347 { 348 struct page *e = page + (size >> PAGE_SHIFT); 349 350 while (page < e) { 351 __free_page(page); 352 page++; 353 } 354 } 355 356 static void *__alloc_from_contiguous(struct device *dev, size_t size, 357 pgprot_t prot, struct page **ret_page, 358 const void *caller, bool want_vaddr, 359 int coherent_flag, gfp_t gfp); 360 361 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 362 pgprot_t prot, struct page **ret_page, 363 const void *caller, bool want_vaddr); 364 365 static void * 366 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 367 const void *caller) 368 { 369 /* 370 * DMA allocation can be mapped to user space, so lets 371 * set VM_USERMAP flags too. 372 */ 373 return dma_common_contiguous_remap(page, size, 374 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 375 prot, caller); 376 } 377 378 static void __dma_free_remap(void *cpu_addr, size_t size) 379 { 380 dma_common_free_remap(cpu_addr, size, 381 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 382 } 383 384 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 385 static struct gen_pool *atomic_pool __ro_after_init; 386 387 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 388 389 static int __init early_coherent_pool(char *p) 390 { 391 atomic_pool_size = memparse(p, &p); 392 return 0; 393 } 394 early_param("coherent_pool", early_coherent_pool); 395 396 /* 397 * Initialise the coherent pool for atomic allocations. 398 */ 399 static int __init atomic_pool_init(void) 400 { 401 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 402 gfp_t gfp = GFP_KERNEL | GFP_DMA; 403 struct page *page; 404 void *ptr; 405 406 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 407 if (!atomic_pool) 408 goto out; 409 /* 410 * The atomic pool is only used for non-coherent allocations 411 * so we must pass NORMAL for coherent_flag. 412 */ 413 if (dev_get_cma_area(NULL)) 414 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 415 &page, atomic_pool_init, true, NORMAL, 416 GFP_KERNEL); 417 else 418 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 419 &page, atomic_pool_init, true); 420 if (ptr) { 421 int ret; 422 423 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 424 page_to_phys(page), 425 atomic_pool_size, -1); 426 if (ret) 427 goto destroy_genpool; 428 429 gen_pool_set_algo(atomic_pool, 430 gen_pool_first_fit_order_align, 431 NULL); 432 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 433 atomic_pool_size / 1024); 434 return 0; 435 } 436 437 destroy_genpool: 438 gen_pool_destroy(atomic_pool); 439 atomic_pool = NULL; 440 out: 441 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 442 atomic_pool_size / 1024); 443 return -ENOMEM; 444 } 445 /* 446 * CMA is activated by core_initcall, so we must be called after it. 447 */ 448 postcore_initcall(atomic_pool_init); 449 450 struct dma_contig_early_reserve { 451 phys_addr_t base; 452 unsigned long size; 453 }; 454 455 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 456 457 static int dma_mmu_remap_num __initdata; 458 459 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 460 { 461 dma_mmu_remap[dma_mmu_remap_num].base = base; 462 dma_mmu_remap[dma_mmu_remap_num].size = size; 463 dma_mmu_remap_num++; 464 } 465 466 void __init dma_contiguous_remap(void) 467 { 468 int i; 469 for (i = 0; i < dma_mmu_remap_num; i++) { 470 phys_addr_t start = dma_mmu_remap[i].base; 471 phys_addr_t end = start + dma_mmu_remap[i].size; 472 struct map_desc map; 473 unsigned long addr; 474 475 if (end > arm_lowmem_limit) 476 end = arm_lowmem_limit; 477 if (start >= end) 478 continue; 479 480 map.pfn = __phys_to_pfn(start); 481 map.virtual = __phys_to_virt(start); 482 map.length = end - start; 483 map.type = MT_MEMORY_DMA_READY; 484 485 /* 486 * Clear previous low-memory mapping to ensure that the 487 * TLB does not see any conflicting entries, then flush 488 * the TLB of the old entries before creating new mappings. 489 * 490 * This ensures that any speculatively loaded TLB entries 491 * (even though they may be rare) can not cause any problems, 492 * and ensures that this code is architecturally compliant. 493 */ 494 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 495 addr += PMD_SIZE) 496 pmd_clear(pmd_off_k(addr)); 497 498 flush_tlb_kernel_range(__phys_to_virt(start), 499 __phys_to_virt(end)); 500 501 iotable_init(&map, 1); 502 } 503 } 504 505 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 506 void *data) 507 { 508 struct page *page = virt_to_page(addr); 509 pgprot_t prot = *(pgprot_t *)data; 510 511 set_pte_ext(pte, mk_pte(page, prot), 0); 512 return 0; 513 } 514 515 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 516 { 517 unsigned long start = (unsigned long) page_address(page); 518 unsigned end = start + size; 519 520 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 521 flush_tlb_kernel_range(start, end); 522 } 523 524 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 525 pgprot_t prot, struct page **ret_page, 526 const void *caller, bool want_vaddr) 527 { 528 struct page *page; 529 void *ptr = NULL; 530 /* 531 * __alloc_remap_buffer is only called when the device is 532 * non-coherent 533 */ 534 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 535 if (!page) 536 return NULL; 537 if (!want_vaddr) 538 goto out; 539 540 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 541 if (!ptr) { 542 __dma_free_buffer(page, size); 543 return NULL; 544 } 545 546 out: 547 *ret_page = page; 548 return ptr; 549 } 550 551 static void *__alloc_from_pool(size_t size, struct page **ret_page) 552 { 553 unsigned long val; 554 void *ptr = NULL; 555 556 if (!atomic_pool) { 557 WARN(1, "coherent pool not initialised!\n"); 558 return NULL; 559 } 560 561 val = gen_pool_alloc(atomic_pool, size); 562 if (val) { 563 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 564 565 *ret_page = phys_to_page(phys); 566 ptr = (void *)val; 567 } 568 569 return ptr; 570 } 571 572 static bool __in_atomic_pool(void *start, size_t size) 573 { 574 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 575 } 576 577 static int __free_from_pool(void *start, size_t size) 578 { 579 if (!__in_atomic_pool(start, size)) 580 return 0; 581 582 gen_pool_free(atomic_pool, (unsigned long)start, size); 583 584 return 1; 585 } 586 587 static void *__alloc_from_contiguous(struct device *dev, size_t size, 588 pgprot_t prot, struct page **ret_page, 589 const void *caller, bool want_vaddr, 590 int coherent_flag, gfp_t gfp) 591 { 592 unsigned long order = get_order(size); 593 size_t count = size >> PAGE_SHIFT; 594 struct page *page; 595 void *ptr = NULL; 596 597 page = dma_alloc_from_contiguous(dev, count, order, gfp); 598 if (!page) 599 return NULL; 600 601 __dma_clear_buffer(page, size, coherent_flag); 602 603 if (!want_vaddr) 604 goto out; 605 606 if (PageHighMem(page)) { 607 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 608 if (!ptr) { 609 dma_release_from_contiguous(dev, page, count); 610 return NULL; 611 } 612 } else { 613 __dma_remap(page, size, prot); 614 ptr = page_address(page); 615 } 616 617 out: 618 *ret_page = page; 619 return ptr; 620 } 621 622 static void __free_from_contiguous(struct device *dev, struct page *page, 623 void *cpu_addr, size_t size, bool want_vaddr) 624 { 625 if (want_vaddr) { 626 if (PageHighMem(page)) 627 __dma_free_remap(cpu_addr, size); 628 else 629 __dma_remap(page, size, PAGE_KERNEL); 