xref: /linux/arch/arm/mm/dma-mapping.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 	     unsigned long offset, size_t size, enum dma_data_direction dir,
83 	     struct dma_attrs *attrs)
84 {
85 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87 
88 /**
89  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91  * @handle: DMA address of buffer
92  * @size: size of buffer (same as passed to dma_map_page)
93  * @dir: DMA transfer direction (same as passed to dma_map_page)
94  *
95  * Unmap a page streaming mode DMA translation.  The handle and size
96  * must match what was provided in the previous dma_map_page() call.
97  * All other usages are undefined.
98  *
99  * After this call, reads by the CPU to the buffer are guaranteed to see
100  * whatever the device wrote there.
101  */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 		size_t size, enum dma_data_direction dir,
104 		struct dma_attrs *attrs)
105 {
106 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 				      handle & ~PAGE_MASK, size, dir);
109 }
110 
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 	unsigned int offset = handle & (PAGE_SIZE - 1);
115 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 	__dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118 
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 	unsigned int offset = handle & (PAGE_SIZE - 1);
123 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 	__dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126 
127 struct dma_map_ops arm_dma_ops = {
128 	.alloc			= arm_dma_alloc,
129 	.free			= arm_dma_free,
130 	.mmap			= arm_dma_mmap,
131 	.get_sgtable		= arm_dma_get_sgtable,
132 	.map_page		= arm_dma_map_page,
133 	.unmap_page		= arm_dma_unmap_page,
134 	.map_sg			= arm_dma_map_sg,
135 	.unmap_sg		= arm_dma_unmap_sg,
136 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
137 	.sync_single_for_device	= arm_dma_sync_single_for_device,
138 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
139 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
140 	.set_dma_mask		= arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143 
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 				  dma_addr_t handle, struct dma_attrs *attrs);
148 
149 struct dma_map_ops arm_coherent_dma_ops = {
150 	.alloc			= arm_coherent_dma_alloc,
151 	.free			= arm_coherent_dma_free,
152 	.mmap			= arm_dma_mmap,
153 	.get_sgtable		= arm_dma_get_sgtable,
154 	.map_page		= arm_coherent_dma_map_page,
155 	.map_sg			= arm_dma_map_sg,
156 	.set_dma_mask		= arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159 
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 	u64 mask = (u64)arm_dma_limit;
163 
164 	if (dev) {
165 		mask = dev->coherent_dma_mask;
166 
167 		/*
168 		 * Sanity check the DMA mask - it must be non-zero, and
169 		 * must be able to be satisfied by a DMA allocation.
170 		 */
171 		if (mask == 0) {
172 			dev_warn(dev, "coherent DMA mask is unset\n");
173 			return 0;
174 		}
175 
176 		if ((~mask) & (u64)arm_dma_limit) {
177 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 				 "than system GFP_DMA mask %#llx\n",
179 				 mask, (u64)arm_dma_limit);
180 			return 0;
181 		}
182 	}
183 
184 	return mask;
185 }
186 
187 static void __dma_clear_buffer(struct page *page, size_t size)
188 {
189 	void *ptr;
190 	/*
191 	 * Ensure that the allocated pages are zeroed, and that any data
192 	 * lurking in the kernel direct-mapped region is invalidated.
193 	 */
194 	ptr = page_address(page);
195 	if (ptr) {
196 		memset(ptr, 0, size);
197 		dmac_flush_range(ptr, ptr + size);
198 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
199 	}
200 }
201 
202 /*
203  * Allocate a DMA buffer for 'dev' of size 'size' using the
204  * specified gfp mask.  Note that 'size' must be page aligned.
205  */
206 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
207 {
208 	unsigned long order = get_order(size);
209 	struct page *page, *p, *e;
210 
211 	page = alloc_pages(gfp, order);
212 	if (!page)
213 		return NULL;
214 
215 	/*
216 	 * Now split the huge page and free the excess pages
217 	 */
218 	split_page(page, order);
219 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
220 		__free_page(p);
221 
222 	__dma_clear_buffer(page, size);
223 
224 	return page;
225 }
226 
227 /*
228  * Free a DMA buffer.  'size' must be page aligned.
229  */
230 static void __dma_free_buffer(struct page *page, size_t size)
231 {
232 	struct page *e = page + (size >> PAGE_SHIFT);
233 
234 	while (page < e) {
235 		__free_page(page);
236 		page++;
237 	}
238 }
239 
240 #ifdef CONFIG_MMU
241 #ifdef CONFIG_HUGETLB_PAGE
242 #error ARM Coherent DMA allocator does not (yet) support huge TLB
243 #endif
244 
245 static void *__alloc_from_contiguous(struct device *dev, size_t size,
246 				     pgprot_t prot, struct page **ret_page);
247 
248 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
249 				 pgprot_t prot, struct page **ret_page,
250 				 const void *caller);
251 
252 static void *
253 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
254 	const void *caller)
255 {
256 	struct vm_struct *area;
257 	unsigned long addr;
258 
259 	/*
260 	 * DMA allocation can be mapped to user space, so lets
261 	 * set VM_USERMAP flags too.
262 	 */
263 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
264 				  caller);
265 	if (!area)
266 		return NULL;
267 	addr = (unsigned long)area->addr;
268 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
269 
270 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
271 		vunmap((void *)addr);
272 		return NULL;
273 	}
274 	return (void *)addr;
275 }
276 
277 static void __dma_free_remap(void *cpu_addr, size_t size)
278 {
279 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
280 	struct vm_struct *area = find_vm_area(cpu_addr);
281 	if (!area || (area->flags & flags) != flags) {
282 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
283 		return;
284 	}
285 	unmap_kernel_range((unsigned long)cpu_addr, size);
286 	vunmap(cpu_addr);
287 }
288 
289 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
290 
291 struct dma_pool {
292 	size_t size;
293 	spinlock_t lock;
294 	unsigned long *bitmap;
295 	unsigned long nr_pages;
296 	void *vaddr;
297 	struct page **pages;
298 };
299 
300 static struct dma_pool atomic_pool = {
301 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
302 };
303 
304 static int __init early_coherent_pool(char *p)
305 {
306 	atomic_pool.size = memparse(p, &p);
307 	return 0;
308 }
309 early_param("coherent_pool", early_coherent_pool);
310 
311 void __init init_dma_coherent_pool_size(unsigned long size)
312 {
313 	/*
314 	 * Catch any attempt to set the pool size too late.
