1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dma-contiguous.h> 21 #include <linux/highmem.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/iommu.h> 25 #include <linux/io.h> 26 #include <linux/vmalloc.h> 27 #include <linux/sizes.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "mm.h" 40 41 /* 42 * The DMA API is built upon the notion of "buffer ownership". A buffer 43 * is either exclusively owned by the CPU (and therefore may be accessed 44 * by it) or exclusively owned by the DMA device. These helper functions 45 * represent the transitions between these two ownership states. 46 * 47 * Note, however, that on later ARMs, this notion does not work due to 48 * speculative prefetches. We model our approach on the assumption that 49 * the CPU does do speculative prefetches, which means we clean caches 50 * before transfers and delay cache invalidation until transfer completion. 51 * 52 */ 53 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 54 size_t, enum dma_data_direction); 55 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 56 size_t, enum dma_data_direction); 57 58 /** 59 * arm_dma_map_page - map a portion of a page for streaming DMA 60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 61 * @page: page that buffer resides in 62 * @offset: offset into page for start of buffer 63 * @size: size of buffer to map 64 * @dir: DMA transfer direction 65 * 66 * Ensure that any data held in the cache is appropriately discarded 67 * or written back. 68 * 69 * The device owns this memory once this call has completed. The CPU 70 * can regain ownership by calling dma_unmap_page(). 71 */ 72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 73 unsigned long offset, size_t size, enum dma_data_direction dir, 74 struct dma_attrs *attrs) 75 { 76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 77 __dma_page_cpu_to_dev(page, offset, size, dir); 78 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 79 } 80 81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 82 unsigned long offset, size_t size, enum dma_data_direction dir, 83 struct dma_attrs *attrs) 84 { 85 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 86 } 87 88 /** 89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 91 * @handle: DMA address of buffer 92 * @size: size of buffer (same as passed to dma_map_page) 93 * @dir: DMA transfer direction (same as passed to dma_map_page) 94 * 95 * Unmap a page streaming mode DMA translation. The handle and size 96 * must match what was provided in the previous dma_map_page() call. 97 * All other usages are undefined. 98 * 99 * After this call, reads by the CPU to the buffer are guaranteed to see 100 * whatever the device wrote there. 101 */ 102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 103 size_t size, enum dma_data_direction dir, 104 struct dma_attrs *attrs) 105 { 106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 108 handle & ~PAGE_MASK, size, dir); 109 } 110 111 static void arm_dma_sync_single_for_cpu(struct device *dev, 112 dma_addr_t handle, size_t size, enum dma_data_direction dir) 113 { 114 unsigned int offset = handle & (PAGE_SIZE - 1); 115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 116 __dma_page_dev_to_cpu(page, offset, size, dir); 117 } 118 119 static void arm_dma_sync_single_for_device(struct device *dev, 120 dma_addr_t handle, size_t size, enum dma_data_direction dir) 121 { 122 unsigned int offset = handle & (PAGE_SIZE - 1); 123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 124 __dma_page_cpu_to_dev(page, offset, size, dir); 125 } 126 127 struct dma_map_ops arm_dma_ops = { 128 .alloc = arm_dma_alloc, 129 .free = arm_dma_free, 130 .mmap = arm_dma_mmap, 131 .get_sgtable = arm_dma_get_sgtable, 132 .map_page = arm_dma_map_page, 133 .unmap_page = arm_dma_unmap_page, 134 .map_sg = arm_dma_map_sg, 135 .unmap_sg = arm_dma_unmap_sg, 136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 137 .sync_single_for_device = arm_dma_sync_single_for_device, 138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 139 .sync_sg_for_device = arm_dma_sync_sg_for_device, 140 .set_dma_mask = arm_dma_set_mask, 141 }; 142 EXPORT_SYMBOL(arm_dma_ops); 143 144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 147 dma_addr_t handle, struct dma_attrs *attrs); 148 149 struct dma_map_ops arm_coherent_dma_ops = { 150 .alloc = arm_coherent_dma_alloc, 151 .free = arm_coherent_dma_free, 152 .mmap = arm_dma_mmap, 153 .get_sgtable = arm_dma_get_sgtable, 154 .map_page = arm_coherent_dma_map_page, 155 .map_sg = arm_dma_map_sg, 156 .set_dma_mask = arm_dma_set_mask, 157 }; 158 EXPORT_SYMBOL(arm_coherent_dma_ops); 159 160 static u64 get_coherent_dma_mask(struct device *dev) 161 { 162 u64 mask = (u64)arm_dma_limit; 163 164 if (dev) { 165 mask = dev->coherent_dma_mask; 166 167 /* 168 * Sanity check the DMA mask - it must be non-zero, and 169 * must be able to be satisfied by a DMA allocation. 170 */ 171 if (mask == 0) { 172 dev_warn(dev, "coherent DMA mask is unset\n"); 173 return 0; 174 } 175 176 if ((~mask) & (u64)arm_dma_limit) { 177 dev_warn(dev, "coherent DMA mask %#llx is smaller " 178 "than system GFP_DMA mask %#llx\n", 179 mask, (u64)arm_dma_limit); 180 return 0; 181 } 182 } 183 184 return mask; 185 } 186 187 static void __dma_clear_buffer(struct page *page, size_t size) 188 { 189 void *ptr; 190 /* 191 * Ensure that the allocated pages are zeroed, and that any data 192 * lurking in the kernel direct-mapped region is invalidated. 193 */ 194 ptr = page_address(page); 195 if (ptr) { 196 memset(ptr, 0, size); 197 dmac_flush_range(ptr, ptr + size); 198 outer_flush_range(__pa(ptr), __pa(ptr) + size); 199 } 200 } 201 202 /* 203 * Allocate a DMA buffer for 'dev' of size 'size' using the 204 * specified gfp mask. Note that 'size' must be page aligned. 205 */ 206 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 207 { 208 unsigned long order = get_order(size); 209 struct page *page, *p, *e; 210 211 page = alloc_pages(gfp, order); 212 if (!page) 213 return NULL; 214 215 /* 216 * Now split the huge page and free the excess pages 217 */ 218 split_page(page, order); 219 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 220 __free_page(p); 221 222 __dma_clear_buffer(page, size); 223 224 return page; 225 } 226 227 /* 228 * Free a DMA buffer. 'size' must be page aligned. 