630 } 631 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 632 } 633 634 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 635 { 636 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 637 pgprot_writecombine(prot) : 638 pgprot_dmacoherent(prot); 639 return prot; 640 } 641 642 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 643 struct page **ret_page) 644 { 645 struct page *page; 646 /* __alloc_simple_buffer is only called when the device is coherent */ 647 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 648 if (!page) 649 return NULL; 650 651 *ret_page = page; 652 return page_address(page); 653 } 654 655 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 656 struct page **ret_page) 657 { 658 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 659 ret_page); 660 } 661 662 static void simple_allocator_free(struct arm_dma_free_args *args) 663 { 664 __dma_free_buffer(args->page, args->size); 665 } 666 667 static struct arm_dma_allocator simple_allocator = { 668 .alloc = simple_allocator_alloc, 669 .free = simple_allocator_free, 670 }; 671 672 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 673 struct page **ret_page) 674 { 675 return __alloc_from_contiguous(args->dev, args->size, args->prot, 676 ret_page, args->caller, 677 args->want_vaddr, args->coherent_flag, 678 args->gfp); 679 } 680 681 static void cma_allocator_free(struct arm_dma_free_args *args) 682 { 683 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 684 args->size, args->want_vaddr); 685 } 686 687 static struct arm_dma_allocator cma_allocator = { 688 .alloc = cma_allocator_alloc, 689 .free = cma_allocator_free, 690 }; 691 692 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 693 struct page **ret_page) 694 { 695 return __alloc_from_pool(args->size, ret_page); 696 } 697 698 static void pool_allocator_free(struct arm_dma_free_args *args) 699 { 700 __free_from_pool(args->cpu_addr, args->size); 701 } 702 703 static struct arm_dma_allocator pool_allocator = { 704 .alloc = pool_allocator_alloc, 705 .free = pool_allocator_free, 706 }; 707 708 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 709 struct page **ret_page) 710 { 711 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 712 args->prot, ret_page, args->caller, 713 args->want_vaddr); 714 } 715 716 static void remap_allocator_free(struct arm_dma_free_args *args) 717 { 718 if (args->want_vaddr) 719 __dma_free_remap(args->cpu_addr, args->size); 720 721 __dma_free_buffer(args->page, args->size); 722 } 723 724 static struct arm_dma_allocator remap_allocator = { 725 .alloc = remap_allocator_alloc, 726 .free = remap_allocator_free, 727 }; 728 729 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 730 gfp_t gfp, pgprot_t prot, bool is_coherent, 731 unsigned long attrs, const void *caller) 732 { 733 u64 mask = get_coherent_dma_mask(dev); 734 struct page *page = NULL; 735 void *addr; 736 bool allowblock, cma; 737 struct arm_dma_buffer *buf; 738 struct arm_dma_alloc_args args = { 739 .dev = dev, 740 .size = PAGE_ALIGN(size), 741 .gfp = gfp, 742 .prot = prot, 743 .caller = caller, 744 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 745 .coherent_flag = is_coherent ? COHERENT : NORMAL, 746 }; 747 748 #ifdef CONFIG_DMA_API_DEBUG 749 u64 limit = (mask + 1) & ~mask; 750 if (limit && size >= limit) { 751 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 752 size, mask); 753 return NULL; 754 } 755 #endif 756 757 if (!mask) 758 return NULL; 759 760 buf = kzalloc(sizeof(*buf), 761 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 762 if (!buf) 763 return NULL; 764 765 if (mask < 0xffffffffULL) 766 gfp |= GFP_DMA; 767 768 /* 769 * Following is a work-around (a.k.a. hack) to prevent pages 770 * with __GFP_COMP being passed to split_page() which cannot 771 * handle them. The real problem is that this flag probably 772 * should be 0 on ARM as it is not supported on this 773 * platform; see CONFIG_HUGETLBFS. 774 */ 775 gfp &= ~(__GFP_COMP); 776 args.gfp = gfp; 777 778 *handle = ARM_MAPPING_ERROR; 779 allowblock = gfpflags_allow_blocking(gfp); 780 cma = allowblock ? dev_get_cma_area(dev) : false; 781 782 if (cma) 783 buf->allocator = &cma_allocator; 784 else if (is_coherent) 785 buf->allocator = &simple_allocator; 786 else if (allowblock) 787 buf->allocator = &remap_allocator; 788 else 789 buf->allocator = &pool_allocator; 790 791 addr = buf->allocator->alloc(&args, &page); 792 793 if (page) { 794 unsigned long flags; 795 796 *handle = pfn_to_dma(dev, page_to_pfn(page)); 797 buf->virt = args.want_vaddr ? addr : page; 798 799 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 800 list_add(&buf->list, &arm_dma_bufs); 801 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 802 } else { 803 kfree(buf); 804 } 805 806 return args.want_vaddr ? addr : page; 807 } 808 809 /* 810 * Allocate DMA-coherent memory space and return both the kernel remapped 811 * virtual and bus address for that space. 812 */ 813 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 814 gfp_t gfp, unsigned long attrs) 815 { 816 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 817 818 return __dma_alloc(dev, size, handle, gfp, prot, false, 819 attrs, __builtin_return_address(0)); 820 } 821 822 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 823 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 824 { 825 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 826 attrs, __builtin_return_address(0)); 827 } 828 829 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 830 void *cpu_addr, dma_addr_t dma_addr, size_t size, 831 unsigned long attrs) 832 { 833 int ret; 834 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 835 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 836 unsigned long pfn = dma_to_pfn(dev, dma_addr); 837 unsigned long off = vma->vm_pgoff; 838 839 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 840 return ret; 841 842 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 843 ret = remap_pfn_range(vma, vma->vm_start, 844 pfn + off, 845 vma->vm_end - vma->vm_start, 846 vma->vm_page_prot); 847 } 848 849 return ret; 850 } 851 852 /* 853 * Create userspace mapping for the DMA-coherent memory. 854 */ 855 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 856 void *cpu_addr, dma_addr_t dma_addr, size_t size, 857 unsigned long attrs) 858 { 859 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 860 } 861 862 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 863 void *cpu_addr, dma_addr_t dma_addr, size_t size, 864 unsigned long attrs) 865 { 866 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 867 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 868 } 869 870 /* 871 * Free a buffer as defined by the above mapping. 