315 	 */
316 	BUG_ON(atomic_pool.vaddr);
317 
318 	/*
319 	 * Set architecture specific coherent pool size only if
320 	 * it has not been changed by kernel command line parameter.
321 	 */
322 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
323 		atomic_pool.size = size;
324 }
325 
326 /*
327  * Initialise the coherent pool for atomic allocations.
328  */
329 static int __init atomic_pool_init(void)
330 {
331 	struct dma_pool *pool = &atomic_pool;
332 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
333 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
334 	unsigned long *bitmap;
335 	struct page *page;
336 	struct page **pages;
337 	void *ptr;
338 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
339 
340 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
341 	if (!bitmap)
342 		goto no_bitmap;
343 
344 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
345 	if (!pages)
346 		goto no_pages;
347 
348 	if (IS_ENABLED(CONFIG_CMA))
349 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
350 	else
351 		ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
352 					   &page, NULL);
353 	if (ptr) {
354 		int i;
355 
356 		for (i = 0; i < nr_pages; i++)
357 			pages[i] = page + i;
358 
359 		spin_lock_init(&pool->lock);
360 		pool->vaddr = ptr;
361 		pool->pages = pages;
362 		pool->bitmap = bitmap;
363 		pool->nr_pages = nr_pages;
364 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
365 		       (unsigned)pool->size / 1024);
366 		return 0;
367 	}
368 
369 	kfree(pages);
370 no_pages:
371 	kfree(bitmap);
372 no_bitmap:
373 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
374 	       (unsigned)pool->size / 1024);
375 	return -ENOMEM;
376 }
377 /*
378  * CMA is activated by core_initcall, so we must be called after it.
379  */
380 postcore_initcall(atomic_pool_init);
381 
382 struct dma_contig_early_reserve {
383 	phys_addr_t base;
384 	unsigned long size;
385 };
386 
387 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
388 
389 static int dma_mmu_remap_num __initdata;
390 
391 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
392 {
393 	dma_mmu_remap[dma_mmu_remap_num].base = base;
394 	dma_mmu_remap[dma_mmu_remap_num].size = size;
395 	dma_mmu_remap_num++;
396 }
397 
398 void __init dma_contiguous_remap(void)
399 {
400 	int i;
401 	for (i = 0; i < dma_mmu_remap_num; i++) {
402 		phys_addr_t start = dma_mmu_remap[i].base;
403 		phys_addr_t end = start + dma_mmu_remap[i].size;
404 		struct map_desc map;
405 		unsigned long addr;
406 
407 		if (end > arm_lowmem_limit)
408 			end = arm_lowmem_limit;
409 		if (start >= end)
410 			continue;
411 
412 		map.pfn = __phys_to_pfn(start);
413 		map.virtual = __phys_to_virt(start);
414 		map.length = end - start;
415 		map.type = MT_MEMORY_DMA_READY;
416 
417 		/*
418 		 * Clear previous low-memory mapping
419 		 */
420 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
421 		     addr += PMD_SIZE)
422 			pmd_clear(pmd_off_k(addr));
423 
424 		iotable_init(&map, 1);
425 	}
426 }
427 
428 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
429 			    void *data)
430 {
431 	struct page *page = virt_to_page(addr);
432 	pgprot_t prot = *(pgprot_t *)data;
433 
434 	set_pte_ext(pte, mk_pte(page, prot), 0);
435 	return 0;
436 }
437 
438 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
439 {
440 	unsigned long start = (unsigned long) page_address(page);
441 	unsigned end = start + size;
442 
443 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
444 	dsb();
445 	flush_tlb_kernel_range(start, end);
446 }
447 
448 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
449 				 pgprot_t prot, struct page **ret_page,
450 				 const void *caller)
451 {
452 	struct page *page;
453 	void *ptr;
454 	page = __dma_alloc_buffer(dev, size, gfp);
455 	if (!page)
456 		return NULL;
457 
458 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
459 	if (!ptr) {
460 		__dma_free_buffer(page, size);
461 		return NULL;
462 	}
463 
464 	*ret_page = page;
465 	return ptr;
466 }
467 
468 static void *__alloc_from_pool(size_t size, struct page **ret_page)
469 {
470 	struct dma_pool *pool = &atomic_pool;
471 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
472 	unsigned int pageno;
473 	unsigned long flags;
474 	void *ptr = NULL;
475 	unsigned long align_mask;
476 
477 	if (!pool->vaddr) {
478 		WARN(1, "coherent pool not initialised!\n");
479 		return NULL;
480 	}
481 
482 	/*
483 	 * Align the region allocation - allocations from pool are rather
484 	 * small, so align them to their order in pages, minimum is a page
485 	 * size. This helps reduce fragmentation of the DMA space.