229 */ 230 static void __dma_free_buffer(struct page *page, size_t size) 231 { 232 struct page *e = page + (size >> PAGE_SHIFT); 233 234 while (page < e) { 235 __free_page(page); 236 page++; 237 } 238 } 239 240 #ifdef CONFIG_MMU 241 #ifdef CONFIG_HUGETLB_PAGE 242 #error ARM Coherent DMA allocator does not (yet) support huge TLB 243 #endif 244 245 static void *__alloc_from_contiguous(struct device *dev, size_t size, 246 pgprot_t prot, struct page **ret_page); 247 248 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 249 pgprot_t prot, struct page **ret_page, 250 const void *caller); 251 252 static void * 253 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 254 const void *caller) 255 { 256 struct vm_struct *area; 257 unsigned long addr; 258 259 /* 260 * DMA allocation can be mapped to user space, so lets 261 * set VM_USERMAP flags too. 262 */ 263 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 264 caller); 265 if (!area) 266 return NULL; 267 addr = (unsigned long)area->addr; 268 area->phys_addr = __pfn_to_phys(page_to_pfn(page)); 269 270 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { 271 vunmap((void *)addr); 272 return NULL; 273 } 274 return (void *)addr; 275 } 276 277 static void __dma_free_remap(void *cpu_addr, size_t size) 278 { 279 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; 280 struct vm_struct *area = find_vm_area(cpu_addr); 281 if (!area || (area->flags & flags) != flags) { 282 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 283 return; 284 } 285 unmap_kernel_range((unsigned long)cpu_addr, size); 286 vunmap(cpu_addr); 287 } 288 289 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 290 291 struct dma_pool { 292 size_t size; 293 spinlock_t lock; 294 unsigned long *bitmap; 295 unsigned long nr_pages; 296 void *vaddr; 297 struct page **pages; 298 }; 299 300 static struct dma_pool atomic_pool = { 301 .size = DEFAULT_DMA_COHERENT_POOL_SIZE, 302 }; 303 304 static int __init early_coherent_pool(char *p) 305 { 306 atomic_pool.size = memparse(p, &p); 307 return 0; 308 } 309 early_param("coherent_pool", early_coherent_pool); 310 311 void __init init_dma_coherent_pool_size(unsigned long size) 312 { 313 /* 314 * Catch any attempt to set the pool size too late. 315 */ 316 BUG_ON(atomic_pool.vaddr); 317 318 /* 319 * Set architecture specific coherent pool size only if 320 * it has not been changed by kernel command line parameter. 321 */ 322 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE) 323 atomic_pool.size = size; 324 } 325 326 /* 327 * Initialise the coherent pool for atomic allocations. 328 */ 329 static int __init atomic_pool_init(void) 330 { 331 struct dma_pool *pool = &atomic_pool; 332 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); 333 unsigned long nr_pages = pool->size >> PAGE_SHIFT; 334 unsigned long *bitmap; 335 struct page *page; 336 struct page **pages; 337 void *ptr; 338 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); 339 340 bitmap = kzalloc(bitmap_size, GFP_KERNEL); 341 if (!bitmap) 342 goto no_bitmap; 343 344 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); 345 if (!pages) 346 goto no_pages; 347 348 if (IS_ENABLED(CONFIG_CMA)) 349 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page); 350 else 351 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot, 352 &page, NULL); 353 if (ptr) { 354 int i; 355 356 for (i = 0; i < nr_pages; i++) 357 pages[i] = page + i; 358 359 spin_lock_init(&pool->lock); 360 pool->vaddr = ptr; 361 pool->pages = pages; 362 pool->bitmap = bitmap; 363 pool->nr_pages = nr_pages; 364 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", 365 (unsigned)pool->size / 1024); 366 return 0; 367 } 368 369 kfree(pages); 370 no_pages: 371 kfree(bitmap); 372 no_bitmap: 373 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", 374 (unsigned)pool->size / 1024); 375 return -ENOMEM; 376 } 377 /* 378 * CMA is activated by core_initcall, so we must be called after it. 379 */ 380 postcore_initcall(atomic_pool_init); 381 382 struct dma_contig_early_reserve { 383 phys_addr_t base; 384 unsigned long size; 385 }; 386 387 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 388 389 static int dma_mmu_remap_num __initdata; 390 391 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 392 { 393 dma_mmu_remap[dma_mmu_remap_num].base = base; 394 dma_mmu_remap[dma_mmu_remap_num].size = size; 395 dma_mmu_remap_num++; 396 } 397 398 void __init dma_contiguous_remap(void) 399 { 400 int i; 401 for (i = 0; i < dma_mmu_remap_num; i++) { 402 phys_addr_t start = dma_mmu_remap[i].base; 403 phys_addr_t end = start + dma_mmu_remap[i].size; 404 struct map_desc map; 405 unsigned long addr; 406 407 if (end > arm_lowmem_limit) 408 end = arm_lowmem_limit; 409 if (start >= end) 410 continue; 411 412 map.pfn = __phys_to_pfn(start); 413 map.virtual = __phys_to_virt(start); 414 map.length = end - start; 415 map.type = MT_MEMORY_DMA_READY; 416 417 /* 418 * Clear previous low-memory mapping 419 */ 420 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 421 addr += PMD_SIZE) 422 pmd_clear(pmd_off_k(addr)); 423 424 iotable_init(&map, 1); 425 } 426 } 427 428 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 429 void *data) 430 { 431 struct page *page = virt_to_page(addr); 432 pgprot_t prot = *(pgprot_t *)data; 433 434 set_pte_ext(pte, mk_pte(page, prot), 0); 435 return 0; 436 } 437 438 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 439 { 440 unsigned long start = (unsigned long) page_address(page); 441 unsigned end = start + size; 442 443 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 444 dsb(); 445 flush_tlb_kernel_range(start, end); 446 } 447 448 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 449 pgprot_t prot, struct page **ret_page, 450 const void *caller) 451 { 452 struct page *page; 453 void *ptr; 454 page = __dma_alloc_buffer(dev, size, gfp); 455 if (!page) 456 return NULL; 457 458 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 459 if (!ptr) { 460 __dma_free_buffer(page, size); 461 return NULL; 462 } 463 464 *ret_page = page; 465 return ptr; 466 } 467 468 static void *__alloc_from_pool(size_t size, struct page **ret_page) 469 { 470 struct dma_pool *pool = &atomic_pool; 471 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 472 unsigned int pageno; 473 unsigned long flags; 474 void *ptr = NULL; 475 unsigned long align_mask; 476 477 if (!pool->vaddr) { 478 WARN(1, "coherent pool not initialised!\n"); 479 return NULL; 480 } 481 482 /* 483 * Align the region allocation - allocations from pool are rather 484 * small, so align them to their order in pages, minimum is a page 485 * size. This helps reduce fragmentation of the DMA space. 