872 */ 873 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 874 dma_addr_t handle, unsigned long attrs, 875 bool is_coherent) 876 { 877 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 878 struct arm_dma_buffer *buf; 879 struct arm_dma_free_args args = { 880 .dev = dev, 881 .size = PAGE_ALIGN(size), 882 .cpu_addr = cpu_addr, 883 .page = page, 884 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 885 }; 886 887 buf = arm_dma_buffer_find(cpu_addr); 888 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 889 return; 890 891 buf->allocator->free(&args); 892 kfree(buf); 893 } 894 895 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 896 dma_addr_t handle, unsigned long attrs) 897 { 898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 899 } 900 901 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 902 dma_addr_t handle, unsigned long attrs) 903 { 904 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 905 } 906 907 /* 908 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 909 * that the intention is to allow exporting memory allocated via the 910 * coherent DMA APIs through the dma_buf API, which only accepts a 911 * scattertable. This presents a couple of problems: 912 * 1. Not all memory allocated via the coherent DMA APIs is backed by 913 * a struct page 914 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 915 * as we will try to flush the memory through a different alias to that 916 * actually being used (and the flushes are redundant.) 917 */ 918 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 919 void *cpu_addr, dma_addr_t handle, size_t size, 920 unsigned long attrs) 921 { 922 unsigned long pfn = dma_to_pfn(dev, handle); 923 struct page *page; 924 int ret; 925 926 /* If the PFN is not valid, we do not have a struct page */ 927 if (!pfn_valid(pfn)) 928 return -ENXIO; 929 930 page = pfn_to_page(pfn); 931 932 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 933 if (unlikely(ret)) 934 return ret; 935 936 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 937 return 0; 938 } 939 940 static void dma_cache_maint_page(struct page *page, unsigned long offset, 941 size_t size, enum dma_data_direction dir, 942 void (*op)(const void *, size_t, int)) 943 { 944 unsigned long pfn; 945 size_t left = size; 946 947 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 948 offset %= PAGE_SIZE; 949 950 /* 951 * A single sg entry may refer to multiple physically contiguous 952 * pages. But we still need to process highmem pages individually. 953 * If highmem is not configured then the bulk of this loop gets 954 * optimized out. 955 */ 956 do { 957 size_t len = left; 958 void *vaddr; 959 960 page = pfn_to_page(pfn); 961 962 if (PageHighMem(page)) { 963 if (len + offset > PAGE_SIZE) 964 len = PAGE_SIZE - offset; 965 966 if (cache_is_vipt_nonaliasing()) { 967 vaddr = kmap_atomic(page); 968 op(vaddr + offset, len, dir); 969 kunmap_atomic(vaddr); 970 } else { 971 vaddr = kmap_high_get(page); 972 if (vaddr) { 973 op(vaddr + offset, len, dir); 974 kunmap_high(page); 975 } 976 } 977 } else { 978 vaddr = page_address(page) + offset; 979 op(vaddr, len, dir); 980 } 981 offset = 0; 982 pfn++; 983 left -= len; 984 } while (left); 985 } 986 987 /* 988 * Make an area consistent for devices. 989 * Note: Drivers should NOT use this function directly, as it will break 990 * platforms with CONFIG_DMABOUNCE. 991 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 992 */ 993 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 994 size_t size, enum dma_data_direction dir) 995 { 996 phys_addr_t paddr; 997 998 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 999 1000 paddr = page_to_phys(page) + off; 1001 if (dir == DMA_FROM_DEVICE) { 1002 outer_inv_range(paddr, paddr + size); 1003 } else { 1004 outer_clean_range(paddr, paddr + size); 1005 } 1006 /* FIXME: non-speculating: flush on bidirectional mappings? */ 1007 } 1008 1009 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1010 size_t size, enum dma_data_direction dir) 1011 { 1012 phys_addr_t paddr = page_to_phys(page) + off; 1013 1014 /* FIXME: non-speculating: not required */ 1015 /* in any case, don't bother invalidating if DMA to device */ 1016 if (dir != DMA_TO_DEVICE) { 1017 outer_inv_range(paddr, paddr + size); 1018 1019 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1020 } 1021 1022 /* 1023 * Mark the D-cache clean for these pages to avoid extra flushing. 1024 */ 1025 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1026 unsigned long pfn; 1027 size_t left = size; 1028 1029 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1030 off %= PAGE_SIZE; 1031 if (off) { 1032 pfn++; 1033 left -= PAGE_SIZE - off; 1034 } 1035 while (left >= PAGE_SIZE) { 1036 page = pfn_to_page(pfn++); 1037 set_bit(PG_dcache_clean, &page->flags); 1038 left -= PAGE_SIZE; 1039 } 1040 } 1041 } 1042 1043 /** 1044 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1046 * @sg: list of buffers 1047 * @nents: number of buffers to map 1048 * @dir: DMA transfer direction 1049 * 1050 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1051 * This is the scatter-gather version of the dma_map_single interface. 1052 * Here the scatter gather list elements are each tagged with the 1053 * appropriate dma address and length. They are obtained via 1054 * sg_dma_{address,length}. 1055 * 1056 * Device ownership issues as mentioned for dma_map_single are the same 1057 * here. 1058 */ 1059 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1060 enum dma_data_direction dir, unsigned long attrs) 1061 { 1062 const struct dma_map_ops *ops = get_dma_ops(dev); 1063 struct scatterlist *s; 1064 int i, j; 1065 1066 for_each_sg(sg, s, nents, i) { 1067 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1068 s->dma_length = s->length; 1069 #endif 1070 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1071 s->length, dir, attrs); 1072 if (dma_mapping_error(dev, s->dma_address)) 1073 goto bad_mapping; 1074 } 1075 return nents; 1076 1077 bad_mapping: 1078 for_each_sg(sg, s, i, j) 1079 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1080 return 0; 1081 } 1082 1083 /** 1084 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1085 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1086 * @sg: list of buffers 1087 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1088 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1089 * 1090 * Unmap a set of streaming mode DMA translations. Again, CPU access 1091 * rules concerning calls here are the same as for dma_unmap_single(). 1092 */ 1093 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1094 enum dma_data_direction dir, unsigned long attrs) 1095 { 1096 const struct dma_map_ops *ops = get_dma_ops(dev); 1097 struct scatterlist *s; 1098 1099 int i; 1100 1101 for_each_sg(sg, s, nents, i) 1102 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1103 } 1104 1105 /** 1106 * arm_dma_sync_sg_for_cpu 1107 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1108 * @sg: list of buffers 1109 * @nents: number of buffers to map (returned from dma_map_sg) 1110 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1111 */ 1112 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1113 int nents, enum dma_data_direction dir) 1114 { 1115 const struct dma_map_ops *ops = get_dma_ops(dev); 1116 struct scatterlist *s; 1117 int i; 1118 1119 for_each_sg(sg, s, nents, i) 1120 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1121 dir); 1122 } 1123 1124 /** 1125 * arm_dma_sync_sg_for_device 1126 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1127 * @sg: list of buffers 1128 * @nents: number of buffers to map (returned from dma_map_sg) 1129 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1130 */ 1131 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1132 int nents, enum dma_data_direction dir) 1133 { 1134 const struct dma_map_ops *ops = get_dma_ops(dev); 1135 struct scatterlist *s; 1136 int i; 1137 1138 for_each_sg(sg, s, nents, i) 1139 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1140 dir); 1141 } 1142 1143 /* 1144 * Return whether the given device DMA address mask can be supported 1145 * properly. For example, if your device can only drive the low 24-bits 1146 * during bus mastering, then you would pass 0x00ffffff as the mask 1147 * to this function. 