xref: /linux/arch/arm/mm/dma-mapping.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 
23 #include <asm/memory.h>
24 #include <asm/highmem.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sizes.h>
28 #include <asm/mach/arch.h>
29 
30 #include "mm.h"
31 
32 static u64 get_coherent_dma_mask(struct device *dev)
33 {
34 	u64 mask = (u64)arm_dma_limit;
35 
36 	if (dev) {
37 		mask = dev->coherent_dma_mask;
38 
39 		/*
40 		 * Sanity check the DMA mask - it must be non-zero, and
41 		 * must be able to be satisfied by a DMA allocation.
42 		 */
43 		if (mask == 0) {
44 			dev_warn(dev, "coherent DMA mask is unset\n");
45 			return 0;
46 		}
47 
48 		if ((~mask) & (u64)arm_dma_limit) {
49 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
50 				 "than system GFP_DMA mask %#llx\n",
51 				 mask, (u64)arm_dma_limit);
52 			return 0;
53 		}
54 	}
55 
56 	return mask;
57 }
58 
59 /*
60  * Allocate a DMA buffer for 'dev' of size 'size' using the
61  * specified gfp mask.  Note that 'size' must be page aligned.
62  */
63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
64 {
65 	unsigned long order = get_order(size);
66 	struct page *page, *p, *e;
67 	void *ptr;
68 	u64 mask = get_coherent_dma_mask(dev);
69 
70 #ifdef CONFIG_DMA_API_DEBUG
71 	u64 limit = (mask + 1) & ~mask;
72 	if (limit && size >= limit) {
73 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
74 			size, mask);
75 		return NULL;
76 	}
77 #endif
78 
79 	if (!mask)
80 		return NULL;
81 
82 	if (mask < 0xffffffffULL)
83 		gfp |= GFP_DMA;
84 
85 	page = alloc_pages(gfp, order);
86 	if (!page)
87 		return NULL;
88 
89 	/*
90 	 * Now split the huge page and free the excess pages
91 	 */
92 	split_page(page, order);
93 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
94 		__free_page(p);
95 
96 	/*
97 	 * Ensure that the allocated pages are zeroed, and that any data
98 	 * lurking in the kernel direct-mapped region is invalidated.
99 	 */
100 	ptr = page_address(page);
101 	memset(ptr, 0, size);
102 	dmac_flush_range(ptr, ptr + size);
103 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
104 
105 	return page;
106 }
107 
108 /*
109  * Free a DMA buffer.  'size' must be page aligned.
110  */
111 static void __dma_free_buffer(struct page *page, size_t size)
112 {
113 	struct page *e = page + (size >> PAGE_SHIFT);
114 
115 	while (page < e) {
116 		__free_page(page);
117 		page++;
118 	}
119 }
120 
121 #ifdef CONFIG_MMU
122 
123 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
125 
126 /*
127  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128  */
129 static pte_t **consistent_pte;
130 
131 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
132 
133 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
134 
135 void __init init_consistent_dma_size(unsigned long size)
136 {
137 	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
138 
139 	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
140 	BUG_ON(base < VMALLOC_END);
141 
142 	/* Grow region to accommodate specified size  */
143 	if (base < consistent_base)
144 		consistent_base = base;
145 }
146 
147 #include "vmregion.h"
148 
149 static struct arm_vmregion_head consistent_head = {
150 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
151 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
152 	.vm_end		= CONSISTENT_END,
153 };
154 
155 #ifdef CONFIG_HUGETLB_PAGE
156 #error ARM Coherent DMA allocator does not (yet) support huge TLB
157 #endif
158 
159 /*
160  * Initialise the consistent memory allocation.
