1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/highmem.h> 21 #include <linux/slab.h> 22 23 #include <asm/memory.h> 24 #include <asm/highmem.h> 25 #include <asm/cacheflush.h> 26 #include <asm/tlbflush.h> 27 #include <asm/sizes.h> 28 #include <asm/mach/arch.h> 29 30 #include "mm.h" 31 32 static u64 get_coherent_dma_mask(struct device *dev) 33 { 34 u64 mask = (u64)arm_dma_limit; 35 36 if (dev) { 37 mask = dev->coherent_dma_mask; 38 39 /* 40 * Sanity check the DMA mask - it must be non-zero, and 41 * must be able to be satisfied by a DMA allocation. 42 */ 43 if (mask == 0) { 44 dev_warn(dev, "coherent DMA mask is unset\n"); 45 return 0; 46 } 47 48 if ((~mask) & (u64)arm_dma_limit) { 49 dev_warn(dev, "coherent DMA mask %#llx is smaller " 50 "than system GFP_DMA mask %#llx\n", 51 mask, (u64)arm_dma_limit); 52 return 0; 53 } 54 } 55 56 return mask; 57 } 58 59 /* 60 * Allocate a DMA buffer for 'dev' of size 'size' using the 61 * specified gfp mask. Note that 'size' must be page aligned. 62 */ 63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 64 { 65 unsigned long order = get_order(size); 66 struct page *page, *p, *e; 67 void *ptr; 68 u64 mask = get_coherent_dma_mask(dev); 69 70 #ifdef CONFIG_DMA_API_DEBUG 71 u64 limit = (mask + 1) & ~mask; 72 if (limit && size >= limit) { 73 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 74 size, mask); 75 return NULL; 76 } 77 #endif 78 79 if (!mask) 80 return NULL; 81 82 if (mask < 0xffffffffULL) 83 gfp |= GFP_DMA; 84 85 page = alloc_pages(gfp, order); 86 if (!page) 87 return NULL; 88 89 /* 90 * Now split the huge page and free the excess pages 91 */ 92 split_page(page, order); 93 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 94 __free_page(p); 95 96 /* 97 * Ensure that the allocated pages are zeroed, and that any data 98 * lurking in the kernel direct-mapped region is invalidated. 99 */ 100 ptr = page_address(page); 101 memset(ptr, 0, size); 102 dmac_flush_range(ptr, ptr + size); 103 outer_flush_range(__pa(ptr), __pa(ptr) + size); 104 105 return page; 106 } 107 108 /* 109 * Free a DMA buffer. 'size' must be page aligned. 110 */ 111 static void __dma_free_buffer(struct page *page, size_t size) 112 { 113 struct page *e = page + (size >> PAGE_SHIFT); 114 115 while (page < e) { 116 __free_page(page); 117 page++; 118 } 119 } 120 121 #ifdef CONFIG_MMU 122 123 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT) 124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT) 125 126 /* 127 * These are the page tables (2MB each) covering uncached, DMA consistent allocations 128 */ 129 static pte_t **consistent_pte; 130 131 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M 132 133 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE; 134 135 void __init init_consistent_dma_size(unsigned long size) 136 { 137 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M); 138 139 BUG_ON(consistent_pte); /* Check we're called before DMA region init */ 140 BUG_ON(base < VMALLOC_END); 141 142 /* Grow region to accommodate specified size */ 143 if (base < consistent_base) 144 consistent_base = base; 145 } 146 147 #include "vmregion.h" 148 149 static struct arm_vmregion_head consistent_head = { 150 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock), 151 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), 152 .vm_end = CONSISTENT_END, 153 }; 154 155 #ifdef CONFIG_HUGETLB_PAGE 156 #error ARM Coherent DMA allocator does not (yet) support huge TLB 157 #endif 158 159 /* 160 * Initialise the consistent memory allocation. 