1148 */ 1149 int arm_dma_supported(struct device *dev, u64 mask) 1150 { 1151 return __dma_supported(dev, mask, false); 1152 } 1153 1154 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1155 1156 static int __init dma_debug_do_init(void) 1157 { 1158 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1159 return 0; 1160 } 1161 core_initcall(dma_debug_do_init); 1162 1163 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1164 1165 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1166 { 1167 int prot = 0; 1168 1169 if (attrs & DMA_ATTR_PRIVILEGED) 1170 prot |= IOMMU_PRIV; 1171 1172 switch (dir) { 1173 case DMA_BIDIRECTIONAL: 1174 return prot | IOMMU_READ | IOMMU_WRITE; 1175 case DMA_TO_DEVICE: 1176 return prot | IOMMU_READ; 1177 case DMA_FROM_DEVICE: 1178 return prot | IOMMU_WRITE; 1179 default: 1180 return prot; 1181 } 1182 } 1183 1184 /* IOMMU */ 1185 1186 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1187 1188 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1189 size_t size) 1190 { 1191 unsigned int order = get_order(size); 1192 unsigned int align = 0; 1193 unsigned int count, start; 1194 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1195 unsigned long flags; 1196 dma_addr_t iova; 1197 int i; 1198 1199 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1200 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1201 1202 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1203 align = (1 << order) - 1; 1204 1205 spin_lock_irqsave(&mapping->lock, flags); 1206 for (i = 0; i < mapping->nr_bitmaps; i++) { 1207 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1208 mapping->bits, 0, count, align); 1209 1210 if (start > mapping->bits) 1211 continue; 1212 1213 bitmap_set(mapping->bitmaps[i], start, count); 1214 break; 1215 } 1216 1217 /* 1218 * No unused range found. Try to extend the existing mapping 1219 * and perform a second attempt to reserve an IO virtual 1220 * address range of size bytes. 1221 */ 1222 if (i == mapping->nr_bitmaps) { 1223 if (extend_iommu_mapping(mapping)) { 1224 spin_unlock_irqrestore(&mapping->lock, flags); 1225 return ARM_MAPPING_ERROR; 1226 } 1227 1228 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1229 mapping->bits, 0, count, align); 1230 1231 if (start > mapping->bits) { 1232 spin_unlock_irqrestore(&mapping->lock, flags); 1233 return ARM_MAPPING_ERROR; 1234 } 1235 1236 bitmap_set(mapping->bitmaps[i], start, count); 1237 } 1238 spin_unlock_irqrestore(&mapping->lock, flags); 1239 1240 iova = mapping->base + (mapping_size * i); 1241 iova += start << PAGE_SHIFT; 1242 1243 return iova; 1244 } 1245 1246 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1247 dma_addr_t addr, size_t size) 1248 { 1249 unsigned int start, count; 1250 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1251 unsigned long flags; 1252 dma_addr_t bitmap_base; 1253 u32 bitmap_index; 1254 1255 if (!size) 1256 return; 1257 1258 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1259 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1260 1261 bitmap_base = mapping->base + mapping_size * bitmap_index; 1262 1263 start = (addr - bitmap_base) >> PAGE_SHIFT; 1264 1265 if (addr + size > bitmap_base + mapping_size) { 1266 /* 1267 * The address range to be freed reaches into the iova 1268 * range of the next bitmap. This should not happen as 1269 * we don't allow this in __alloc_iova (at the 1270 * moment). 1271 */ 1272 BUG(); 1273 } else 1274 count = size >> PAGE_SHIFT; 1275 1276 spin_lock_irqsave(&mapping->lock, flags); 1277 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1278 spin_unlock_irqrestore(&mapping->lock, flags); 1279 } 1280 1281 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1282 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1283 1284 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1285 gfp_t gfp, unsigned long attrs, 1286 int coherent_flag) 1287 { 1288 struct page **pages; 1289 int count = size >> PAGE_SHIFT; 1290 int array_size = count * sizeof(struct page *); 1291 int i = 0; 1292 int order_idx = 0; 1293 1294 if (array_size <= PAGE_SIZE) 1295 pages = kzalloc(array_size, GFP_KERNEL); 1296 else 1297 pages = vzalloc(array_size); 1298 if (!pages) 1299 return NULL; 1300 1301 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1302 { 1303 unsigned long order = get_order(size); 1304 struct page *page; 1305 1306 page = dma_alloc_from_contiguous(dev, count, order, gfp); 1307 if (!page) 1308 goto error; 1309 1310 __dma_clear_buffer(page, size, coherent_flag); 1311 1312 for (i = 0; i < count; i++) 1313 pages[i] = page + i; 1314 1315 return pages; 1316 } 1317 1318 /* Go straight to 4K chunks if caller says it's OK. */ 1319 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1320 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1321 1322 /* 1323 * IOMMU can map any pages, so himem can also be used here 1324 */ 1325 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1326 1327 while (count) { 1328 int j, order; 1329 1330 order = iommu_order_array[order_idx]; 1331 1332 /* Drop down when we get small */ 1333 if (__fls(count) < order) { 1334 order_idx++; 1335 continue; 1336 } 1337 1338 if (order) { 1339 /* See if it's easy to allocate a high-order chunk */ 1340 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1341 1342 /* Go down a notch at first sign of pressure */ 1343 if (!pages[i]) { 1344 order_idx++; 1345 continue; 1346 } 1347 } else { 1348 pages[i] = alloc_pages(gfp, 0); 1349 if (!pages[i]) 1350 goto error; 1351 } 1352 1353 if (order) { 1354 split_page(pages[i], order); 1355 j = 1 << order; 1356 while (--j) 1357 pages[i + j] = pages[i] + j; 1358 } 1359 1360 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1361 i += 1 << order; 1362 count -= 1 << order; 1363 } 1364 1365 return pages; 1366 error: 1367 while (i--) 1368 if (pages[i]) 1369 __free_pages(pages[i], 0); 1370 kvfree(pages); 1371 return NULL; 1372 } 1373 1374 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1375 size_t size, unsigned long attrs) 1376 { 1377 int count = size >> PAGE_SHIFT; 1378 int i; 1379 1380 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1381 dma_release_from_contiguous(dev, pages[0], count); 1382 } else { 1383 for (i = 0; i < count; i++) 1384 if (pages[i]) 1385 __free_pages(pages[i], 0); 1386 } 1387 1388 kvfree(pages); 1389 return 0; 1390 } 1391 1392 /* 1393 * Create a CPU mapping for a specified pages 1394 */ 1395 static void * 1396 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1397 const void *caller) 1398 { 1399 return dma_common_pages_remap(pages, size, 1400 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1401 } 1402 1403 /* 1404 * Create a mapping in device IO address space for specified pages 1405 */ 1406 static dma_addr_t 1407 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1408 unsigned long attrs) 1409 { 1410 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1411 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1412 dma_addr_t dma_addr, iova; 1413 int i; 1414 1415 dma_addr = __alloc_iova(mapping, size); 