161  */
162 static int __init consistent_init(void)
163 {
164 	int ret = 0;
165 	pgd_t *pgd;
166 	pud_t *pud;
167 	pmd_t *pmd;
168 	pte_t *pte;
169 	int i = 0;
170 	unsigned long base = consistent_base;
171 	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
172 
173 	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
174 	if (!consistent_pte) {
175 		pr_err("%s: no memory\n", __func__);
176 		return -ENOMEM;
177 	}
178 
179 	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
180 	consistent_head.vm_start = base;
181 
182 	do {
183 		pgd = pgd_offset(&init_mm, base);
184 
185 		pud = pud_alloc(&init_mm, pgd, base);
186 		if (!pud) {
187 			printk(KERN_ERR "%s: no pud tables\n", __func__);
188 			ret = -ENOMEM;
189 			break;
190 		}
191 
192 		pmd = pmd_alloc(&init_mm, pud, base);
193 		if (!pmd) {
194 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
195 			ret = -ENOMEM;
196 			break;
197 		}
198 		WARN_ON(!pmd_none(*pmd));
199 
200 		pte = pte_alloc_kernel(pmd, base);
201 		if (!pte) {
202 			printk(KERN_ERR "%s: no pte tables\n", __func__);
203 			ret = -ENOMEM;
204 			break;
205 		}
206 
207 		consistent_pte[i++] = pte;
208 		base += PMD_SIZE;
209 	} while (base < CONSISTENT_END);
210 
211 	return ret;
212 }
213 
214 core_initcall(consistent_init);
215 
216 static void *
217 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
218 {
219 	struct arm_vmregion *c;
220 	size_t align;
221 	int bit;
222 
223 	if (!consistent_pte) {
224 		printk(KERN_ERR "%s: not initialised\n", __func__);
225 		dump_stack();
226 		return NULL;
227 	}
228 
229 	/*
230 	 * Align the virtual region allocation - maximum alignment is
231 	 * a section size, minimum is a page size.  This helps reduce
232 	 * fragmentation of the DMA space, and also prevents allocations
233 	 * smaller than a section from crossing a section boundary.
234 	 */
235 	bit = fls(size - 1);
236 	if (bit > SECTION_SHIFT)
237 		bit = SECTION_SHIFT;
238 	align = 1 << bit;
239 
240 	/*
241 	 * Allocate a virtual address in the consistent mapping region.
242 	 */
243 	c = arm_vmregion_alloc(&consistent_head, align, size,
244 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
245 	if (c) {
246 		pte_t *pte;
247 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
248 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
249 
250 		pte = consistent_pte[idx] + off;
251 		c->vm_pages = page;
252 
253 		do {
254 			BUG_ON(!pte_none(*pte));
255 
256 			set_pte_ext(pte, mk_pte(page, prot), 0);
257 			page++;
258 			pte++;
259 			off++;
260 			if (off >= PTRS_PER_PTE) {
261 				off = 0;
262 				pte = consistent_pte[++idx];
263 			}
264 		} while (size -= PAGE_SIZE);
265 
266 		dsb();
267 
268 		return (void *)c->vm_start;
269 	}
270 	return NULL;
271 }
272 
273 static void __dma_free_remap(void *cpu_addr, size_t size)
274 {
275 	struct arm_vmregion *c;
276 	unsigned long addr;
277 	pte_t *ptep;
278 	int idx;
279 	u32 off;
280 
281 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
282 	if (!c) {
283 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
284 		       __func__, cpu_addr);
285 		dump_stack();
286 		return;
287 	}
288 
289 	if ((c->vm_end - c->vm_start) != size) {
290 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
291 		       __func__, c->vm_end - c->vm_start, size);
292 		dump_stack();
293 		size = c->vm_end - c->vm_start;
294 	}
295 
296 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
297 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
298 	ptep = consistent_pte[idx] + off;
299 	addr = c->vm_start;
300 	do {
301 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
302 
303 		ptep++;
304 		addr += PAGE_SIZE;
305 		off++;
306 		if (off >= PTRS_PER_PTE) {
307 			off = 0;
308 			ptep = consistent_pte[++idx];
309 		}
310 
311 		if (pte_none(pte) || !pte_present(pte))
312 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
313 			       __func__);
314 	} while (size -= PAGE_SIZE);
315 
316 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
317 
318 	arm_vmregion_free(&consistent_head, c);
319 }
320 
321 #else	/* !CONFIG_MMU */
322 
323 #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
324 #define __dma_free_remap(addr, size)			do { } while (0)
325 
326 #endif	/* CONFIG_MMU */
327 
328 static void *
329 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
330 	    pgprot_t prot)
331 {
332 	struct page *page;
333 	void *addr;
334 
335 	/*
336 	 * Following is a work-around (a.k.a. hack) to prevent pages
337 	 * with __GFP_COMP being passed to split_page() which cannot
338 	 * handle them.  The real problem is that this flag probably
339 	 * should be 0 on ARM as it is not supported on this
340 	 * platform; see CONFIG_HUGETLBFS.