161 */ 162 static int __init consistent_init(void) 163 { 164 int ret = 0; 165 pgd_t *pgd; 166 pud_t *pud; 167 pmd_t *pmd; 168 pte_t *pte; 169 int i = 0; 170 unsigned long base = consistent_base; 171 unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT; 172 173 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL); 174 if (!consistent_pte) { 175 pr_err("%s: no memory\n", __func__); 176 return -ENOMEM; 177 } 178 179 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END); 180 consistent_head.vm_start = base; 181 182 do { 183 pgd = pgd_offset(&init_mm, base); 184 185 pud = pud_alloc(&init_mm, pgd, base); 186 if (!pud) { 187 printk(KERN_ERR "%s: no pud tables\n", __func__); 188 ret = -ENOMEM; 189 break; 190 } 191 192 pmd = pmd_alloc(&init_mm, pud, base); 193 if (!pmd) { 194 printk(KERN_ERR "%s: no pmd tables\n", __func__); 195 ret = -ENOMEM; 196 break; 197 } 198 WARN_ON(!pmd_none(*pmd)); 199 200 pte = pte_alloc_kernel(pmd, base); 201 if (!pte) { 202 printk(KERN_ERR "%s: no pte tables\n", __func__); 203 ret = -ENOMEM; 204 break; 205 } 206 207 consistent_pte[i++] = pte; 208 base += PMD_SIZE; 209 } while (base < CONSISTENT_END); 210 211 return ret; 212 } 213 214 core_initcall(consistent_init); 215 216 static void * 217 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot) 218 { 219 struct arm_vmregion *c; 220 size_t align; 221 int bit; 222 223 if (!consistent_pte) { 224 printk(KERN_ERR "%s: not initialised\n", __func__); 225 dump_stack(); 226 return NULL; 227 } 228 229 /* 230 * Align the virtual region allocation - maximum alignment is 231 * a section size, minimum is a page size. This helps reduce 232 * fragmentation of the DMA space, and also prevents allocations 233 * smaller than a section from crossing a section boundary. 234 */ 235 bit = fls(size - 1); 236 if (bit > SECTION_SHIFT) 237 bit = SECTION_SHIFT; 238 align = 1 << bit; 239 240 /* 241 * Allocate a virtual address in the consistent mapping region. 242 */ 243 c = arm_vmregion_alloc(&consistent_head, align, size, 244 gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); 245 if (c) { 246 pte_t *pte; 247 int idx = CONSISTENT_PTE_INDEX(c->vm_start); 248 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); 249 250 pte = consistent_pte[idx] + off; 251 c->vm_pages = page; 252 253 do { 254 BUG_ON(!pte_none(*pte)); 255 256 set_pte_ext(pte, mk_pte(page, prot), 0); 257 page++; 258 pte++; 259 off++; 260 if (off >= PTRS_PER_PTE) { 261 off = 0; 262 pte = consistent_pte[++idx]; 263 } 264 } while (size -= PAGE_SIZE); 265 266 dsb(); 267 268 return (void *)c->vm_start; 269 } 270 return NULL; 271 } 272 273 static void __dma_free_remap(void *cpu_addr, size_t size) 274 { 275 struct arm_vmregion *c; 276 unsigned long addr; 277 pte_t *ptep; 278 int idx; 279 u32 off; 280 281 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr); 282 if (!c) { 283 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", 284 __func__, cpu_addr); 285 dump_stack(); 286 return; 287 } 288 289 if ((c->vm_end - c->vm_start) != size) { 290 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", 291 __func__, c->vm_end - c->vm_start, size); 292 dump_stack(); 293 size = c->vm_end - c->vm_start; 294 } 295 296 idx = CONSISTENT_PTE_INDEX(c->vm_start); 297 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); 298 ptep = consistent_pte[idx] + off; 299 addr = c->vm_start; 300 do { 301 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); 302 303 ptep++; 304 addr += PAGE_SIZE; 305 off++; 306 if (off >= PTRS_PER_PTE) { 307 off = 0; 308 ptep = consistent_pte[++idx]; 309 } 310 311 if (pte_none(pte) || !pte_present(pte)) 312 printk(KERN_CRIT "%s: bad page in kernel page table\n", 313 __func__); 314 } while (size -= PAGE_SIZE); 315 316 flush_tlb_kernel_range(c->vm_start, c->vm_end); 317 318 arm_vmregion_free(&consistent_head, c); 319 } 320 321 #else /* !CONFIG_MMU */ 322 323 #define __dma_alloc_remap(page, size, gfp, prot) page_address(page) 324 #define __dma_free_remap(addr, size) do { } while (0) 325 326 #endif /* CONFIG_MMU */ 327 328 static void * 329 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, 330 pgprot_t prot) 331 { 332 struct page *page; 333 void *addr; 334 335 /* 336 * Following is a work-around (a.k.a. hack) to prevent pages 337 * with __GFP_COMP being passed to split_page() which cannot 338 * handle them. The real problem is that this flag probably 339 * should be 0 on ARM as it is not supported on this 340 * platform; see CONFIG_HUGETLBFS. 