1416 if (dma_addr == ARM_MAPPING_ERROR) 1417 return dma_addr; 1418 1419 iova = dma_addr; 1420 for (i = 0; i < count; ) { 1421 int ret; 1422 1423 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1424 phys_addr_t phys = page_to_phys(pages[i]); 1425 unsigned int len, j; 1426 1427 for (j = i + 1; j < count; j++, next_pfn++) 1428 if (page_to_pfn(pages[j]) != next_pfn) 1429 break; 1430 1431 len = (j - i) << PAGE_SHIFT; 1432 ret = iommu_map(mapping->domain, iova, phys, len, 1433 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1434 if (ret < 0) 1435 goto fail; 1436 iova += len; 1437 i = j; 1438 } 1439 return dma_addr; 1440 fail: 1441 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1442 __free_iova(mapping, dma_addr, size); 1443 return ARM_MAPPING_ERROR; 1444 } 1445 1446 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1447 { 1448 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1449 1450 /* 1451 * add optional in-page offset from iova to size and align 1452 * result to page size 1453 */ 1454 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1455 iova &= PAGE_MASK; 1456 1457 iommu_unmap(mapping->domain, iova, size); 1458 __free_iova(mapping, iova, size); 1459 return 0; 1460 } 1461 1462 static struct page **__atomic_get_pages(void *addr) 1463 { 1464 struct page *page; 1465 phys_addr_t phys; 1466 1467 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1468 page = phys_to_page(phys); 1469 1470 return (struct page **)page; 1471 } 1472 1473 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1474 { 1475 struct vm_struct *area; 1476 1477 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1478 return __atomic_get_pages(cpu_addr); 1479 1480 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1481 return cpu_addr; 1482 1483 area = find_vm_area(cpu_addr); 1484 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1485 return area->pages; 1486 return NULL; 1487 } 1488 1489 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1490 dma_addr_t *handle, int coherent_flag, 1491 unsigned long attrs) 1492 { 1493 struct page *page; 1494 void *addr; 1495 1496 if (coherent_flag == COHERENT) 1497 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1498 else 1499 addr = __alloc_from_pool(size, &page); 1500 if (!addr) 1501 return NULL; 1502 1503 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1504 if (*handle == ARM_MAPPING_ERROR) 1505 goto err_mapping; 1506 1507 return addr; 1508 1509 err_mapping: 1510 __free_from_pool(addr, size); 1511 return NULL; 1512 } 1513 1514 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1515 dma_addr_t handle, size_t size, int coherent_flag) 1516 { 1517 __iommu_remove_mapping(dev, handle, size); 1518 if (coherent_flag == COHERENT) 1519 __dma_free_buffer(virt_to_page(cpu_addr), size); 1520 else 1521 __free_from_pool(cpu_addr, size); 1522 } 1523 1524 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1525 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1526 int coherent_flag) 1527 { 1528 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1529 struct page **pages; 1530 void *addr = NULL; 1531 1532 *handle = ARM_MAPPING_ERROR; 1533 size = PAGE_ALIGN(size); 1534 1535 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1536 return __iommu_alloc_simple(dev, size, gfp, handle, 1537 coherent_flag, attrs); 1538 1539 /* 1540 * Following is a work-around (a.k.a. hack) to prevent pages 1541 * with __GFP_COMP being passed to split_page() which cannot 1542 * handle them. The real problem is that this flag probably 1543 * should be 0 on ARM as it is not supported on this 1544 * platform; see CONFIG_HUGETLBFS. 1545 */ 1546 gfp &= ~(__GFP_COMP); 1547 1548 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1549 if (!pages) 1550 return NULL; 1551 1552 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1553 if (*handle == ARM_MAPPING_ERROR) 1554 goto err_buffer; 1555 1556 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1557 return pages; 1558 1559 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1560 __builtin_return_address(0)); 1561 if (!addr) 1562 goto err_mapping; 1563 1564 return addr; 1565 1566 err_mapping: 1567 __iommu_remove_mapping(dev, *handle, size); 1568 err_buffer: 1569 __iommu_free_buffer(dev, pages, size, attrs); 1570 return NULL; 1571 } 1572 1573 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1574 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1575 { 1576 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1577 } 1578 1579 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1580 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1581 { 1582 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1583 } 1584 1585 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1586 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1587 unsigned long attrs) 1588 { 1589 unsigned long uaddr = vma->vm_start; 1590 unsigned long usize = vma->vm_end - vma->vm_start; 1591 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1592 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1593 unsigned long off = vma->vm_pgoff; 1594 1595 if (!pages) 1596 return -ENXIO; 1597 1598 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1599 return -ENXIO; 1600 1601 pages += off; 1602 1603 do { 1604 int ret = vm_insert_page(vma, uaddr, *pages++); 1605 if (ret) { 1606 pr_err("Remapping memory failed: %d\n", ret); 1607 return ret; 1608 } 1609 uaddr += PAGE_SIZE; 1610 usize -= PAGE_SIZE; 1611 } while (usize > 0); 1612 1613 return 0; 1614 } 1615 static int arm_iommu_mmap_attrs(struct device *dev, 1616 struct vm_area_struct *vma, void *cpu_addr, 1617 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1618 { 1619 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1620 1621 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1622 } 1623 1624 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1625 struct vm_area_struct *vma, void *cpu_addr, 1626 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1627 { 1628 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1629 } 1630 1631 /* 1632 * free a page as defined by the above mapping. 1633 * Must not be called with IRQs disabled. 1634 */ 1635 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1636 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1637 { 1638 struct page **pages; 1639 size = PAGE_ALIGN(size); 1640 1641 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1642 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1643 return; 1644 } 1645 1646 pages = __iommu_get_pages(cpu_addr, attrs); 1647 if (!pages) { 1648 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1649 return; 1650 } 1651 1652 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1653 dma_common_free_remap(cpu_addr, size, 1654 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1655 } 1656 1657 __iommu_remove_mapping(dev, handle, size); 1658 __iommu_free_buffer(dev, pages, size, attrs); 1659 } 1660 1661 void arm_iommu_free_attrs(struct device *dev, size_t size, 1662 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1663 { 1664 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1665 } 1666 1667 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1668 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1669 { 1670 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1671 } 1672 1673 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1674 