341 	 */
342 	gfp &= ~(__GFP_COMP);
343 
344 	*handle = ~0;
345 	size = PAGE_ALIGN(size);
346 
347 	page = __dma_alloc_buffer(dev, size, gfp);
348 	if (!page)
349 		return NULL;
350 
351 	if (!arch_is_coherent())
352 		addr = __dma_alloc_remap(page, size, gfp, prot);
353 	else
354 		addr = page_address(page);
355 
356 	if (addr)
357 		*handle = pfn_to_dma(dev, page_to_pfn(page));
358 	else
359 		__dma_free_buffer(page, size);
360 
361 	return addr;
362 }
363 
364 /*
365  * Allocate DMA-coherent memory space and return both the kernel remapped
366  * virtual and bus address for that space.
367  */
368 void *
369 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
370 {
371 	void *memory;
372 
373 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
374 		return memory;
375 
376 	return __dma_alloc(dev, size, handle, gfp,
377 			   pgprot_dmacoherent(pgprot_kernel));
378 }
379 EXPORT_SYMBOL(dma_alloc_coherent);
380 
381 /*
382  * Allocate a writecombining region, in much the same way as
383  * dma_alloc_coherent above.
384  */
385 void *
386 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
387 {
388 	return __dma_alloc(dev, size, handle, gfp,
389 			   pgprot_writecombine(pgprot_kernel));
390 }
391 EXPORT_SYMBOL(dma_alloc_writecombine);
392 
393 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
394 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
395 {
396 	int ret = -ENXIO;
397 #ifdef CONFIG_MMU
398 	unsigned long user_size, kern_size;
399 	struct arm_vmregion *c;
400 
401 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
402 
403 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
404 	if (c) {
405 		unsigned long off = vma->vm_pgoff;
406 
407 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
408 
409 		if (off < kern_size &&
410 		    user_size <= (kern_size - off)) {
411 			ret = remap_pfn_range(vma, vma->vm_start,
412 					      page_to_pfn(c->vm_pages) + off,
413 					      user_size << PAGE_SHIFT,
414 					      vma->vm_page_prot);
415 		}
416 	}
417 #endif	/* CONFIG_MMU */
418 
419 	return ret;
420 }
421 
422 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
423 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
424 {
425 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
426 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
427 }
428 EXPORT_SYMBOL(dma_mmap_coherent);
429 
430 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
431 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
432 {
433 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
434 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
435 }
436 EXPORT_SYMBOL(dma_mmap_writecombine);
437 
438 /*
439  * free a page as defined by the above mapping.
440  * Must not be called with IRQs disabled.
441  */
442 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
443 {
444 	WARN_ON(irqs_disabled());
445 
446 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
447 		return;
448 
449 	size = PAGE_ALIGN(size);
450 
451 	if (!arch_is_coherent())
452 		__dma_free_remap(cpu_addr, size);
453 
454 	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
455 }
456 EXPORT_SYMBOL(dma_free_coherent);
457 
458 /*
459  * Make an area consistent for devices.