486 	 */
487 	align_mask = (1 << get_order(size)) - 1;
488 
489 	spin_lock_irqsave(&pool->lock, flags);
490 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
491 					    0, count, align_mask);
492 	if (pageno < pool->nr_pages) {
493 		bitmap_set(pool->bitmap, pageno, count);
494 		ptr = pool->vaddr + PAGE_SIZE * pageno;
495 		*ret_page = pool->pages[pageno];
496 	} else {
497 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
498 			    "Please increase it with coherent_pool= kernel parameter!\n",
499 			    (unsigned)pool->size / 1024);
500 	}
501 	spin_unlock_irqrestore(&pool->lock, flags);
502 
503 	return ptr;
504 }
505 
506 static bool __in_atomic_pool(void *start, size_t size)
507 {
508 	struct dma_pool *pool = &atomic_pool;
509 	void *end = start + size;
510 	void *pool_start = pool->vaddr;
511 	void *pool_end = pool->vaddr + pool->size;
512 
513 	if (start < pool_start || start >= pool_end)
514 		return false;
515 
516 	if (end <= pool_end)
517 		return true;
518 
519 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
520 	     start, end - 1, pool_start, pool_end - 1);
521 
522 	return false;
523 }
524 
525 static int __free_from_pool(void *start, size_t size)
526 {
527 	struct dma_pool *pool = &atomic_pool;
528 	unsigned long pageno, count;
529 	unsigned long flags;
530 
531 	if (!__in_atomic_pool(start, size))
532 		return 0;
533 
534 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
535 	count = size >> PAGE_SHIFT;
536 
537 	spin_lock_irqsave(&pool->lock, flags);
538 	bitmap_clear(pool->bitmap, pageno, count);
539 	spin_unlock_irqrestore(&pool->lock, flags);
540 
541 	return 1;
542 }
543 
544 static void *__alloc_from_contiguous(struct device *dev, size_t size,
545 				     pgprot_t prot, struct page **ret_page)
546 {
547 	unsigned long order = get_order(size);
548 	size_t count = size >> PAGE_SHIFT;
549 	struct page *page;
550 
551 	page = dma_alloc_from_contiguous(dev, count, order);
552 	if (!page)
553 		return NULL;
554 
555 	__dma_clear_buffer(page, size);
556 	__dma_remap(page, size, prot);
557 
558 	*ret_page = page;
559 	return page_address(page);
560 }
561 
562 static void __free_from_contiguous(struct device *dev, struct page *page,
563 				   size_t size)
564 {
565 	__dma_remap(page, size, pgprot_kernel);
566 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
567 }
568 
569 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
570 {
571 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
572 			    pgprot_writecombine(prot) :
573 			    pgprot_dmacoherent(prot);
574 	return prot;
575 }
576 
577 #define nommu() 0
578 
579 #else	/* !CONFIG_MMU */
580 
581 #define nommu() 1
582 
583 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
584 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
585 #define __alloc_from_pool(size, ret_page)			NULL
586 #define __alloc_from_contiguous(dev, size, prot, ret)		NULL
587 #define __free_from_pool(cpu_addr, size)			0
588 #define __free_from_contiguous(dev, page, size)			do { } while (0)
589 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
590 
591 #endif	/* CONFIG_MMU */
592 
593 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
594 				   struct page **ret_page)
595 {
596 	struct page *page;
597 	page = __dma_alloc_buffer(dev, size, gfp);
598 	if (!page)
599 		return NULL;
600 
601 	*ret_page = page;
602 	return page_address(page);
603 }
604 
605 
606 
607 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
608 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
609 {
610 	u64 mask = get_coherent_dma_mask(dev);
611 	struct page *page = NULL;
612 	void *addr;
613 
614 #ifdef CONFIG_DMA_API_DEBUG
615 	u64 limit = (mask + 1) & ~mask;
616 	if (limit && size >= limit) {
617 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
618 			size, mask);
619 		return NULL;
620 	}
621 #endif
622 
623 	if (!mask)
624 		return NULL;
625 
626 	if (mask < 0xffffffffULL)
627 		gfp |= GFP_DMA;
628 
629 	/*
630 	 * Following is a work-around (a.k.a. hack) to prevent pages
631 	 * with __GFP_COMP being passed to split_page() which cannot
632 	 * handle them.  The real problem is that this flag probably
633 	 * should be 0 on ARM as it is not supported on this
634 	 * platform; see CONFIG_HUGETLBFS.
635 	 */
636 	gfp &= ~(__GFP_COMP);
637 
638 	*handle = DMA_ERROR_CODE;
639 	size = PAGE_ALIGN(size);
640 
641 	if (is_coherent || nommu())
642 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
643 	else if (gfp & GFP_ATOMIC)
644 		addr = __alloc_from_pool(size, &page);
645 	else if (!IS_ENABLED(CONFIG_CMA))
646 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
647 	else
648 		addr = __alloc_from_contiguous(dev, size, prot, &page);
649 
650 	if (addr)
651 		*handle = pfn_to_dma(dev, page_to_pfn(page));
652 
653 	return addr;
654 }
655 
656 /*
657  * Allocate DMA-coherent memory space and return both the kernel remapped
658  * virtual and bus address for that space.
659  */
660 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
661 		    gfp_t gfp, struct dma_attrs *attrs)
662 {
663 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
664 	void *memory;
665 
666 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
667 		return memory;
668 
669 	return __dma_alloc(dev, size, handle, gfp, prot, false,
670 			   __builtin_return_address(0));
671 }
672 
673 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
674 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
675 {
676 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
677 	void *memory;
678 
679 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
680 		return memory;
681 
682 	return __dma_alloc(dev, size, handle, gfp, prot, true,
683 			   __builtin_return_address(0));
684 }
685 
686 /*
687  * Create userspace mapping for the DMA-coherent memory.
688  */
689 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
690 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
691 		 struct dma_attrs *attrs)
692 {
693 	int ret = -ENXIO;
694 #ifdef CONFIG_MMU
695 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
696 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
697 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
698 	unsigned long off = vma->vm_pgoff;
699 
700 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
701 
702 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
703 		return ret;
704 
705 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
706 		ret = remap_pfn_range(vma, vma->vm_start,
707 				      pfn + off,
708 				      vma->vm_end - vma->vm_start,
709 				      vma->vm_page_prot);
710 	}
711 #endif	/* CONFIG_MMU */
712 
713 	return ret;
714 }
715 
716 /*
717  * Free a buffer as defined by the above mapping.
718  */
719 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
720 			   dma_addr_t handle, struct dma_attrs *attrs,
721 			   bool is_coherent)
722 {
723 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
724 
725 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
726 		return;
727 
728 	size = PAGE_ALIGN(size);
729 
730 	if (is_coherent || nommu()) {
731 		__dma_free_buffer(page, size);
732 	} else if (__free_from_pool(cpu_addr, size)) {
733 		return;
734 	} else if (!IS_ENABLED(CONFIG_CMA)) {
735 		__dma_free_remap(cpu_addr, size);
736 		__dma_free_buffer(page, size);
737 	} else {
738 		/*
739 		 * Non-atomic allocations cannot be freed with IRQs disabled
740 		 */
741 		WARN_ON(irqs_disabled());
742 		__free_from_contiguous(dev, page, size);
743 	}
744 }
745 
746 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 		  dma_addr_t handle, struct dma_attrs *attrs)
748 {
749 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
750 }
751 
752 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
753 				  dma_addr_t handle, struct dma_attrs *attrs)
754 {
755 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
756 }
757 
758 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
759 		 void *cpu_addr, dma_addr_t handle, size_t size,
760 		 struct dma_attrs *attrs)
761 {
762 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
763 	int ret;
764 
765 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
766 	if (unlikely(ret))
767 		return ret;
768 
769 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
770 	return 0;
771 }
772 
773 static void dma_cache_maint_page(struct page *page, unsigned long offset,
774 	size_t size, enum dma_data_direction dir,
775 	void (*op)(const void *, size_t, int))
776 {
777 	/*
778 	 * A single sg entry may refer to multiple physically contiguous
779 	 * pages.  But we still need to process highmem pages individually.