void *cpu_addr, dma_addr_t dma_addr, 1675 size_t size, unsigned long attrs) 1676 { 1677 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1678 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1679 1680 if (!pages) 1681 return -ENXIO; 1682 1683 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1684 GFP_KERNEL); 1685 } 1686 1687 /* 1688 * Map a part of the scatter-gather list into contiguous io address space 1689 */ 1690 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1691 size_t size, dma_addr_t *handle, 1692 enum dma_data_direction dir, unsigned long attrs, 1693 bool is_coherent) 1694 { 1695 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1696 dma_addr_t iova, iova_base; 1697 int ret = 0; 1698 unsigned int count; 1699 struct scatterlist *s; 1700 int prot; 1701 1702 size = PAGE_ALIGN(size); 1703 *handle = ARM_MAPPING_ERROR; 1704 1705 iova_base = iova = __alloc_iova(mapping, size); 1706 if (iova == ARM_MAPPING_ERROR) 1707 return -ENOMEM; 1708 1709 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1710 phys_addr_t phys = page_to_phys(sg_page(s)); 1711 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1712 1713 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1714 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1715 1716 prot = __dma_info_to_prot(dir, attrs); 1717 1718 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1719 if (ret < 0) 1720 goto fail; 1721 count += len >> PAGE_SHIFT; 1722 iova += len; 1723 } 1724 *handle = iova_base; 1725 1726 return 0; 1727 fail: 1728 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1729 __free_iova(mapping, iova_base, size); 1730 return ret; 1731 } 1732 1733 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1734 enum dma_data_direction dir, unsigned long attrs, 1735 bool is_coherent) 1736 { 1737 struct scatterlist *s = sg, *dma = sg, *start = sg; 1738 int i, count = 0; 1739 unsigned int offset = s->offset; 1740 unsigned int size = s->offset + s->length; 1741 unsigned int max = dma_get_max_seg_size(dev); 1742 1743 for (i = 1; i < nents; i++) { 1744 s = sg_next(s); 1745 1746 s->dma_address = ARM_MAPPING_ERROR; 1747 s->dma_length = 0; 1748 1749 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1750 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1751 dir, attrs, is_coherent) < 0) 1752 goto bad_mapping; 1753 1754 dma->dma_address += offset; 1755 dma->dma_length = size - offset; 1756 1757 size = offset = s->offset; 1758 start = s; 1759 dma = sg_next(dma); 1760 count += 1; 1761 } 1762 size += s->length; 1763 } 1764 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1765 is_coherent) < 0) 1766 goto bad_mapping; 1767 1768 dma->dma_address += offset; 1769 dma->dma_length = size - offset; 1770 1771 return count+1; 1772 1773 bad_mapping: 1774 for_each_sg(sg, s, count, i) 1775 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1776 return 0; 1777 } 1778 1779 /** 1780 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1781 * @dev: valid struct device pointer 1782 * @sg: list of buffers 1783 * @nents: number of buffers to map 1784 * @dir: DMA transfer direction 1785 * 1786 * Map a set of i/o coherent buffers described by scatterlist in streaming 1787 * mode for DMA. The scatter gather list elements are merged together (if 1788 * possible) and tagged with the appropriate dma address and length. They are 1789 * obtained via sg_dma_{address,length}. 1790 */ 1791 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1792 int nents, enum dma_data_direction dir, unsigned long attrs) 1793 { 1794 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1795 } 1796 1797 /** 1798 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1799 * @dev: valid struct device pointer 1800 * @sg: list of buffers 1801 * @nents: number of buffers to map 1802 * @dir: DMA transfer direction 1803 * 1804 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1805 * The scatter gather list elements are merged together (if possible) and 1806 * tagged with the appropriate dma address and length. They are obtained via 1807 * sg_dma_{address,length}. 1808 */ 1809 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1810 int nents, enum dma_data_direction dir, unsigned long attrs) 1811 { 1812 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1813 } 1814 1815 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1816 int nents, enum dma_data_direction dir, 1817 unsigned long attrs, bool is_coherent) 1818 { 1819 struct scatterlist *s; 1820 int i; 1821 1822 for_each_sg(sg, s, nents, i) { 1823 if (sg_dma_len(s)) 1824 __iommu_remove_mapping(dev, sg_dma_address(s), 1825 sg_dma_len(s)); 1826 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1827 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1828 s->length, dir); 1829 } 1830 } 1831 1832 /** 1833 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1834 * @dev: valid struct device pointer 1835 * @sg: list of buffers 1836 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1837 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1838 * 1839 * Unmap a set of streaming mode DMA translations. Again, CPU access 1840 * rules concerning calls here are the same as for dma_unmap_single(). 1841 */ 1842 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1843 int nents, enum dma_data_direction dir, 1844 unsigned long attrs) 1845 { 1846 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1847 } 1848 1849 /** 1850 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1851 * @dev: valid struct device pointer 1852 * @sg: list of buffers 1853 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1854 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1855 * 1856 * Unmap a set of streaming mode DMA translations. Again, CPU access 1857 * rules concerning calls here are the same as for dma_unmap_single(). 1858 */ 1859 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1860 enum dma_data_direction dir, 1861 unsigned long attrs) 1862 { 1863 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1864 } 1865 1866 /** 1867 * arm_iommu_sync_sg_for_cpu 1868 * @dev: valid struct device pointer 1869 * @sg: list of buffers 1870 * @nents: number of buffers to map (returned from dma_map_sg) 1871 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1872 */ 1873 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1874 int nents, enum dma_data_direction dir) 1875 { 1876 struct scatterlist *s; 1877 int i; 1878 1879 for_each_sg(sg, s, nents, i) 1880 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1881 1882 } 1883 1884 /** 1885 * arm_iommu_sync_sg_for_device 1886 * @dev: valid struct device pointer 1887 * @sg: list of buffers 1888 * @nents: number of buffers to map (returned from dma_map_sg) 1889 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1890 */ 1891 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1892 int nents, enum dma_data_direction dir) 1893 { 1894 struct scatterlist *s; 1895 int i; 1896 1897 for_each_sg(sg, s, nents, i) 1898 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1899 } 1900 1901 1902 /** 1903 * arm_coherent_iommu_map_page 1904 * @dev: valid struct device pointer 1905 * @page: page that buffer resides in 1906 * @offset: offset into page for start of buffer 1907 * @size: size of buffer to map 1908 * @dir: DMA transfer direction 1909 * 1910 * Coherent IOMMU aware version of arm_dma_map_page() 1911 */ 1912 