341 */ 342 gfp &= ~(__GFP_COMP); 343 344 *handle = ~0; 345 size = PAGE_ALIGN(size); 346 347 page = __dma_alloc_buffer(dev, size, gfp); 348 if (!page) 349 return NULL; 350 351 if (!arch_is_coherent()) 352 addr = __dma_alloc_remap(page, size, gfp, prot); 353 else 354 addr = page_address(page); 355 356 if (addr) 357 *handle = pfn_to_dma(dev, page_to_pfn(page)); 358 else 359 __dma_free_buffer(page, size); 360 361 return addr; 362 } 363 364 /* 365 * Allocate DMA-coherent memory space and return both the kernel remapped 366 * virtual and bus address for that space. 367 */ 368 void * 369 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) 370 { 371 void *memory; 372 373 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 374 return memory; 375 376 return __dma_alloc(dev, size, handle, gfp, 377 pgprot_dmacoherent(pgprot_kernel)); 378 } 379 EXPORT_SYMBOL(dma_alloc_coherent); 380 381 /* 382 * Allocate a writecombining region, in much the same way as 383 * dma_alloc_coherent above. 384 */ 385 void * 386 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) 387 { 388 return __dma_alloc(dev, size, handle, gfp, 389 pgprot_writecombine(pgprot_kernel)); 390 } 391 EXPORT_SYMBOL(dma_alloc_writecombine); 392 393 static int dma_mmap(struct device *dev, struct vm_area_struct *vma, 394 void *cpu_addr, dma_addr_t dma_addr, size_t size) 395 { 396 int ret = -ENXIO; 397 #ifdef CONFIG_MMU 398 unsigned long user_size, kern_size; 399 struct arm_vmregion *c; 400 401 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 402 403 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); 404 if (c) { 405 unsigned long off = vma->vm_pgoff; 406 407 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; 408 409 if (off < kern_size && 410 user_size <= (kern_size - off)) { 411 ret = remap_pfn_range(vma, vma->vm_start, 412 page_to_pfn(c->vm_pages) + off, 413 user_size << PAGE_SHIFT, 414 vma->vm_page_prot); 415 } 416 } 417 #endif /* CONFIG_MMU */ 418 419 return ret; 420 } 421 422 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, 423 void *cpu_addr, dma_addr_t dma_addr, size_t size) 424 { 425 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot); 426 return dma_mmap(dev, vma, cpu_addr, dma_addr, size); 427 } 428 EXPORT_SYMBOL(dma_mmap_coherent); 429 430 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, 431 void *cpu_addr, dma_addr_t dma_addr, size_t size) 432 { 433 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 434 return dma_mmap(dev, vma, cpu_addr, dma_addr, size); 435 } 436 EXPORT_SYMBOL(dma_mmap_writecombine); 437 438 /* 439 * free a page as defined by the above mapping. 440 * Must not be called with IRQs disabled. 441 */ 442 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) 443 { 444 WARN_ON(irqs_disabled()); 445 446 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 447 return; 448 449 size = PAGE_ALIGN(size); 450 451 if (!arch_is_coherent()) 452 __dma_free_remap(cpu_addr, size); 453 454 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size); 455 } 456 EXPORT_SYMBOL(dma_free_coherent); 457 458 /* 459 * Make an area consistent for devices. 460 * Note: Drivers should NOT use this function directly, as it will break 461 * platforms with CONFIG_DMABOUNCE. 