486 */ 487 align_mask = (1 << get_order(size)) - 1; 488 489 spin_lock_irqsave(&pool->lock, flags); 490 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, 491 0, count, align_mask); 492 if (pageno < pool->nr_pages) { 493 bitmap_set(pool->bitmap, pageno, count); 494 ptr = pool->vaddr + PAGE_SIZE * pageno; 495 *ret_page = pool->pages[pageno]; 496 } else { 497 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n" 498 "Please increase it with coherent_pool= kernel parameter!\n", 499 (unsigned)pool->size / 1024); 500 } 501 spin_unlock_irqrestore(&pool->lock, flags); 502 503 return ptr; 504 } 505 506 static bool __in_atomic_pool(void *start, size_t size) 507 { 508 struct dma_pool *pool = &atomic_pool; 509 void *end = start + size; 510 void *pool_start = pool->vaddr; 511 void *pool_end = pool->vaddr + pool->size; 512 513 if (start < pool_start || start >= pool_end) 514 return false; 515 516 if (end <= pool_end) 517 return true; 518 519 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n", 520 start, end - 1, pool_start, pool_end - 1); 521 522 return false; 523 } 524 525 static int __free_from_pool(void *start, size_t size) 526 { 527 struct dma_pool *pool = &atomic_pool; 528 unsigned long pageno, count; 529 unsigned long flags; 530 531 if (!__in_atomic_pool(start, size)) 532 return 0; 533 534 pageno = (start - pool->vaddr) >> PAGE_SHIFT; 535 count = size >> PAGE_SHIFT; 536 537 spin_lock_irqsave(&pool->lock, flags); 538 bitmap_clear(pool->bitmap, pageno, count); 539 spin_unlock_irqrestore(&pool->lock, flags); 540 541 return 1; 542 } 543 544 static void *__alloc_from_contiguous(struct device *dev, size_t size, 545 pgprot_t prot, struct page **ret_page) 546 { 547 unsigned long order = get_order(size); 548 size_t count = size >> PAGE_SHIFT; 549 struct page *page; 550 551 page = dma_alloc_from_contiguous(dev, count, order); 552 if (!page) 553 return NULL; 554 555 __dma_clear_buffer(page, size); 556 __dma_remap(page, size, prot); 557 558 *ret_page = page; 559 return page_address(page); 560 } 561 562 static void __free_from_contiguous(struct device *dev, struct page *page, 563 size_t size) 564 { 565 __dma_remap(page, size, pgprot_kernel); 566 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 567 } 568 569 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 570 { 571 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 572 pgprot_writecombine(prot) : 573 pgprot_dmacoherent(prot); 574 return prot; 575 } 576 577 #define nommu() 0 578 579 #else /* !CONFIG_MMU */ 580 581 #define nommu() 1 582 583 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 584 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL 585 #define __alloc_from_pool(size, ret_page) NULL 586 #define __alloc_from_contiguous(dev, size, prot, ret) NULL 587 #define __free_from_pool(cpu_addr, size) 0 588 #define __free_from_contiguous(dev, page, size) do { } while (0) 589 #define __dma_free_remap(cpu_addr, size) do { } while (0) 590 591 #endif /* CONFIG_MMU */ 592 593 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 594 struct page **ret_page) 595 { 596 struct page *page; 597 page = __dma_alloc_buffer(dev, size, gfp); 598 if (!page) 599 return NULL; 600 601 *ret_page = page; 602 return page_address(page); 603 } 604 605 606 607 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 608 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller) 609 { 610 u64 mask = get_coherent_dma_mask(dev); 611 struct page *page = NULL; 612 void *addr; 613 614 #ifdef CONFIG_DMA_API_DEBUG 615 u64 limit = (mask + 1) & ~mask; 616 if (limit && size >= limit) { 617 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 618 size, mask); 619 return NULL; 620 } 621 #endif 622 623 if (!mask) 624 return NULL; 625 626 if (mask < 0xffffffffULL) 627 gfp |= GFP_DMA; 628 629 /* 630 * Following is a work-around (a.k.a. hack) to prevent pages 631 * with __GFP_COMP being passed to split_page() which cannot 632 * handle them. The real problem is that this flag probably 633 * should be 0 on ARM as it is not supported on this 634 * platform; see CONFIG_HUGETLBFS. 635 */ 636 gfp &= ~(__GFP_COMP); 637 638 *handle = DMA_ERROR_CODE; 639 size = PAGE_ALIGN(size); 640 641 if (is_coherent || nommu()) 642 addr = __alloc_simple_buffer(dev, size, gfp, &page); 643 else if (gfp & GFP_ATOMIC) 644 addr = __alloc_from_pool(size, &page); 645 else if (!IS_ENABLED(CONFIG_CMA)) 646 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); 647 else 648 addr = __alloc_from_contiguous(dev, size, prot, &page); 649 650 if (addr) 651 *handle = pfn_to_dma(dev, page_to_pfn(page)); 652 653 return addr; 654 } 655 656 /* 657 * Allocate DMA-coherent memory space and return both the kernel remapped 658 * virtual and bus address for that space. 659 */ 660 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 661 gfp_t gfp, struct dma_attrs *attrs) 662 { 663 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 664 void *memory; 665 666 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 667 return memory; 668 669 return __dma_alloc(dev, size, handle, gfp, prot, false, 670 __builtin_return_address(0)); 671 } 672 673 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 674 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 675 { 676 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 677 void *memory; 678 679 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 680 return memory; 681 682 return __dma_alloc(dev, size, handle, gfp, prot, true, 683 __builtin_return_address(0)); 684 } 685 686 /* 687 * Create userspace mapping for the DMA-coherent memory. 688 */ 689 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 690 void *cpu_addr, dma_addr_t dma_addr, size_t size, 691 struct dma_attrs *attrs) 692 { 693 int ret = -ENXIO; 694 #ifdef CONFIG_MMU 695 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 696 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 697 unsigned long pfn = dma_to_pfn(dev, dma_addr); 698 unsigned long off = vma->vm_pgoff; 699 700 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 701 702 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 703 return ret; 704 705 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 706 ret = remap_pfn_range(vma, vma->vm_start, 707 pfn + off, 708 vma->vm_end - vma->vm_start, 709 vma->vm_page_prot); 710 } 711 #endif /* CONFIG_MMU */ 712 713 return ret; 714 } 715 716 /* 717 * Free a buffer as defined by the above mapping. 