780 	 * If highmem is not configured then the bulk of this loop gets
781 	 * optimized out.
782 	 */
783 	size_t left = size;
784 	do {
785 		size_t len = left;
786 		void *vaddr;
787 
788 		if (PageHighMem(page)) {
789 			if (len + offset > PAGE_SIZE) {
790 				if (offset >= PAGE_SIZE) {
791 					page += offset / PAGE_SIZE;
792 					offset %= PAGE_SIZE;
793 				}
794 				len = PAGE_SIZE - offset;
795 			}
796 			vaddr = kmap_high_get(page);
797 			if (vaddr) {
798 				vaddr += offset;
799 				op(vaddr, len, dir);
800 				kunmap_high(page);
801 			} else if (cache_is_vipt()) {
802 				/* unmapped pages might still be cached */
803 				vaddr = kmap_atomic(page);
804 				op(vaddr + offset, len, dir);
805 				kunmap_atomic(vaddr);
806 			}
807 		} else {
808 			vaddr = page_address(page) + offset;
809 			op(vaddr, len, dir);
810 		}
811 		offset = 0;
812 		page++;
813 		left -= len;
814 	} while (left);
815 }
816 
817 /*
818  * Make an area consistent for devices.
819  * Note: Drivers should NOT use this function directly, as it will break
820  * platforms with CONFIG_DMABOUNCE.
821  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
822  */
823 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
824 	size_t size, enum dma_data_direction dir)
825 {
826 	unsigned long paddr;
827 
828 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
829 
830 	paddr = page_to_phys(page) + off;
831 	if (dir == DMA_FROM_DEVICE) {
832 		outer_inv_range(paddr, paddr + size);
833 	} else {
834 		outer_clean_range(paddr, paddr + size);
835 	}
836 	/* FIXME: non-speculating: flush on bidirectional mappings? */
837 }
838 
839 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
840 	size_t size, enum dma_data_direction dir)
841 {
842 	unsigned long paddr = page_to_phys(page) + off;
843 
844 	/* FIXME: non-speculating: not required */
845 	/* don't bother invalidating if DMA to device */
846 	if (dir != DMA_TO_DEVICE)
847 		outer_inv_range(paddr, paddr + size);
848 
849 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
850 
851 	/*
852 	 * Mark the D-cache clean for this page to avoid extra flushing.
853 	 */
854 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
855 		set_bit(PG_dcache_clean, &page->flags);
856 }
857 
858 /**
859  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
860  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
861  * @sg: list of buffers
862  * @nents: number of buffers to map
863  * @dir: DMA transfer direction
864  *
865  * Map a set of buffers described by scatterlist in streaming mode for DMA.
866  * This is the scatter-gather version of the dma_map_single interface.
867  * Here the scatter gather list elements are each tagged with the
868  * appropriate dma address and length.  They are obtained via
869  * sg_dma_{address,length}.
870  *
871  * Device ownership issues as mentioned for dma_map_single are the same
872  * here.
873  */
874 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
875 		enum dma_data_direction dir, struct dma_attrs *attrs)
876 {
877 	struct dma_map_ops *ops = get_dma_ops(dev);
878 	struct scatterlist *s;
879 	int i, j;
880 
881 	for_each_sg(sg, s, nents, i) {
882 #ifdef CONFIG_NEED_SG_DMA_LENGTH
883 		s->dma_length = s->length;
884 #endif
885 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
886 						s->length, dir, attrs);
887 		if (dma_mapping_error(dev, s->dma_address))
888 			goto bad_mapping;
889 	}
890 	return nents;
891 
892  bad_mapping:
893 	for_each_sg(sg, s, i, j)
894 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
895 	return 0;
896 }
897 
898 /**
899  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
900  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
901  * @sg: list of buffers
902  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
903  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
904  *
905  * Unmap a set of streaming mode DMA translations.  Again, CPU access
906  * rules concerning calls here are the same as for dma_unmap_single().
907  */
908 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
909 		enum dma_data_direction dir, struct dma_attrs *attrs)
910 {
911 	struct dma_map_ops *ops = get_dma_ops(dev);
912 	struct scatterlist *s;
913 
914 	int i;
915 
916 	for_each_sg(sg, s, nents, i)
917 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
918 }
919 
920 /**
921  * arm_dma_sync_sg_for_cpu
922  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
923  * @sg: list of buffers
924  * @nents: number of buffers to map (returned from dma_map_sg)
925  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
926  */
927 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
928 			int nents, enum dma_data_direction dir)
929 {
930 	struct dma_map_ops *ops = get_dma_ops(dev);
931 	struct scatterlist *s;
932 	int i;
933 
934 	for_each_sg(sg, s, nents, i)
935 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
936 					 dir);
937 }
938 
939 /**
940  * arm_dma_sync_sg_for_device
941  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
942  * @sg: list of buffers
943  * @nents: number of buffers to map (returned from dma_map_sg)
944  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
945  */
946 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
947 			int nents, enum dma_data_direction dir)
948 {
949 	struct dma_map_ops *ops = get_dma_ops(dev);
950 	struct scatterlist *s;
951 	int i;
952 
953 	for_each_sg(sg, s, nents, i)
954 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
955 					    dir);
956 }
957 
958 /*
959  * Return whether the given device DMA address mask can be supported
960  * properly.  For example, if your device can only drive the low 24-bits
961  * during bus mastering, then you would pass 0x00ffffff as the mask
962  * to this function.