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1913 unsigned long offset, size_t size, enum dma_data_direction dir, 1914 unsigned long attrs) 1915 { 1916 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1917 dma_addr_t dma_addr; 1918 int ret, prot, len = PAGE_ALIGN(size + offset); 1919 1920 dma_addr = __alloc_iova(mapping, len); 1921 if (dma_addr == ARM_MAPPING_ERROR) 1922 return dma_addr; 1923 1924 prot = __dma_info_to_prot(dir, attrs); 1925 1926 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1927 if (ret < 0) 1928 goto fail; 1929 1930 return dma_addr + offset; 1931 fail: 1932 __free_iova(mapping, dma_addr, len); 1933 return ARM_MAPPING_ERROR; 1934 } 1935 1936 /** 1937 * arm_iommu_map_page 1938 * @dev: valid struct device pointer 1939 * @page: page that buffer resides in 1940 * @offset: offset into page for start of buffer 1941 * @size: size of buffer to map 1942 * @dir: DMA transfer direction 1943 * 1944 * IOMMU aware version of arm_dma_map_page() 1945 */ 1946 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1947 unsigned long offset, size_t size, enum dma_data_direction dir, 1948 unsigned long attrs) 1949 { 1950 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1951 __dma_page_cpu_to_dev(page, offset, size, dir); 1952 1953 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1954 } 1955 1956 /** 1957 * arm_coherent_iommu_unmap_page 1958 * @dev: valid struct device pointer 1959 * @handle: DMA address of buffer 1960 * @size: size of buffer (same as passed to dma_map_page) 1961 * @dir: DMA transfer direction (same as passed to dma_map_page) 1962 * 1963 * Coherent IOMMU aware version of arm_dma_unmap_page() 1964 */ 1965 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1966 size_t size, enum dma_data_direction dir, unsigned long attrs) 1967 { 1968 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1969 dma_addr_t iova = handle & PAGE_MASK; 1970 int offset = handle & ~PAGE_MASK; 1971 int len = PAGE_ALIGN(size + offset); 1972 1973 if (!iova) 1974 return; 1975 1976 iommu_unmap(mapping->domain, iova, len); 1977 __free_iova(mapping, iova, len); 1978 } 1979 1980 /** 1981 * arm_iommu_unmap_page 1982 * @dev: valid struct device pointer 1983 * @handle: DMA address of buffer 1984 * @size: size of buffer (same as passed to dma_map_page) 1985 * @dir: DMA transfer direction (same as passed to dma_map_page) 1986 * 1987 * IOMMU aware version of arm_dma_unmap_page() 1988 */ 1989 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1990 size_t size, enum dma_data_direction dir, unsigned long attrs) 1991 { 1992 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1993 dma_addr_t iova = handle & PAGE_MASK; 1994 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1995 int offset = handle & ~PAGE_MASK; 1996 int len = PAGE_ALIGN(size + offset); 1997 1998 if (!iova) 1999 return; 2000 2001 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 2002 __dma_page_dev_to_cpu(page, offset, size, dir); 2003 2004 iommu_unmap(mapping->domain, iova, len); 2005 __free_iova(mapping, iova, len); 2006 } 2007 2008 /** 2009 * arm_iommu_map_resource - map a device resource for DMA 2010 * @dev: valid struct device pointer 2011 * @phys_addr: physical address of resource 2012 * @size: size of resource to map 2013 * @dir: DMA transfer direction 2014 */ 2015 static dma_addr_t arm_iommu_map_resource(struct device *dev, 2016 phys_addr_t phys_addr, size_t size, 2017 enum dma_data_direction dir, unsigned long attrs) 2018 { 2019 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2020 dma_addr_t dma_addr; 2021 int ret, prot; 2022 phys_addr_t addr = phys_addr & PAGE_MASK; 2023 unsigned int offset = phys_addr & ~PAGE_MASK; 2024 size_t len = PAGE_ALIGN(size + offset); 2025 2026 dma_addr = __alloc_iova(mapping, len); 2027 if (dma_addr == ARM_MAPPING_ERROR) 2028 return dma_addr; 2029 2030 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2031 2032 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2033 if (ret < 0) 2034 goto fail; 2035 2036 return dma_addr + offset; 2037 fail: 2038 __free_iova(mapping, dma_addr, len); 2039 return ARM_MAPPING_ERROR; 2040 } 2041 2042 /** 2043 * arm_iommu_unmap_resource - unmap a device DMA resource 2044 * @dev: valid struct device pointer 2045 * @dma_handle: DMA address to resource 2046 * @size: size of resource to map 2047 * @dir: DMA transfer direction 2048 */ 2049 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2050 size_t size, enum dma_data_direction dir, 2051 unsigned long attrs) 2052 { 2053 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2054 dma_addr_t iova = dma_handle & PAGE_MASK; 2055 unsigned int offset = dma_handle & ~PAGE_MASK; 2056 size_t len = PAGE_ALIGN(size + offset); 2057 2058 if (!iova) 2059 return; 2060 2061 iommu_unmap(mapping->domain, iova, len); 2062 __free_iova(mapping, iova, len); 2063 } 2064 2065 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2066 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2067 { 2068 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2069 dma_addr_t iova = handle & PAGE_MASK; 2070 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2071 unsigned int offset = handle & ~PAGE_MASK; 2072 2073 if (!iova) 2074 return; 2075 2076 __dma_page_dev_to_cpu(page, offset, size, dir); 2077 } 2078 2079 static void arm_iommu_sync_single_for_device(struct device *dev, 2080 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2081 { 2082 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2083 dma_addr_t iova = handle & PAGE_MASK; 2084 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2085 unsigned int offset = handle & ~PAGE_MASK; 2086 2087 if (!iova) 2088 return; 2089 2090 __dma_page_cpu_to_dev(page, offset, size, dir); 2091 } 2092 2093 const struct dma_map_ops iommu_ops = { 2094 .alloc = arm_iommu_alloc_attrs, 2095 .free = arm_iommu_free_attrs, 2096 .mmap = arm_iommu_mmap_attrs, 2097 .get_sgtable = arm_iommu_get_sgtable, 2098 2099 .map_page = arm_iommu_map_page, 2100 .unmap_page = arm_iommu_unmap_page, 2101 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2102 .sync_single_for_device = arm_iommu_sync_single_for_device, 2103 2104 .map_sg = arm_iommu_map_sg, 2105 .unmap_sg = arm_iommu_unmap_sg, 2106 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2107 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2108 2109 .map_resource = arm_iommu_map_resource, 2110 .unmap_resource = arm_iommu_unmap_resource, 2111 2112 .mapping_error = arm_dma_mapping_error, 2113 .dma_supported = arm_dma_supported, 2114 }; 2115 2116 const struct dma_map_ops iommu_coherent_ops = { 2117 .alloc = arm_coherent_iommu_alloc_attrs, 2118 .free = arm_coherent_iommu_free_attrs, 2119 .mmap = arm_coherent_iommu_mmap_attrs, 2120 .get_sgtable = arm_iommu_get_sgtable, 2121 2122 .map_page = arm_coherent_iommu_map_page, 2123 .unmap_page = arm_coherent_iommu_unmap_page, 2124 2125 .map_sg = arm_coherent_iommu_map_sg, 2126 .unmap_sg = arm_coherent_iommu_unmap_sg, 2127 2128 .map_resource = arm_iommu_map_resource, 2129 .unmap_resource = arm_iommu_unmap_resource, 2130 2131 .mapping_error = arm_dma_mapping_error, 2132 .dma_supported = arm_dma_supported, 2133 }; 2134 2135 /** 2136 * arm_iommu_create_mapping 2137 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2138 * @base: start address of the valid IO address space 2139 * @size: maximum size of the valid IO address space 2140 * 2141 * Creates a mapping structure which holds information about used/unused 2142 * IO address ranges, which is required to perform memory allocation and 2143 * mapping with IOMMU aware functions. 