718 */ 719 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 720 dma_addr_t handle, struct dma_attrs *attrs, 721 bool is_coherent) 722 { 723 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 724 725 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 726 return; 727 728 size = PAGE_ALIGN(size); 729 730 if (is_coherent || nommu()) { 731 __dma_free_buffer(page, size); 732 } else if (__free_from_pool(cpu_addr, size)) { 733 return; 734 } else if (!IS_ENABLED(CONFIG_CMA)) { 735 __dma_free_remap(cpu_addr, size); 736 __dma_free_buffer(page, size); 737 } else { 738 /* 739 * Non-atomic allocations cannot be freed with IRQs disabled 740 */ 741 WARN_ON(irqs_disabled()); 742 __free_from_contiguous(dev, page, size); 743 } 744 } 745 746 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 747 dma_addr_t handle, struct dma_attrs *attrs) 748 { 749 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 750 } 751 752 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 753 dma_addr_t handle, struct dma_attrs *attrs) 754 { 755 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 756 } 757 758 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 759 void *cpu_addr, dma_addr_t handle, size_t size, 760 struct dma_attrs *attrs) 761 { 762 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 763 int ret; 764 765 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 766 if (unlikely(ret)) 767 return ret; 768 769 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 770 return 0; 771 } 772 773 static void dma_cache_maint_page(struct page *page, unsigned long offset, 774 size_t size, enum dma_data_direction dir, 775 void (*op)(const void *, size_t, int)) 776 { 777 /* 778 * A single sg entry may refer to multiple physically contiguous 779 * pages. But we still need to process highmem pages individually. 780 * If highmem is not configured then the bulk of this loop gets 781 * optimized out. 782 */ 783 size_t left = size; 784 do { 785 size_t len = left; 786 void *vaddr; 787 788 if (PageHighMem(page)) { 789 if (len + offset > PAGE_SIZE) { 790 if (offset >= PAGE_SIZE) { 791 page += offset / PAGE_SIZE; 792 offset %= PAGE_SIZE; 793 } 794 len = PAGE_SIZE - offset; 795 } 796 vaddr = kmap_high_get(page); 797 if (vaddr) { 798 vaddr += offset; 799 op(vaddr, len, dir); 800 kunmap_high(page); 801 } else if (cache_is_vipt()) { 802 /* unmapped pages might still be cached */ 803 vaddr = kmap_atomic(page); 804 op(vaddr + offset, len, dir); 805 kunmap_atomic(vaddr); 806 } 807 } else { 808 vaddr = page_address(page) + offset; 809 op(vaddr, len, dir); 810 } 811 offset = 0; 812 page++; 813 left -= len; 814 } while (left); 815 } 816 817 /* 818 * Make an area consistent for devices. 819 * Note: Drivers should NOT use this function directly, as it will break 820 * platforms with CONFIG_DMABOUNCE. 821 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 822 */ 823 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 824 size_t size, enum dma_data_direction dir) 825 { 826 unsigned long paddr; 827 828 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 829 830 paddr = page_to_phys(page) + off; 831 if (dir == DMA_FROM_DEVICE) { 832 outer_inv_range(paddr, paddr + size); 833 } else { 834 outer_clean_range(paddr, paddr + size); 835 } 836 /* FIXME: non-speculating: flush on bidirectional mappings? */ 837 } 838 839 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 840 size_t size, enum dma_data_direction dir) 841 { 842 unsigned long paddr = page_to_phys(page) + off; 843 844 /* FIXME: non-speculating: not required */ 845 /* don't bother invalidating if DMA to device */ 846 if (dir != DMA_TO_DEVICE) 847 outer_inv_range(paddr, paddr + size); 848 849 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 850 851 /* 852 * Mark the D-cache clean for this page to avoid extra flushing. 853 */ 854 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) 855 set_bit(PG_dcache_clean, &page->flags); 856 } 857 858 /** 859 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 860 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 861 * @sg: list of buffers 862 * @nents: number of buffers to map 863 * @dir: DMA transfer direction 864 * 865 * Map a set of buffers described by scatterlist in streaming mode for DMA. 866 * This is the scatter-gather version of the dma_map_single interface. 867 * Here the scatter gather list elements are each tagged with the 868 * appropriate dma address and length. They are obtained via 869 * sg_dma_{address,length}. 870 * 871 * Device ownership issues as mentioned for dma_map_single are the same 872 * here. 873 */ 874 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 875 enum dma_data_direction dir, struct dma_attrs *attrs) 876 { 877 struct dma_map_ops *ops = get_dma_ops(dev); 878 struct scatterlist *s; 879 int i, j; 880 881 for_each_sg(sg, s, nents, i) { 882 #ifdef CONFIG_NEED_SG_DMA_LENGTH 883 s->dma_length = s->length; 884 #endif 885 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 886 s->length, dir, attrs); 887 if (dma_mapping_error(dev, s->dma_address)) 888 goto bad_mapping; 889 } 890 return nents; 891 892 bad_mapping: 893 for_each_sg(sg, s, i, j) 894 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 895 return 0; 896 } 897 898 /** 899 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 900 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 901 * @sg: list of buffers 902 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 903 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 904 * 905 * Unmap a set of streaming mode DMA translations. Again, CPU access 906 * rules concerning calls here are the same as for dma_unmap_single(). 907 */ 908 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 909 enum dma_data_direction dir, struct dma_attrs *attrs) 910 { 911 struct dma_map_ops *ops = get_dma_ops(dev); 912 struct scatterlist *s; 913 914 int i; 915 916 for_each_sg(sg, s, nents, i) 917 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 918 } 919 920 /** 921 * arm_dma_sync_sg_for_cpu 922 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 923 * @sg: list of buffers 924 * @nents: number of buffers to map (returned from dma_map_sg) 925 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 926 */ 927 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 928 int nents, enum dma_data_direction dir) 929 { 930 struct dma_map_ops *ops = get_dma_ops(dev); 931 struct scatterlist *s; 932 int i; 933 934 for_each_sg(sg, s, nents, i) 935 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 936 dir); 937 } 938 939 /** 940 * arm_dma_sync_sg_for_device 941 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 942 * @sg: list of buffers 943 * @nents: number of buffers to map (returned from dma_map_sg) 944 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 945 */ 946 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 947 int nents, enum dma_data_direction dir) 948 { 949 struct dma_map_ops *ops = get_dma_ops(dev); 950 struct scatterlist *s; 951 int i; 952 953 for_each_sg(sg, s, nents, i) 954 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 955 dir); 956 } 957 958 /* 959 * Return whether the given device DMA address mask can be supported 960 * properly. For example, if your device can only drive the low 24-bits 961 * during bus mastering, then you would pass 0x00ffffff as the mask 962 * to this function. 