963  */
964 int dma_supported(struct device *dev, u64 mask)
965 {
966 	if (mask < (u64)arm_dma_limit)
967 		return 0;
968 	return 1;
969 }
970 EXPORT_SYMBOL(dma_supported);
971 
972 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
973 {
974 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
975 		return -EIO;
976 
977 	*dev->dma_mask = dma_mask;
978 
979 	return 0;
980 }
981 
982 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
983 
984 static int __init dma_debug_do_init(void)
985 {
986 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
987 	return 0;
988 }
989 fs_initcall(dma_debug_do_init);
990 
991 #ifdef CONFIG_ARM_DMA_USE_IOMMU
992 
993 /* IOMMU */
994 
995 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
996 				      size_t size)
997 {
998 	unsigned int order = get_order(size);
999 	unsigned int align = 0;
1000 	unsigned int count, start;
1001 	unsigned long flags;
1002 
1003 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1004 		 (1 << mapping->order) - 1) >> mapping->order;
1005 
1006 	if (order > mapping->order)
1007 		align = (1 << (order - mapping->order)) - 1;
1008 
1009 	spin_lock_irqsave(&mapping->lock, flags);
1010 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1011 					   count, align);
1012 	if (start > mapping->bits) {
1013 		spin_unlock_irqrestore(&mapping->lock, flags);
1014 		return DMA_ERROR_CODE;
1015 	}
1016 
1017 	bitmap_set(mapping->bitmap, start, count);
1018 	spin_unlock_irqrestore(&mapping->lock, flags);
1019 
1020 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1021 }
1022 
1023 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1024 			       dma_addr_t addr, size_t size)
1025 {
1026 	unsigned int start = (addr - mapping->base) >>
1027 			     (mapping->order + PAGE_SHIFT);
1028 	unsigned int count = ((size >> PAGE_SHIFT) +
1029 			      (1 << mapping->order) - 1) >> mapping->order;
1030 	unsigned long flags;
1031 
1032 	spin_lock_irqsave(&mapping->lock, flags);
1033 	bitmap_clear(mapping->bitmap, start, count);
1034 	spin_unlock_irqrestore(&mapping->lock, flags);
1035 }
1036 
1037 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1038 					  gfp_t gfp, struct dma_attrs *attrs)
1039 {
1040 	struct page **pages;
1041 	int count = size >> PAGE_SHIFT;
1042 	int array_size = count * sizeof(struct page *);
1043 	int i = 0;
1044 
1045 	if (array_size <= PAGE_SIZE)
1046 		pages = kzalloc(array_size, gfp);
1047 	else
1048 		pages = vzalloc(array_size);
1049 	if (!pages)
1050 		return NULL;
1051 
1052 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1053 	{
1054 		unsigned long order = get_order(size);
1055 		struct page *page;
1056 
1057 		page = dma_alloc_from_contiguous(dev, count, order);
1058 		if (!page)
1059 			goto error;
1060 
1061 		__dma_clear_buffer(page, size);
1062 
1063 		for (i = 0; i < count; i++)
1064 			pages[i] = page + i;
1065 
1066 		return pages;
1067 	}
1068 
1069 	while (count) {
1070 		int j, order = __fls(count);
1071 
1072 		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1073 		while (!pages[i] && order)
1074 			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1075 		if (!pages[i])
1076 			goto error;
1077 
1078 		if (order) {
1079 			split_page(pages[i], order);
1080 			j = 1 << order;
1081 			while (--j)
1082 				pages[i + j] = pages[i] + j;
1083 		}
1084 
1085 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1086 		i += 1 << order;
1087 		count -= 1 << order;
1088 	}
1089 
1090 	return pages;
1091 error:
1092 	while (i--)
1093 		if (pages[i])
1094 			__free_pages(pages[i], 0);
1095 	if (array_size <= PAGE_SIZE)
1096 		kfree(pages);
1097 	else
1098 		vfree(pages);
1099 	return NULL;
1100 }
1101 
1102 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1103 			       size_t size, struct dma_attrs *attrs)
1104 {
1105 	int count = size >> PAGE_SHIFT;
1106 	int array_size = count * sizeof(struct page *);
1107 	int i;
1108 
1109 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1110 		dma_release_from_contiguous(dev, pages[0], count);
1111 	} else {
1112 		for (i = 0; i < count; i++)
1113 			if (pages[i])
1114 				__free_pages(pages[i], 0);
1115 	}
1116 
1117 	if (array_size <= PAGE_SIZE)
1118 		kfree(pages);
1119 	else
1120 		vfree(pages);
1121 	return 0;
1122 }
1123 
1124 /*
1125  * Create a CPU mapping for a specified pages
1126  */
1127 static void *
1128 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1129 		    const void *caller)
1130 {
1131 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1132 	struct vm_struct *area;
1133 	unsigned long p;
1134 
1135 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1136 				  caller);
1137 	if (!area)
1138 		return NULL;
1139 
1140 	area->pages = pages;
1141 	area->nr_pages = nr_pages;
1142 	p = (unsigned long)area->addr;
1143 
1144 	for (i = 0; i < nr_pages; i++) {
1145 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1146 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1147 			goto err;
1148 		p += PAGE_SIZE;
1149 	}
1150 	return area->addr;
1151 err:
1152 	unmap_kernel_range((unsigned long)area->addr, size);
1153 	vunmap(area->addr);
1154 	return NULL;
1155 }
1156 
1157 /*
1158  * Create a mapping in device IO address space for specified pages
1159  */
1160 static dma_addr_t
1161 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1162 {
1163 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1164 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1165 	dma_addr_t dma_addr, iova;
1166 	int i, ret = DMA_ERROR_CODE;
1167 
1168 	dma_addr = __alloc_iova(mapping, size);
1169 	if (dma_addr == DMA_ERROR_CODE)
1170 		return dma_addr;
1171 
1172 	iova = dma_addr;
1173 	for (i = 0; i < count; ) {
1174 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1175 		phys_addr_t phys = page_to_phys(pages[i]);
1176 		unsigned int len, j;
1177 
1178 		for (j = i + 1; j < count; j++, next_pfn++)
1179 			if (page_to_pfn(pages[j]) != next_pfn)
1180 				break;
1181 
1182 		len = (j - i) << PAGE_SHIFT;
1183 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1184 		if (ret < 0)
1185 			goto fail;
1186 		iova += len;
1187 		i = j;
1188 	}
1189 	return dma_addr;
1190 fail:
1191 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1192 	__free_iova(mapping, dma_addr, size);
1193 	return DMA_ERROR_CODE;
1194 }
1195 
1196 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1197 {
1198 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1199 
1200 	/*
1201 	 * add optional in-page offset from iova to size and align
1202 	 * result to page size
1203 	 */
1204 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1205 	iova &= PAGE_MASK;
1206 
1207 	iommu_unmap(mapping->domain, iova, size);
1208 	__free_iova(mapping, iova, size);
1209 	return 0;
1210 }
1211 
1212 static struct page **__atomic_get_pages(void *addr)
1213 {
1214 	struct dma_pool *pool = &atomic_pool;
1215 	struct page **pages = pool->pages;
1216 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1217 
1218 	return pages + offs;
1219 }
1220 
1221 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1222 {
1223 	struct vm_struct *area;
1224 
1225 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1226 		return __atomic_get_pages(cpu_addr);