462 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 463 */ 464 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size, 465 enum dma_data_direction dir) 466 { 467 unsigned long paddr; 468 469 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); 470 471 dmac_map_area(kaddr, size, dir); 472 473 paddr = __pa(kaddr); 474 if (dir == DMA_FROM_DEVICE) { 475 outer_inv_range(paddr, paddr + size); 476 } else { 477 outer_clean_range(paddr, paddr + size); 478 } 479 /* FIXME: non-speculating: flush on bidirectional mappings? */ 480 } 481 EXPORT_SYMBOL(___dma_single_cpu_to_dev); 482 483 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size, 484 enum dma_data_direction dir) 485 { 486 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); 487 488 /* FIXME: non-speculating: not required */ 489 /* don't bother invalidating if DMA to device */ 490 if (dir != DMA_TO_DEVICE) { 491 unsigned long paddr = __pa(kaddr); 492 outer_inv_range(paddr, paddr + size); 493 } 494 495 dmac_unmap_area(kaddr, size, dir); 496 } 497 EXPORT_SYMBOL(___dma_single_dev_to_cpu); 498 499 static void dma_cache_maint_page(struct page *page, unsigned long offset, 500 size_t size, enum dma_data_direction dir, 501 void (*op)(const void *, size_t, int)) 502 { 503 /* 504 * A single sg entry may refer to multiple physically contiguous 505 * pages. But we still need to process highmem pages individually. 506 * If highmem is not configured then the bulk of this loop gets 507 * optimized out. 508 */ 509 size_t left = size; 510 do { 511 size_t len = left; 512 void *vaddr; 513 514 if (PageHighMem(page)) { 515 if (len + offset > PAGE_SIZE) { 516 if (offset >= PAGE_SIZE) { 517 page += offset / PAGE_SIZE; 518 offset %= PAGE_SIZE; 519 } 520 len = PAGE_SIZE - offset; 521 } 522 vaddr = kmap_high_get(page); 523 if (vaddr) { 524 vaddr += offset; 525 op(vaddr, len, dir); 526 kunmap_high(page); 527 } else if (cache_is_vipt()) { 528 /* unmapped pages might still be cached */ 529 vaddr = kmap_atomic(page); 530 op(vaddr + offset, len, dir); 531 kunmap_atomic(vaddr); 532 } 533 } else { 534 vaddr = page_address(page) + offset; 535 op(vaddr, len, dir); 536 } 537 offset = 0; 538 page++; 539 left -= len; 540 } while (left); 541 } 542 543 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off, 544 size_t size, enum dma_data_direction dir) 545 { 546 unsigned long paddr; 547 548 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 549 550 paddr = page_to_phys(page) + off; 551 if (dir == DMA_FROM_DEVICE) { 552 outer_inv_range(paddr, paddr + size); 553 } else { 554 outer_clean_range(paddr, paddr + size); 555 } 556 /* FIXME: non-speculating: flush on bidirectional mappings? */ 557 } 558 EXPORT_SYMBOL(___dma_page_cpu_to_dev); 559 560 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off, 561 size_t size, enum dma_data_direction dir) 562 { 563 unsigned long paddr = page_to_phys(page) + off; 564 565 /* FIXME: non-speculating: not required */ 566 /* don't bother invalidating if DMA to device */ 567 if (dir != DMA_TO_DEVICE) 568 outer_inv_range(paddr, paddr + size); 569 570 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 571 572 /* 573 * Mark the D-cache clean for this page to avoid extra flushing. 574 */ 575 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) 576 set_bit(PG_dcache_clean, &page->flags); 577 } 578 EXPORT_SYMBOL(___dma_page_dev_to_cpu); 579 580 /** 581 * dma_map_sg - map a set of SG buffers for streaming mode DMA 582 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 583 * @sg: list of buffers 584 * @nents: number of buffers to map 585 * @dir: DMA transfer direction 586 * 587 * Map a set of buffers described by scatterlist in streaming mode for DMA. 588 * This is the scatter-gather version of the dma_map_single interface. 589 * Here the scatter gather list elements are each tagged with the 590 * appropriate dma address and length. They are obtained via 591 * sg_dma_{address,length}. 