963 */ 964 int dma_supported(struct device *dev, u64 mask) 965 { 966 if (mask < (u64)arm_dma_limit) 967 return 0; 968 return 1; 969 } 970 EXPORT_SYMBOL(dma_supported); 971 972 int arm_dma_set_mask(struct device *dev, u64 dma_mask) 973 { 974 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 975 return -EIO; 976 977 *dev->dma_mask = dma_mask; 978 979 return 0; 980 } 981 982 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 983 984 static int __init dma_debug_do_init(void) 985 { 986 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 987 return 0; 988 } 989 fs_initcall(dma_debug_do_init); 990 991 #ifdef CONFIG_ARM_DMA_USE_IOMMU 992 993 /* IOMMU */ 994 995 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 996 size_t size) 997 { 998 unsigned int order = get_order(size); 999 unsigned int align = 0; 1000 unsigned int count, start; 1001 unsigned long flags; 1002 1003 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + 1004 (1 << mapping->order) - 1) >> mapping->order; 1005 1006 if (order > mapping->order) 1007 align = (1 << (order - mapping->order)) - 1; 1008 1009 spin_lock_irqsave(&mapping->lock, flags); 1010 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, 1011 count, align); 1012 if (start > mapping->bits) { 1013 spin_unlock_irqrestore(&mapping->lock, flags); 1014 return DMA_ERROR_CODE; 1015 } 1016 1017 bitmap_set(mapping->bitmap, start, count); 1018 spin_unlock_irqrestore(&mapping->lock, flags); 1019 1020 return mapping->base + (start << (mapping->order + PAGE_SHIFT)); 1021 } 1022 1023 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1024 dma_addr_t addr, size_t size) 1025 { 1026 unsigned int start = (addr - mapping->base) >> 1027 (mapping->order + PAGE_SHIFT); 1028 unsigned int count = ((size >> PAGE_SHIFT) + 1029 (1 << mapping->order) - 1) >> mapping->order; 1030 unsigned long flags; 1031 1032 spin_lock_irqsave(&mapping->lock, flags); 1033 bitmap_clear(mapping->bitmap, start, count); 1034 spin_unlock_irqrestore(&mapping->lock, flags); 1035 } 1036 1037 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1038 gfp_t gfp, struct dma_attrs *attrs) 1039 { 1040 struct page **pages; 1041 int count = size >> PAGE_SHIFT; 1042 int array_size = count * sizeof(struct page *); 1043 int i = 0; 1044 1045 if (array_size <= PAGE_SIZE) 1046 pages = kzalloc(array_size, gfp); 1047 else 1048 pages = vzalloc(array_size); 1049 if (!pages) 1050 return NULL; 1051 1052 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) 1053 { 1054 unsigned long order = get_order(size); 1055 struct page *page; 1056 1057 page = dma_alloc_from_contiguous(dev, count, order); 1058 if (!page) 1059 goto error; 1060 1061 __dma_clear_buffer(page, size); 1062 1063 for (i = 0; i < count; i++) 1064 pages[i] = page + i; 1065 1066 return pages; 1067 } 1068 1069 while (count) { 1070 int j, order = __fls(count); 1071 1072 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order); 1073 while (!pages[i] && order) 1074 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order); 1075 if (!pages[i]) 1076 goto error; 1077 1078 if (order) { 1079 split_page(pages[i], order); 1080 j = 1 << order; 1081 while (--j) 1082 pages[i + j] = pages[i] + j; 1083 } 1084 1085 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1086 i += 1 << order; 1087 count -= 1 << order; 1088 } 1089 1090 return pages; 1091 error: 1092 while (i--) 1093 if (pages[i]) 1094 __free_pages(pages[i], 0); 1095 if (array_size <= PAGE_SIZE) 1096 kfree(pages); 1097 else 1098 vfree(pages); 1099 return NULL; 1100 } 1101 1102 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1103 size_t size, struct dma_attrs *attrs) 1104 { 1105 int count = size >> PAGE_SHIFT; 1106 int array_size = count * sizeof(struct page *); 1107 int i; 1108 1109 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { 1110 dma_release_from_contiguous(dev, pages[0], count); 1111 } else { 1112 for (i = 0; i < count; i++) 1113 if (pages[i]) 1114 __free_pages(pages[i], 0); 1115 } 1116 1117 if (array_size <= PAGE_SIZE) 1118 kfree(pages); 1119 else 1120 vfree(pages); 1121 return 0; 1122 } 1123 1124 /* 1125 * Create a CPU mapping for a specified pages 1126 */ 1127 static void * 1128 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1129 const void *caller) 1130 { 1131 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1132 struct vm_struct *area; 1133 unsigned long p; 1134 1135 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 1136 caller); 1137 if (!area) 1138 return NULL; 1139 1140 area->pages = pages; 1141 area->nr_pages = nr_pages; 1142 p = (unsigned long)area->addr; 1143 1144 for (i = 0; i < nr_pages; i++) { 1145 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); 1146 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) 1147 goto err; 1148 p += PAGE_SIZE; 1149 } 1150 return area->addr; 1151 err: 1152 unmap_kernel_range((unsigned long)area->addr, size); 1153 vunmap(area->addr); 1154 return NULL; 1155 } 1156 1157 /* 1158 * Create a mapping in device IO address space for specified pages 1159 */ 1160 static dma_addr_t 1161 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1162 { 1163 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1164 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1165 dma_addr_t dma_addr, iova; 1166 int i, ret = DMA_ERROR_CODE; 1167 1168 dma_addr = __alloc_iova(mapping, size); 1169 if (dma_addr == DMA_ERROR_CODE) 1170 return dma_addr; 1171 1172 iova = dma_addr; 1173 for (i = 0; i < count; ) { 1174 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1175 phys_addr_t phys = page_to_phys(pages[i]); 1176 unsigned int len, j; 1177 1178 for (j = i + 1; j < count; j++, next_pfn++) 1179 if (page_to_pfn(pages[j]) != next_pfn) 1180 break; 1181 1182 len = (j - i) << PAGE_SHIFT; 1183 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1184 if (ret < 0) 1185 goto fail; 1186 iova += len; 1187 i = j; 1188 } 1189 return dma_addr; 1190 