1227 
1228 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1229 		return cpu_addr;
1230 
1231 	area = find_vm_area(cpu_addr);
1232 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1233 		return area->pages;
1234 	return NULL;
1235 }
1236 
1237 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1238 				  dma_addr_t *handle)
1239 {
1240 	struct page *page;
1241 	void *addr;
1242 
1243 	addr = __alloc_from_pool(size, &page);
1244 	if (!addr)
1245 		return NULL;
1246 
1247 	*handle = __iommu_create_mapping(dev, &page, size);
1248 	if (*handle == DMA_ERROR_CODE)
1249 		goto err_mapping;
1250 
1251 	return addr;
1252 
1253 err_mapping:
1254 	__free_from_pool(addr, size);
1255 	return NULL;
1256 }
1257 
1258 static void __iommu_free_atomic(struct device *dev, struct page **pages,
1259 				dma_addr_t handle, size_t size)
1260 {
1261 	__iommu_remove_mapping(dev, handle, size);
1262 	__free_from_pool(page_address(pages[0]), size);
1263 }
1264 
1265 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1266 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1267 {
1268 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1269 	struct page **pages;
1270 	void *addr = NULL;
1271 
1272 	*handle = DMA_ERROR_CODE;
1273 	size = PAGE_ALIGN(size);
1274 
1275 	if (gfp & GFP_ATOMIC)
1276 		return __iommu_alloc_atomic(dev, size, handle);
1277 
1278 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1279 	if (!pages)
1280 		return NULL;
1281 
1282 	*handle = __iommu_create_mapping(dev, pages, size);
1283 	if (*handle == DMA_ERROR_CODE)
1284 		goto err_buffer;
1285 
1286 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1287 		return pages;
1288 
1289 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1290 				   __builtin_return_address(0));
1291 	if (!addr)
1292 		goto err_mapping;
1293 
1294 	return addr;
1295 
1296 err_mapping:
1297 	__iommu_remove_mapping(dev, *handle, size);
1298 err_buffer:
1299 	__iommu_free_buffer(dev, pages, size, attrs);
1300 	return NULL;
1301 }
1302 
1303 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1304 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1305 		    struct dma_attrs *attrs)
1306 {
1307 	unsigned long uaddr = vma->vm_start;
1308 	unsigned long usize = vma->vm_end - vma->vm_start;
1309 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1310 
1311 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1312 
1313 	if (!pages)
1314 		return -ENXIO;
1315 
1316 	do {
1317 		int ret = vm_insert_page(vma, uaddr, *pages++);
1318 		if (ret) {
1319 			pr_err("Remapping memory failed: %d\n", ret);
1320 			return ret;
1321 		}
1322 		uaddr += PAGE_SIZE;
1323 		usize -= PAGE_SIZE;
1324 	} while (usize > 0);
1325 
1326 	return 0;
1327 }
1328 
1329 /*
1330  * free a page as defined by the above mapping.
1331  * Must not be called with IRQs disabled.
1332  */
1333 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1334 			  dma_addr_t handle, struct dma_attrs *attrs)
1335 {
1336 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1337 	size = PAGE_ALIGN(size);
1338 
1339 	if (!pages) {
1340 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1341 		return;
1342 	}
1343 
1344 	if (__in_atomic_pool(cpu_addr, size)) {
1345 		__iommu_free_atomic(dev, pages, handle, size);
1346 		return;
1347 	}
1348 
1349 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1350 		unmap_kernel_range((unsigned long)cpu_addr, size);
1351 		vunmap(cpu_addr);
1352 	}
1353 
1354 	__iommu_remove_mapping(dev, handle, size);
1355 	__iommu_free_buffer(dev, pages, size, attrs);
1356 }
1357 
1358 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1359 				 void *cpu_addr, dma_addr_t dma_addr,
1360 				 size_t size, struct dma_attrs *attrs)
1361 {
1362 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1363 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1364 
1365 	if (!pages)
1366 		return -ENXIO;
1367 
1368 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1369 					 GFP_KERNEL);
1370 }
1371 
1372 /*
1373  * Map a part of the scatter-gather list into contiguous io address space
1374  */
1375 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1376 			  size_t size, dma_addr_t *handle,
1377 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1378 			  bool is_coherent)
1379 {
1380 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1381 	dma_addr_t iova, iova_base;
1382 	int ret = 0;
1383 	unsigned int count;
1384 	struct scatterlist *s;
1385 
1386 	size = PAGE_ALIGN(size);
1387 	*handle = DMA_ERROR_CODE;
1388 
1389 	iova_base = iova = __alloc_iova(mapping, size);
1390 	if (iova == DMA_ERROR_CODE)
1391 		return -ENOMEM;
1392 
1393 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1394 		phys_addr_t phys = page_to_phys(sg_page(s));
1395 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1396 
1397 		if (!is_coherent &&
1398 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1399 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1400 
1401 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1402 		if (ret < 0)
1403 			goto fail;
1404 		count += len >> PAGE_SHIFT;
1405 		iova += len;
1406 	}
1407 	*handle = iova_base;
1408 
1409 	return 0;
1410 fail:
1411 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1412 	__free_iova(mapping, iova_base, size);
1413 	return ret;
1414 }
1415 
1416 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1417 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1418 		     bool is_coherent)
1419 {
1420 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1421 	int i, count = 0;
1422 	unsigned int offset = s->offset;
1423 	unsigned int size = s->offset + s->length;
1424 	unsigned int max = dma_get_max_seg_size(dev);
1425 
1426 	for (i = 1; i < nents; i++) {
1427 		s = sg_next(s);
1428 
1429 		s->dma_address = DMA_ERROR_CODE;
1430 		s->dma_length = 0;
1431 
1432 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1433 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1434 			    dir, attrs, is_coherent) < 0)
1435 				goto bad_mapping;
1436 
1437 			dma->dma_address += offset;
1438 			dma->dma_length = size - offset;
1439 
1440 			size = offset = s->offset;
1441 			start = s;
1442 			dma = sg_next(dma);
1443 			count += 1;
1444 		}
1445 		size += s->length;
1446 	}
1447 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1448 		is_coherent) < 0)
1449 		goto bad_mapping;
1450 
1451 	dma->dma_address += offset;
1452 	dma->dma_length = size - offset;
1453 
1454 	return count+1;
1455 
1456 bad_mapping:
1457 	for_each_sg(sg, s, count, i)
1458 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1459 	return 0;
1460 }
1461 
1462 /**
1463  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1464  * @dev: valid struct device pointer
1465  * @sg: list of buffers
1466  * @nents: number of buffers to map
1467  * @dir: DMA transfer direction
1468  *
1469  * Map a set of i/o coherent buffers described by scatterlist in streaming
1470  * mode for DMA. The scatter gather list elements are merged together (if
1471  * possible) and tagged with the appropriate dma address and length. They are
1472  * obtained via sg_dma_{address,length}.