460  * Note: Drivers should NOT use this function directly, as it will break
461  * platforms with CONFIG_DMABOUNCE.
462  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
463  */
464 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
465 	enum dma_data_direction dir)
466 {
467 	unsigned long paddr;
468 
469 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
470 
471 	dmac_map_area(kaddr, size, dir);
472 
473 	paddr = __pa(kaddr);
474 	if (dir == DMA_FROM_DEVICE) {
475 		outer_inv_range(paddr, paddr + size);
476 	} else {
477 		outer_clean_range(paddr, paddr + size);
478 	}
479 	/* FIXME: non-speculating: flush on bidirectional mappings? */
480 }
481 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
482 
483 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
484 	enum dma_data_direction dir)
485 {
486 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
487 
488 	/* FIXME: non-speculating: not required */
489 	/* don't bother invalidating if DMA to device */
490 	if (dir != DMA_TO_DEVICE) {
491 		unsigned long paddr = __pa(kaddr);
492 		outer_inv_range(paddr, paddr + size);
493 	}
494 
495 	dmac_unmap_area(kaddr, size, dir);
496 }
497 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
498 
499 static void dma_cache_maint_page(struct page *page, unsigned long offset,
500 	size_t size, enum dma_data_direction dir,
501 	void (*op)(const void *, size_t, int))
502 {
503 	/*
504 	 * A single sg entry may refer to multiple physically contiguous
505 	 * pages.  But we still need to process highmem pages individually.
506 	 * If highmem is not configured then the bulk of this loop gets
507 	 * optimized out.
508 	 */
509 	size_t left = size;
510 	do {
511 		size_t len = left;
512 		void *vaddr;
513 
514 		if (PageHighMem(page)) {
515 			if (len + offset > PAGE_SIZE) {
516 				if (offset >= PAGE_SIZE) {
517 					page += offset / PAGE_SIZE;
518 					offset %= PAGE_SIZE;
519 				}
520 				len = PAGE_SIZE - offset;
521 			}
522 			vaddr = kmap_high_get(page);
523 			if (vaddr) {
524 				vaddr += offset;
525 				op(vaddr, len, dir);
526 				kunmap_high(page);
527 			} else if (cache_is_vipt()) {
528 				/* unmapped pages might still be cached */
529 				vaddr = kmap_atomic(page);
530 				op(vaddr + offset, len, dir);
531 				kunmap_atomic(vaddr);
532 			}
533 		} else {
534 			vaddr = page_address(page) + offset;
535 			op(vaddr, len, dir);
536 		}
537 		offset = 0;
538 		page++;
539 		left -= len;
540 	} while (left);
541 }
542 
543 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
544 	size_t size, enum dma_data_direction dir)
545 {
546 	unsigned long paddr;
547 
548 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
549 
550 	paddr = page_to_phys(page) + off;
551 	if (dir == DMA_FROM_DEVICE) {
552 		outer_inv_range(paddr, paddr + size);
553 	} else {
554 		outer_clean_range(paddr, paddr + size);
555 	}
556 	/* FIXME: non-speculating: flush on bidirectional mappings? */
557 }
558 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
559 
560 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
561 	size_t size, enum dma_data_direction dir)
562 {
563 	unsigned long paddr = page_to_phys(page) + off;
564 
565 	/* FIXME: non-speculating: not required */
566 	/* don't bother invalidating if DMA to device */
567 	if (dir != DMA_TO_DEVICE)
568 		outer_inv_range(paddr, paddr + size);
569 
570 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
571 
572 	/*
573 	 * Mark the D-cache clean for this page to avoid extra flushing.
574 	 */
575 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
576 		set_bit(PG_dcache_clean, &page->flags);
577 }
578 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
579 
580 /**
581  * dma_map_sg - map a set of SG buffers for streaming mode DMA
582  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
583  * @sg: list of buffers
584  * @nents: number of buffers to map
585  * @dir: DMA transfer direction
586  *
587  * Map a set of buffers described by scatterlist in streaming mode for DMA.