fail: 1191 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1192 __free_iova(mapping, dma_addr, size); 1193 return DMA_ERROR_CODE; 1194 } 1195 1196 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1197 { 1198 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1199 1200 /* 1201 * add optional in-page offset from iova to size and align 1202 * result to page size 1203 */ 1204 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1205 iova &= PAGE_MASK; 1206 1207 iommu_unmap(mapping->domain, iova, size); 1208 __free_iova(mapping, iova, size); 1209 return 0; 1210 } 1211 1212 static struct page **__atomic_get_pages(void *addr) 1213 { 1214 struct dma_pool *pool = &atomic_pool; 1215 struct page **pages = pool->pages; 1216 int offs = (addr - pool->vaddr) >> PAGE_SHIFT; 1217 1218 return pages + offs; 1219 } 1220 1221 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1222 { 1223 struct vm_struct *area; 1224 1225 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1226 return __atomic_get_pages(cpu_addr); 1227 1228 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1229 return cpu_addr; 1230 1231 area = find_vm_area(cpu_addr); 1232 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1233 return area->pages; 1234 return NULL; 1235 } 1236 1237 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1238 dma_addr_t *handle) 1239 { 1240 struct page *page; 1241 void *addr; 1242 1243 addr = __alloc_from_pool(size, &page); 1244 if (!addr) 1245 return NULL; 1246 1247 *handle = __iommu_create_mapping(dev, &page, size); 1248 if (*handle == DMA_ERROR_CODE) 1249 goto err_mapping; 1250 1251 return addr; 1252 1253 err_mapping: 1254 __free_from_pool(addr, size); 1255 return NULL; 1256 } 1257 1258 static void __iommu_free_atomic(struct device *dev, struct page **pages, 1259 dma_addr_t handle, size_t size) 1260 { 1261 __iommu_remove_mapping(dev, handle, size); 1262 __free_from_pool(page_address(pages[0]), size); 1263 } 1264 1265 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1266 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1267 { 1268 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 1269 struct page **pages; 1270 void *addr = NULL; 1271 1272 *handle = DMA_ERROR_CODE; 1273 size = PAGE_ALIGN(size); 1274 1275 if (gfp & GFP_ATOMIC) 1276 return __iommu_alloc_atomic(dev, size, handle); 1277 1278 pages = __iommu_alloc_buffer(dev, size, gfp, attrs); 1279 if (!pages) 1280 return NULL; 1281 1282 *handle = __iommu_create_mapping(dev, pages, size); 1283 if (*handle == DMA_ERROR_CODE) 1284 goto err_buffer; 1285 1286 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1287 return pages; 1288 1289 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1290 __builtin_return_address(0)); 1291 if (!addr) 1292 goto err_mapping; 1293 1294 return addr; 1295 1296 err_mapping: 1297 __iommu_remove_mapping(dev, *handle, size); 1298 err_buffer: 1299 __iommu_free_buffer(dev, pages, size, attrs); 1300 return NULL; 1301 } 1302 1303 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1304 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1305 struct dma_attrs *attrs) 1306 { 1307 unsigned long uaddr = vma->vm_start; 1308 unsigned long usize = vma->vm_end - vma->vm_start; 1309 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1310 1311 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1312 1313 if (!pages) 1314 return -ENXIO; 1315 1316 do { 1317 int ret = vm_insert_page(vma, uaddr, *pages++); 1318 if (ret) { 1319 pr_err("Remapping memory failed: %d\n", ret); 1320 return ret; 1321 } 1322 uaddr += PAGE_SIZE; 1323 usize -= PAGE_SIZE; 1324 } while (usize > 0); 1325 1326 return 0; 1327 } 1328 1329 /* 1330 * free a page as defined by the above mapping. 1331 * Must not be called with IRQs disabled. 1332 */ 1333 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1334 dma_addr_t handle, struct dma_attrs *attrs) 1335 { 1336 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1337 size = PAGE_ALIGN(size); 1338 1339 if (!pages) { 1340 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1341 return; 1342 } 1343 1344 if (__in_atomic_pool(cpu_addr, size)) { 1345 __iommu_free_atomic(dev, pages, handle, size); 1346 return; 1347 } 1348 1349 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1350 unmap_kernel_range((unsigned long)cpu_addr, size); 1351 vunmap(cpu_addr); 1352 } 1353 1354 __iommu_remove_mapping(dev, handle, size); 1355 __iommu_free_buffer(dev, pages, size, attrs); 1356 } 1357 1358 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1359 void *cpu_addr, dma_addr_t dma_addr, 1360 size_t size, struct dma_attrs *attrs) 1361 { 1362 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1363 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1364 1365 if (!pages) 1366 return -ENXIO; 1367 1368 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1369 GFP_KERNEL); 1370 } 1371 1372 /* 1373 * Map a part of the scatter-gather list into contiguous io address space 1374 */ 1375 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1376 size_t size, dma_addr_t *handle, 1377 enum dma_data_direction dir, struct dma_attrs *attrs, 1378 bool is_coherent) 1379 { 1380 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1381 dma_addr_t iova, iova_base; 1382 int ret = 0; 1383 unsigned int count; 1384 struct scatterlist *s; 1385 1386 size = PAGE_ALIGN(size); 1387 *handle = DMA_ERROR_CODE; 1388 1389 iova_base = iova = __alloc_iova(mapping, size); 1390 if (iova == DMA_ERROR_CODE) 1391 return -ENOMEM; 1392 1393 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1394 phys_addr_t phys = page_to_phys(sg_page(s)); 1395 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1396 1397 if (!is_coherent && 1398 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1399 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1400 1401 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1402 if (ret < 0) 1403 goto fail; 1404 count += len >> PAGE_SHIFT; 1405 iova += len; 1406 } 1407 *handle = iova_base; 1408 1409 return 0; 1410 fail: 1411 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1412 __free_iova(mapping, iova_base, size); 1413 return ret; 1414 } 1415 1416 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1417 enum dma_data_direction dir, struct dma_attrs *attrs, 1418 bool is_coherent) 1419 { 1420 struct scatterlist *s = sg, *dma = sg, *start = sg; 1421 int i, count = 0; 1422 unsigned int offset = s->offset; 1423 unsigned int size = s->offset + s->length; 1424 unsigned int max = dma_get_max_seg_size(dev); 1425 1426 for (i = 1; i < nents; i++) { 1427 s = sg_next(s); 1428 1429 s->dma_address = DMA_ERROR_CODE; 1430 s->dma_length = 0; 1431 1432 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1433 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1434 dir, attrs, is_coherent) < 0) 1435 goto bad_mapping; 1436 1437 dma->dma_address += offset; 1438 dma->dma_length = size - offset; 1439 1440 size = offset = s->offset; 1441 start = s; 1442 dma = sg_next(dma); 1443 count += 1; 1444 } 1445 size += s->length; 1446 } 1447 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1448 is_coherent) < 0) 1449 goto bad_mapping; 1450 1451 dma->dma_address += offset; 1452 dma->dma_length = size - offset; 1453 1454 return count+1; 1455 1456 bad_mapping: 1457 for_each_sg(sg, s, count, i) 1458 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1459 return 0; 1460 } 1461 1462 /** 1463 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1464 * @dev: valid struct device pointer 1465 * @sg: list of buffers 1466 * @nents: number of buffers to map 1467 * @dir: DMA transfer direction 1468 * 1469 * Map a set of i/o coherent buffers described by scatterlist in streaming 1470 * mode for DMA. The scatter gather list elements are merged together (if 1471 * possible) and tagged with the appropriate dma address and length. They are 1472 * obtained via sg_dma_{address,length}. 1473 */ 1474 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1475 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1476 { 1477 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1478 } 1479 1480 /** 1481 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1482 * @dev: valid struct device pointer 1483 * @sg: list of buffers 1484 * @nents: number of buffers to map 1485 * @dir: DMA transfer direction 1486 * 1487 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1488 * The scatter gather list elements are merged together (if possible) and 1489 * tagged with the appropriate dma address and length. They are obtained via 1490 * sg_dma_{address,length}. 1491 */ 1492 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1493 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1494 { 1495 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1496 } 1497 1498 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1499 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1500 bool is_coherent) 1501 { 1502 struct scatterlist *s; 1503 int i; 1504 1505 for_each_sg(sg, s, nents, i) { 1506 if (sg_dma_len(s)) 1507 __iommu_remove_mapping(dev, sg_dma_address(s), 1508 sg_dma_len(s)); 1509 if (!is_coherent && 1510 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1511 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1512 s->length, dir); 1513 } 1514 } 1515 1516 /** 1517 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1518 * @dev: valid struct device pointer 1519 * @sg: list of buffers 1520 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1521 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1522 * 1523 * Unmap a set of streaming mode DMA translations. Again, CPU access 1524 * rules concerning calls here are the same as for dma_unmap_single(). 1525 */ 1526 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1527 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1528 { 1529 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1530 } 1531 1532 /** 1533 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1534 * @dev: valid struct device pointer 1535 * @sg: list of buffers 1536 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1537 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1538 * 1539 * Unmap a set of streaming mode DMA translations. Again, CPU access 1540 * rules concerning calls here are the same as for dma_unmap_single(). 1541 */ 1542 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1543 enum dma_data_direction dir, struct dma_attrs *attrs) 1544 { 1545 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1546 } 1547 1548 /** 1549 * arm_iommu_sync_sg_for_cpu 1550 * @dev: valid struct device pointer 1551 * @sg: list of buffers 1552 * @nents: number of buffers to map (returned from dma_map_sg) 1553 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1554 */ 1555 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1556 int nents, enum dma_data_direction dir) 1557 { 1558 struct scatterlist *s; 1559 int i; 1560 1561 for_each_sg(sg, s, nents, i) 1562 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1563 1564 } 1565 1566 /** 1567 * arm_iommu_sync_sg_for_device 1568 * @dev: valid struct device pointer 1569 * @sg: list of buffers 1570 * @nents: number of buffers to map (returned from dma_map_sg) 1571 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1572 */ 1573 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1574 int nents, enum dma_data_direction dir) 1575 { 1576 struct scatterlist *s; 1577 int i; 1578 1579 for_each_sg(sg, s, nents, i) 1580 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1581 } 1582 1583 1584 /** 1585 * arm_coherent_iommu_map_page 1586 * @dev: valid struct device pointer 1587 * @page: page that buffer resides in 1588 * @offset: offset into page for start of buffer 1589 * @size: size of buffer to map 1590 * @dir: DMA transfer direction 1591 * 1592 * Coherent IOMMU aware version of arm_dma_map_page() 1593 */ 1594 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1595 unsigned long offset, size_t size, enum dma_data_direction dir, 1596 struct dma_attrs *attrs) 1597 { 1598 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1599 dma_addr_t dma_addr; 1600 int ret, len = PAGE_ALIGN(size + offset); 1601 1602 dma_addr = __alloc_iova(mapping, len); 1603 if (dma_addr == DMA_ERROR_CODE) 1604 return dma_addr; 1605 1606 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0); 1607 if (ret < 0) 1608 goto fail; 1609 1610 return dma_addr + offset; 1611 fail: 1612 __free_iova(mapping, dma_addr, len); 1613 return DMA_ERROR_CODE; 1614 } 1615 1616 /** 1617 * arm_iommu_map_page 1618 * @dev: valid struct device pointer 1619 * @page: page that buffer resides in 1620 * @offset: offset into page for start of buffer 1621 * @size: size of buffer to map 1622 * @dir: DMA transfer direction 1623 * 1624 * IOMMU aware version of arm_dma_map_page() 1625 */ 1626 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1627 unsigned long offset, size_t size, enum dma_data_direction dir, 1628 struct dma_attrs *attrs) 1629 { 1630 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1631 __dma_page_cpu_to_dev(page, offset, size, dir); 1632 1633 