1473  */
1474 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1475 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1476 {
1477 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1478 }
1479 
1480 /**
1481  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1482  * @dev: valid struct device pointer
1483  * @sg: list of buffers
1484  * @nents: number of buffers to map
1485  * @dir: DMA transfer direction
1486  *
1487  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1488  * The scatter gather list elements are merged together (if possible) and
1489  * tagged with the appropriate dma address and length. They are obtained via
1490  * sg_dma_{address,length}.
1491  */
1492 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1493 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1494 {
1495 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1496 }
1497 
1498 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1499 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1500 		bool is_coherent)
1501 {
1502 	struct scatterlist *s;
1503 	int i;
1504 
1505 	for_each_sg(sg, s, nents, i) {
1506 		if (sg_dma_len(s))
1507 			__iommu_remove_mapping(dev, sg_dma_address(s),
1508 					       sg_dma_len(s));
1509 		if (!is_coherent &&
1510 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1511 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1512 					      s->length, dir);
1513 	}
1514 }
1515 
1516 /**
1517  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1518  * @dev: valid struct device pointer
1519  * @sg: list of buffers
1520  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1521  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1522  *
1523  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1524  * rules concerning calls here are the same as for dma_unmap_single().
1525  */
1526 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1527 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1528 {
1529 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1530 }
1531 
1532 /**
1533  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1534  * @dev: valid struct device pointer
1535  * @sg: list of buffers
1536  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1537  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1538  *
1539  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1540  * rules concerning calls here are the same as for dma_unmap_single().
1541  */
1542 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1543 			enum dma_data_direction dir, struct dma_attrs *attrs)
1544 {
1545 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1546 }
1547 
1548 /**
1549  * arm_iommu_sync_sg_for_cpu
1550  * @dev: valid struct device pointer
1551  * @sg: list of buffers
1552  * @nents: number of buffers to map (returned from dma_map_sg)
1553  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1554  */
1555 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1556 			int nents, enum dma_data_direction dir)
1557 {
1558 	struct scatterlist *s;
1559 	int i;
1560 
1561 	for_each_sg(sg, s, nents, i)
1562 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1563 
1564 }
1565 
1566 /**
1567  * arm_iommu_sync_sg_for_device
1568  * @dev: valid struct device pointer
1569  * @sg: list of buffers
1570  * @nents: number of buffers to map (returned from dma_map_sg)
1571  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1572  */
1573 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1574 			int nents, enum dma_data_direction dir)
1575 {
1576 	struct scatterlist *s;
1577 	int i;
1578 
1579 	for_each_sg(sg, s, nents, i)
1580 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1581 }
1582 
1583 
1584 /**
1585  * arm_coherent_iommu_map_page
1586  * @dev: valid struct device pointer
1587  * @page: page that buffer resides in
1588  * @offset: offset into page for start of buffer
1589  * @size: size of buffer to map
1590  * @dir: DMA transfer direction
1591  *
1592  * Coherent IOMMU aware version of arm_dma_map_page()
1593  */
1594 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1595 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1596 	     struct dma_attrs *attrs)
1597 {
1598 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1599 	dma_addr_t dma_addr;
1600 	int ret, len = PAGE_ALIGN(size + offset);
1601 
1602 	dma_addr = __alloc_iova(mapping, len);
1603 	if (dma_addr == DMA_ERROR_CODE)
1604 		return dma_addr;
1605 
1606 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1607 	if (ret < 0)
1608 		goto fail;
1609 
1610 	return dma_addr + offset;
1611 fail:
1612 	__free_iova(mapping, dma_addr, len);
1613 	return DMA_ERROR_CODE;
1614 }
1615 
1616 /**
1617  * arm_iommu_map_page
1618  * @dev: valid struct device pointer
1619  * @page: page that buffer resides in
1620  * @offset: offset into page for start of buffer
1621  * @size: size of buffer to map
1622  * @dir: DMA transfer direction
1623  *
1624  * IOMMU aware version of arm_dma_map_page()
1625  */
1626 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1627 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1628 	     struct dma_attrs *attrs)
1629 {
1630 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1631 		__dma_page_cpu_to_dev(page, offset, size, dir);
1632 
1633 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1634 }
1635 
1636 /**
1637  * arm_coherent_iommu_unmap_page
1638  * @dev: valid struct device pointer
1639  * @handle: DMA address of buffer
1640  * @size: size of buffer (same as passed to dma_map_page)
1641  * @dir: DMA transfer direction (same as passed to dma_map_page)
1642  *
1643  * Coherent IOMMU aware version of arm_dma_unmap_page()
1644  */
1645 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1646 		size_t size, enum dma_data_direction dir,
1647 		struct dma_attrs *attrs)
1648 {
1649 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1650 	dma_addr_t iova = handle & PAGE_MASK;
1651 	int offset = handle & ~PAGE_MASK;
1652 	int len = PAGE_ALIGN(size + offset);