2144 * 2145 * The client device need to be attached to the mapping with 2146 * arm_iommu_attach_device function. 2147 */ 2148 struct dma_iommu_mapping * 2149 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2150 { 2151 unsigned int bits = size >> PAGE_SHIFT; 2152 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2153 struct dma_iommu_mapping *mapping; 2154 int extensions = 1; 2155 int err = -ENOMEM; 2156 2157 /* currently only 32-bit DMA address space is supported */ 2158 if (size > DMA_BIT_MASK(32) + 1) 2159 return ERR_PTR(-ERANGE); 2160 2161 if (!bitmap_size) 2162 return ERR_PTR(-EINVAL); 2163 2164 if (bitmap_size > PAGE_SIZE) { 2165 extensions = bitmap_size / PAGE_SIZE; 2166 bitmap_size = PAGE_SIZE; 2167 } 2168 2169 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2170 if (!mapping) 2171 goto err; 2172 2173 mapping->bitmap_size = bitmap_size; 2174 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 2175 GFP_KERNEL); 2176 if (!mapping->bitmaps) 2177 goto err2; 2178 2179 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2180 if (!mapping->bitmaps[0]) 2181 goto err3; 2182 2183 mapping->nr_bitmaps = 1; 2184 mapping->extensions = extensions; 2185 mapping->base = base; 2186 mapping->bits = BITS_PER_BYTE * bitmap_size; 2187 2188 spin_lock_init(&mapping->lock); 2189 2190 mapping->domain = iommu_domain_alloc(bus); 2191 if (!mapping->domain) 2192 goto err4; 2193 2194 kref_init(&mapping->kref); 2195 return mapping; 2196 err4: 2197 kfree(mapping->bitmaps[0]); 2198 err3: 2199 kfree(mapping->bitmaps); 2200 err2: 2201 kfree(mapping); 2202 err: 2203 return ERR_PTR(err); 2204 } 2205 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2206 2207 static void release_iommu_mapping(struct kref *kref) 2208 { 2209 int i; 2210 struct dma_iommu_mapping *mapping = 2211 container_of(kref, struct dma_iommu_mapping, kref); 2212 2213 iommu_domain_free(mapping->domain); 2214 for (i = 0; i < mapping->nr_bitmaps; i++) 2215 kfree(mapping->bitmaps[i]); 2216 kfree(mapping->bitmaps); 2217 kfree(mapping); 2218 } 2219 2220 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2221 { 2222 int next_bitmap; 2223 2224 if (mapping->nr_bitmaps >= mapping->extensions) 2225 return -EINVAL; 2226 2227 next_bitmap = mapping->nr_bitmaps; 2228 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2229 GFP_ATOMIC); 2230 if (!mapping->bitmaps[next_bitmap]) 2231 return -ENOMEM; 2232 2233 mapping->nr_bitmaps++; 2234 2235 return 0; 2236 } 2237 2238 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2239 { 2240 if (mapping) 2241 kref_put(&mapping->kref, release_iommu_mapping); 2242 } 2243 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2244 2245 static int __arm_iommu_attach_device(struct device *dev, 2246 struct dma_iommu_mapping *mapping) 2247 { 2248 int err; 2249 2250 err = iommu_attach_device(mapping->domain, dev); 2251 if (err) 2252 return err; 2253 2254 kref_get(&mapping->kref); 2255 to_dma_iommu_mapping(dev) = mapping; 2256 2257 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2258 return 0; 2259 } 2260 2261 /** 2262 * arm_iommu_attach_device 2263 * @dev: valid struct device pointer 2264 * @mapping: io address space mapping structure (returned from 2265 * arm_iommu_create_mapping) 2266 * 2267 * Attaches specified io address space mapping to the provided device. 2268 * This replaces the dma operations (dma_map_ops pointer) with the 2269 * IOMMU aware version. 2270 * 2271 * More than one client might be attached to the same io address space 2272 * mapping. 2273 */ 2274 int arm_iommu_attach_device(struct device *dev, 2275 struct dma_iommu_mapping *mapping) 2276 { 2277 int err; 2278 2279 err = __arm_iommu_attach_device(dev, mapping); 2280 if (err) 2281 return err; 2282 2283 set_dma_ops(dev, &iommu_ops); 2284 return 0; 2285 } 2286 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2287 2288 /** 2289 * arm_iommu_detach_device 2290 * @dev: valid struct device pointer 2291 * 2292 * Detaches the provided device from a previously attached map. 2293 * This voids the dma operations (dma_map_ops pointer) 2294 */ 2295 void arm_iommu_detach_device(struct device *dev) 2296 { 2297 struct dma_iommu_mapping *mapping; 2298 2299 mapping = to_dma_iommu_mapping(dev); 2300 if (!mapping) { 2301 dev_warn(dev, "Not attached\n"); 2302 return; 2303 } 2304 2305 iommu_detach_device(mapping->domain, dev); 2306 kref_put(&mapping->kref, release_iommu_mapping); 2307 to_dma_iommu_mapping(dev) = NULL; 2308 set_dma_ops(dev, NULL); 2309 2310 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2311 } 2312 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2313 2314 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2315 { 2316 return coherent ? &iommu_coherent_ops : &iommu_ops; 2317 } 2318 2319 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2320 const struct iommu_ops *iommu) 2321 { 2322 struct dma_iommu_mapping *mapping; 2323 2324 if (!iommu) 2325 return false; 2326 2327 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2328 if (IS_ERR(mapping)) { 2329 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2330 size, dev_name(dev)); 2331 return false; 2332 } 2333 2334 if (__arm_iommu_attach_device(dev, mapping)) { 2335 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2336 dev_name(dev)); 2337 arm_iommu_release_mapping(mapping); 2338 return false; 2339 } 2340 2341 return true; 2342 } 2343 2344 static void arm_teardown_iommu_dma_ops(struct device *dev) 2345 { 2346 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2347 2348 if (!mapping) 2349 return; 2350 2351 arm_iommu_detach_device(dev); 2352 arm_iommu_release_mapping(mapping); 2353 } 2354 2355 #else 2356 2357 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2358 const struct iommu_ops *iommu) 2359 { 2360 return false; 2361 } 2362 2363 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2364 2365 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2366 2367 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2368 2369 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2370 { 2371 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2372 } 2373 2374 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2375 const struct iommu_ops *iommu, bool coherent) 2376 { 2377 const struct dma_map_ops *dma_ops; 2378 2379 dev->archdata.dma_coherent = coherent; 2380 2381 /* 2382 * Don't override the dma_ops if they have already been set. Ideally 2383 * this should be the only location where dma_ops are set, remove this 2384 * check when all other callers of set_dma_ops will have disappeared. 2385 */ 2386 if (dev->dma_ops) 2387 return; 2388 2389 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2390 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2391 else 2392 dma_ops = arm_get_dma_map_ops(coherent); 2393 2394 set_dma_ops(dev, dma_ops); 2395 2396 #ifdef CONFIG_XEN 2397 if (xen_initial_domain()) { 2398 dev->archdata.dev_dma_ops = dev->dma_ops; 2399 dev->dma_ops = xen_dma_ops; 2400 } 2401 #endif 2402 dev->archdata.dma_ops_setup = true; 2403 } 2404 2405 void arch_teardown_dma_ops(struct device *dev) 2406 { 2407 if (!dev->archdata.dma_ops_setup) 2408 return; 2409 2410 arm_teardown_iommu_dma_ops(dev); 2411 } 2412