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1634 } 1635 1636 /** 1637 * arm_coherent_iommu_unmap_page 1638 * @dev: valid struct device pointer 1639 * @handle: DMA address of buffer 1640 * @size: size of buffer (same as passed to dma_map_page) 1641 * @dir: DMA transfer direction (same as passed to dma_map_page) 1642 * 1643 * Coherent IOMMU aware version of arm_dma_unmap_page() 1644 */ 1645 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1646 size_t size, enum dma_data_direction dir, 1647 struct dma_attrs *attrs) 1648 { 1649 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1650 dma_addr_t iova = handle & PAGE_MASK; 1651 int offset = handle & ~PAGE_MASK; 1652 int len = PAGE_ALIGN(size + offset); 1653 1654 if (!iova) 1655 return; 1656 1657 iommu_unmap(mapping->domain, iova, len); 1658 __free_iova(mapping, iova, len); 1659 } 1660 1661 /** 1662 * arm_iommu_unmap_page 1663 * @dev: valid struct device pointer 1664 * @handle: DMA address of buffer 1665 * @size: size of buffer (same as passed to dma_map_page) 1666 * @dir: DMA transfer direction (same as passed to dma_map_page) 1667 * 1668 * IOMMU aware version of arm_dma_unmap_page() 1669 */ 1670 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1671 size_t size, enum dma_data_direction dir, 1672 struct dma_attrs *attrs) 1673 { 1674 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1675 dma_addr_t iova = handle & PAGE_MASK; 1676 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1677 int offset = handle & ~PAGE_MASK; 1678 int len = PAGE_ALIGN(size + offset); 1679 1680 if (!iova) 1681 return; 1682 1683 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1684 __dma_page_dev_to_cpu(page, offset, size, dir); 1685 1686 iommu_unmap(mapping->domain, iova, len); 1687 __free_iova(mapping, iova, len); 1688 } 1689 1690 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1691 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1692 { 1693 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1694 dma_addr_t iova = handle & PAGE_MASK; 1695 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1696 unsigned int offset = handle & ~PAGE_MASK; 1697 1698 if (!iova) 1699 return; 1700 1701 __dma_page_dev_to_cpu(page, offset, size, dir); 1702 } 1703 1704 static void arm_iommu_sync_single_for_device(struct device *dev, 1705 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1706 { 1707 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1708 dma_addr_t iova = handle & PAGE_MASK; 1709 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1710 unsigned int offset = handle & ~PAGE_MASK; 1711 1712 if (!iova) 1713 return; 1714 1715 __dma_page_cpu_to_dev(page, offset, size, dir); 1716 } 1717 1718 struct dma_map_ops iommu_ops = { 1719 .alloc = arm_iommu_alloc_attrs, 1720 .free = arm_iommu_free_attrs, 1721 .mmap = arm_iommu_mmap_attrs, 1722 .get_sgtable = arm_iommu_get_sgtable, 1723 1724 .map_page = arm_iommu_map_page, 1725 .unmap_page = arm_iommu_unmap_page, 1726 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1727 .sync_single_for_device = arm_iommu_sync_single_for_device, 1728 1729 .map_sg = arm_iommu_map_sg, 1730 .unmap_sg = arm_iommu_unmap_sg, 1731 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1732 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1733 }; 1734 1735 struct dma_map_ops iommu_coherent_ops = { 1736 .alloc = arm_iommu_alloc_attrs, 1737 .free = arm_iommu_free_attrs, 1738 .mmap = arm_iommu_mmap_attrs, 1739 .get_sgtable = arm_iommu_get_sgtable, 1740 1741 .map_page = arm_coherent_iommu_map_page, 1742 .unmap_page = arm_coherent_iommu_unmap_page, 1743 1744 .map_sg = arm_coherent_iommu_map_sg, 1745 .unmap_sg = arm_coherent_iommu_unmap_sg, 1746 }; 1747 1748 /** 1749 * arm_iommu_create_mapping 1750 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1751 * @base: start address of the valid IO address space 1752 * @size: size of the valid IO address space 1753 * @order: accuracy of the IO addresses allocations 1754 * 1755 * Creates a mapping structure which holds information about used/unused 1756 * IO address ranges, which is required to perform memory allocation and 1757 * mapping with IOMMU aware functions. 1758 * 1759 * The client device need to be attached to the mapping with 1760 * arm_iommu_attach_device function. 1761 */ 1762 struct dma_iommu_mapping * 1763 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, 1764 int order) 1765 { 1766 unsigned int count = size >> (PAGE_SHIFT + order); 1767 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); 1768 struct dma_iommu_mapping *mapping; 1769 int err = -ENOMEM; 1770 1771 if (!count) 1772 return ERR_PTR(-EINVAL); 1773 1774 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1775 if (!mapping) 1776 goto err; 1777 1778 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1779 if (!mapping->bitmap) 1780 goto err2; 1781 1782 mapping->base = base; 1783 mapping->bits = BITS_PER_BYTE * bitmap_size; 1784 mapping->order = order; 1785 spin_lock_init(&mapping->lock); 1786 1787 mapping->domain = iommu_domain_alloc(bus); 1788 if (!mapping->domain) 1789 goto err3; 1790 1791 kref_init(&mapping->kref); 1792 return mapping; 1793 err3: 1794 kfree(mapping->bitmap); 1795 err2: 1796 kfree(mapping); 1797 err: 1798 return ERR_PTR(err); 1799 } 1800 1801 static void release_iommu_mapping(struct kref *kref) 1802 { 1803 struct dma_iommu_mapping *mapping = 1804 container_of(kref, struct dma_iommu_mapping, kref); 1805 1806 iommu_domain_free(mapping->domain); 1807 kfree(mapping->bitmap); 1808 kfree(mapping); 1809 } 1810 1811 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1812 { 1813 if (mapping) 1814 kref_put(&mapping->kref, release_iommu_mapping); 1815 } 1816 1817 /** 1818 * arm_iommu_attach_device 1819 * @dev: valid struct device pointer 1820 * @mapping: io address space mapping structure (returned from 1821 * arm_iommu_create_mapping) 1822 * 1823 * Attaches specified io address space mapping to the provided device, 1824 * this replaces the dma operations (dma_map_ops pointer) with the 1825 * IOMMU aware version. More than one client might be attached to 1826 * the same io address space mapping. 1827 */ 1828 int arm_iommu_attach_device(struct device *dev, 1829 struct dma_iommu_mapping *mapping) 1830 { 1831 int err; 1832 1833 err = iommu_attach_device(mapping->domain, dev); 1834 if (err) 1835 return err; 1836 1837 kref_get(&mapping->kref); 1838 dev->archdata.mapping = mapping; 1839 set_dma_ops(dev, &iommu_ops); 1840 1841 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1842 return 0; 1843 } 1844 1845 #endif 1846