1653 
1654 	if (!iova)
1655 		return;
1656 
1657 	iommu_unmap(mapping->domain, iova, len);
1658 	__free_iova(mapping, iova, len);
1659 }
1660 
1661 /**
1662  * arm_iommu_unmap_page
1663  * @dev: valid struct device pointer
1664  * @handle: DMA address of buffer
1665  * @size: size of buffer (same as passed to dma_map_page)
1666  * @dir: DMA transfer direction (same as passed to dma_map_page)
1667  *
1668  * IOMMU aware version of arm_dma_unmap_page()
1669  */
1670 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1671 		size_t size, enum dma_data_direction dir,
1672 		struct dma_attrs *attrs)
1673 {
1674 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1675 	dma_addr_t iova = handle & PAGE_MASK;
1676 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1677 	int offset = handle & ~PAGE_MASK;
1678 	int len = PAGE_ALIGN(size + offset);
1679 
1680 	if (!iova)
1681 		return;
1682 
1683 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1684 		__dma_page_dev_to_cpu(page, offset, size, dir);
1685 
1686 	iommu_unmap(mapping->domain, iova, len);
1687 	__free_iova(mapping, iova, len);
1688 }
1689 
1690 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1691 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1692 {
1693 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1694 	dma_addr_t iova = handle & PAGE_MASK;
1695 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1696 	unsigned int offset = handle & ~PAGE_MASK;
1697 
1698 	if (!iova)
1699 		return;
1700 
1701 	__dma_page_dev_to_cpu(page, offset, size, dir);
1702 }
1703 
1704 static void arm_iommu_sync_single_for_device(struct device *dev,
1705 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1706 {
1707 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1708 	dma_addr_t iova = handle & PAGE_MASK;
1709 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1710 	unsigned int offset = handle & ~PAGE_MASK;
1711 
1712 	if (!iova)
1713 		return;
1714 
1715 	__dma_page_cpu_to_dev(page, offset, size, dir);
1716 }
1717 
1718 struct dma_map_ops iommu_ops = {
1719 	.alloc		= arm_iommu_alloc_attrs,
1720 	.free		= arm_iommu_free_attrs,
1721 	.mmap		= arm_iommu_mmap_attrs,
1722 	.get_sgtable	= arm_iommu_get_sgtable,
1723 
1724 	.map_page		= arm_iommu_map_page,
1725 	.unmap_page		= arm_iommu_unmap_page,
1726 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1727 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1728 
1729 	.map_sg			= arm_iommu_map_sg,
1730 	.unmap_sg		= arm_iommu_unmap_sg,
1731 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1732 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1733 };
1734 
1735 struct dma_map_ops iommu_coherent_ops = {
1736 	.alloc		= arm_iommu_alloc_attrs,
1737 	.free		= arm_iommu_free_attrs,
1738 	.mmap		= arm_iommu_mmap_attrs,
1739 	.get_sgtable	= arm_iommu_get_sgtable,
1740 
1741 	.map_page	= arm_coherent_iommu_map_page,
1742 	.unmap_page	= arm_coherent_iommu_unmap_page,
1743 
1744 	.map_sg		= arm_coherent_iommu_map_sg,
1745 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1746 };
1747 
1748 /**
1749  * arm_iommu_create_mapping
1750  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1751  * @base: start address of the valid IO address space
1752  * @size: size of the valid IO address space
1753  * @order: accuracy of the IO addresses allocations
1754  *
1755  * Creates a mapping structure which holds information about used/unused
1756  * IO address ranges, which is required to perform memory allocation and
1757  * mapping with IOMMU aware functions.
1758  *
1759  * The client device need to be attached to the mapping with
1760  * arm_iommu_attach_device function.
1761  */
1762 struct dma_iommu_mapping *
1763 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1764 			 int order)
1765 {
1766 	unsigned int count = size >> (PAGE_SHIFT + order);
1767 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1768 	struct dma_iommu_mapping *mapping;
1769 	int err = -ENOMEM;
1770 
1771 	if (!count)
1772 		return ERR_PTR(-EINVAL);
1773 
1774 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1775 	if (!mapping)
1776 		goto err;
1777 
1778 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1779 	if (!mapping->bitmap)
1780 		goto err2;
1781 
1782 	mapping->base = base;
1783 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1784 	mapping->order = order;
1785 	spin_lock_init(&mapping->lock);
1786 
1787 	mapping->domain = iommu_domain_alloc(bus);
1788 	if (!mapping->domain)
1789 		goto err3;
1790 
1791 	kref_init(&mapping->kref);
1792 	return mapping;
1793 err3:
1794 	kfree(mapping->bitmap);
1795 err2:
1796 	kfree(mapping);
1797 err:
1798 	return ERR_PTR(err);
1799 }
1800 
1801 static void release_iommu_mapping(struct kref *kref)
1802 {
1803 	struct dma_iommu_mapping *mapping =
1804 		container_of(kref, struct dma_iommu_mapping, kref);
1805 
1806 	iommu_domain_free(mapping->domain);
1807 	kfree(mapping->bitmap);
1808 	kfree(mapping);
1809 }
1810 
1811 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1812 {
1813 	if (mapping)
1814 		kref_put(&mapping->kref, release_iommu_mapping);
1815 }
1816 
1817 /**
1818  * arm_iommu_attach_device
1819  * @dev: valid struct device pointer
1820  * @mapping: io address space mapping structure (returned from
1821  *	arm_iommu_create_mapping)
1822  *
1823  * Attaches specified io address space mapping to the provided device,
1824  * this replaces the dma operations (dma_map_ops pointer) with the
1825  * IOMMU aware version. More than one client might be attached to
1826  * the same io address space mapping.
1827  */
1828 int arm_iommu_attach_device(struct device *dev,
1829 			    struct dma_iommu_mapping *mapping)
1830 {
1831 	int err;
1832 
1833 	err = iommu_attach_device(mapping->domain, dev);
1834 	if (err)
1835 		return err;
1836 
1837 	kref_get(&mapping->kref);
1838 	dev->archdata.mapping = mapping;
1839 	set_dma_ops(dev, &iommu_ops);
1840 
1841 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1842 	return 0;
1843 }
1844 
1845 #endif
1846