592 * 593 * Device ownership issues as mentioned for dma_map_single are the same 594 * here. 595 */ 596 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 597 enum dma_data_direction dir) 598 { 599 struct scatterlist *s; 600 int i, j; 601 602 BUG_ON(!valid_dma_direction(dir)); 603 604 for_each_sg(sg, s, nents, i) { 605 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset, 606 s->length, dir); 607 if (dma_mapping_error(dev, s->dma_address)) 608 goto bad_mapping; 609 } 610 debug_dma_map_sg(dev, sg, nents, nents, dir); 611 return nents; 612 613 bad_mapping: 614 for_each_sg(sg, s, i, j) 615 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); 616 return 0; 617 } 618 EXPORT_SYMBOL(dma_map_sg); 619 620 /** 621 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 622 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 623 * @sg: list of buffers 624 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 625 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 626 * 627 * Unmap a set of streaming mode DMA translations. Again, CPU access 628 * rules concerning calls here are the same as for dma_unmap_single(). 629 */ 630 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 631 enum dma_data_direction dir) 632 { 633 struct scatterlist *s; 634 int i; 635 636 debug_dma_unmap_sg(dev, sg, nents, dir); 637 638 for_each_sg(sg, s, nents, i) 639 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); 640 } 641 EXPORT_SYMBOL(dma_unmap_sg); 642 643 /** 644 * dma_sync_sg_for_cpu 645 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 646 * @sg: list of buffers 647 * @nents: number of buffers to map (returned from dma_map_sg) 648 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 649 */ 650 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 651 int nents, enum dma_data_direction dir) 652 { 653 struct scatterlist *s; 654 int i; 655 656 for_each_sg(sg, s, nents, i) { 657 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, 658 sg_dma_len(s), dir)) 659 continue; 660 661 __dma_page_dev_to_cpu(sg_page(s), s->offset, 662 s->length, dir); 663 } 664 665 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir); 666 } 667 EXPORT_SYMBOL(dma_sync_sg_for_cpu); 668 669 /** 670 * dma_sync_sg_for_device 671 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 672 * @sg: list of buffers 673 * @nents: number of buffers to map (returned from dma_map_sg) 674 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 675 */ 676 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 677 int nents, enum dma_data_direction dir) 678 { 679 struct scatterlist *s; 680 int i; 681 682 for_each_sg(sg, s, nents, i) { 683 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, 684 sg_dma_len(s), dir)) 685 continue; 686 687 __dma_page_cpu_to_dev(sg_page(s), s->offset, 688 s->length, dir); 689 } 690 691 debug_dma_sync_sg_for_device(dev, sg, nents, dir); 692 } 693 EXPORT_SYMBOL(dma_sync_sg_for_device); 694 695 /* 696 * Return whether the given device DMA address mask can be supported 697 * properly. For example, if your device can only drive the low 24-bits 698 * during bus mastering, then you would pass 0x00ffffff as the mask 699 * to this function. 700 */ 701 int dma_supported(struct device *dev, u64 mask) 702 { 703 if (mask < (u64)arm_dma_limit) 704 return 0; 705 return 1; 706 } 707 EXPORT_SYMBOL(dma_supported); 708 709 int dma_set_mask(struct device *dev, u64 dma_mask) 710 { 711 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 712 return -EIO; 713 714 #ifndef CONFIG_DMABOUNCE 715 *dev->dma_mask = dma_mask; 716 #endif 717 718 return 0; 719 } 720 EXPORT_SYMBOL(dma_set_mask); 721 722 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 723 724 static int __init dma_debug_do_init(void) 725 { 726 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 727 return 0; 728 } 729 fs_initcall(dma_debug_do_init); 730