588  * This is the scatter-gather version of the dma_map_single interface.
589  * Here the scatter gather list elements are each tagged with the
590  * appropriate dma address and length.  They are obtained via
591  * sg_dma_{address,length}.
592  *
593  * Device ownership issues as mentioned for dma_map_single are the same
594  * here.
595  */
596 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
597 		enum dma_data_direction dir)
598 {
599 	struct scatterlist *s;
600 	int i, j;
601 
602 	BUG_ON(!valid_dma_direction(dir));
603 
604 	for_each_sg(sg, s, nents, i) {
605 		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
606 						s->length, dir);
607 		if (dma_mapping_error(dev, s->dma_address))
608 			goto bad_mapping;
609 	}
610 	debug_dma_map_sg(dev, sg, nents, nents, dir);
611 	return nents;
612 
613  bad_mapping:
614 	for_each_sg(sg, s, i, j)
615 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
616 	return 0;
617 }
618 EXPORT_SYMBOL(dma_map_sg);
619 
620 /**
621  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
622  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
623  * @sg: list of buffers
624  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
625  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
626  *
627  * Unmap a set of streaming mode DMA translations.  Again, CPU access
628  * rules concerning calls here are the same as for dma_unmap_single().
629  */
630 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
631 		enum dma_data_direction dir)
632 {
633 	struct scatterlist *s;
634 	int i;
635 
636 	debug_dma_unmap_sg(dev, sg, nents, dir);
637 
638 	for_each_sg(sg, s, nents, i)
639 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
640 }
641 EXPORT_SYMBOL(dma_unmap_sg);
642 
643 /**
644  * dma_sync_sg_for_cpu
645  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
646  * @sg: list of buffers
647  * @nents: number of buffers to map (returned from dma_map_sg)
648  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
649  */
650 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
651 			int nents, enum dma_data_direction dir)
652 {
653 	struct scatterlist *s;
654 	int i;
655 
656 	for_each_sg(sg, s, nents, i) {
657 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
658 					    sg_dma_len(s), dir))
659 			continue;
660 
661 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
662 				      s->length, dir);
663 	}
664 
665 	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
666 }
667 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
668 
669 /**
670  * dma_sync_sg_for_device
671  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
672  * @sg: list of buffers
673  * @nents: number of buffers to map (returned from dma_map_sg)
674  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
675  */
676 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
677 			int nents, enum dma_data_direction dir)
678 {
679 	struct scatterlist *s;
680 	int i;
681 
682 	for_each_sg(sg, s, nents, i) {
683 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
684 					sg_dma_len(s), dir))
685 			continue;
686 
687 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
688 				      s->length, dir);
689 	}
690 
691 	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
692 }
693 EXPORT_SYMBOL(dma_sync_sg_for_device);
694 
695 /*
696  * Return whether the given device DMA address mask can be supported
697  * properly.  For example, if your device can only drive the low 24-bits
698  * during bus mastering, then you would pass 0x00ffffff as the mask
699  * to this function.
700  */
701 int dma_supported(struct device *dev, u64 mask)
702 {
703 	if (mask < (u64)arm_dma_limit)
704 		return 0;
705 	return 1;
706 }
707 EXPORT_SYMBOL(dma_supported);
708 
709 int dma_set_mask(struct device *dev, u64 dma_mask)
710 {
711 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
712 		return -EIO;
713 
714 #ifndef CONFIG_DMABOUNCE
715 	*dev->dma_mask = dma_mask;
716 #endif
717 
718 	return 0;
719 }
720 EXPORT_SYMBOL(dma_set_mask);
721 
722 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
723 
724 static int __init dma_debug_do_init(void)
725 {
726 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
727 	return 0;
728 }
729 fs_initcall(dma_debug_do_init);
730