xref: /linux/arch/arm/mm/dma-mapping.c (revision 82e8d723e9e6698572098bf2976223d5069b34b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dma-noncoherent.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 #include <linux/cma.h>
29 
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 #include <xen/swiotlb-xen.h>
40 
41 #include "dma.h"
42 #include "mm.h"
43 
44 struct arm_dma_alloc_args {
45 	struct device *dev;
46 	size_t size;
47 	gfp_t gfp;
48 	pgprot_t prot;
49 	const void *caller;
50 	bool want_vaddr;
51 	int coherent_flag;
52 };
53 
54 struct arm_dma_free_args {
55 	struct device *dev;
56 	size_t size;
57 	void *cpu_addr;
58 	struct page *page;
59 	bool want_vaddr;
60 };
61 
62 #define NORMAL	    0
63 #define COHERENT    1
64 
65 struct arm_dma_allocator {
66 	void *(*alloc)(struct arm_dma_alloc_args *args,
67 		       struct page **ret_page);
68 	void (*free)(struct arm_dma_free_args *args);
69 };
70 
71 struct arm_dma_buffer {
72 	struct list_head list;
73 	void *virt;
74 	struct arm_dma_allocator *allocator;
75 };
76 
77 static LIST_HEAD(arm_dma_bufs);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79 
80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81 {
82 	struct arm_dma_buffer *buf, *found = NULL;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 	list_for_each_entry(buf, &arm_dma_bufs, list) {
87 		if (buf->virt == virt) {
88 			list_del(&buf->list);
89 			found = buf;
90 			break;
91 		}
92 	}
93 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 	return found;
95 }
96 
97 /*
98  * The DMA API is built upon the notion of "buffer ownership".  A buffer
99  * is either exclusively owned by the CPU (and therefore may be accessed
100  * by it) or exclusively owned by the DMA device.  These helper functions
101  * represent the transitions between these two ownership states.
102  *
103  * Note, however, that on later ARMs, this notion does not work due to
104  * speculative prefetches.  We model our approach on the assumption that
105  * the CPU does do speculative prefetches, which means we clean caches
106  * before transfers and delay cache invalidation until transfer completion.
107  *
108  */
109 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 		size_t, enum dma_data_direction);
111 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 		size_t, enum dma_data_direction);
113 
114 /**
115  * arm_dma_map_page - map a portion of a page for streaming DMA
116  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117  * @page: page that buffer resides in
118  * @offset: offset into page for start of buffer
119  * @size: size of buffer to map
120  * @dir: DMA transfer direction
121  *
122  * Ensure that any data held in the cache is appropriately discarded
123  * or written back.
124  *
125  * The device owns this memory once this call has completed.  The CPU
126  * can regain ownership by calling dma_unmap_page().
127  */
128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 	     unsigned long offset, size_t size, enum dma_data_direction dir,
130 	     unsigned long attrs)
131 {
132 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 		__dma_page_cpu_to_dev(page, offset, size, dir);
134 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135 }
136 
137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 	     unsigned long offset, size_t size, enum dma_data_direction dir,
139 	     unsigned long attrs)
140 {
141 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142 }
143 
144 /**
145  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147  * @handle: DMA address of buffer
148  * @size: size of buffer (same as passed to dma_map_page)
149  * @dir: DMA transfer direction (same as passed to dma_map_page)
150  *
151  * Unmap a page streaming mode DMA translation.  The handle and size
152  * must match what was provided in the previous dma_map_page() call.
153  * All other usages are undefined.
154  *
155  * After this call, reads by the CPU to the buffer are guaranteed to see
156  * whatever the device wrote there.
157  */
158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 		size_t size, enum dma_data_direction dir, unsigned long attrs)
160 {
161 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 				      handle & ~PAGE_MASK, size, dir);
164 }
165 
166 static void arm_dma_sync_single_for_cpu(struct device *dev,
167 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
168 {
169 	unsigned int offset = handle & (PAGE_SIZE - 1);
170 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 	__dma_page_dev_to_cpu(page, offset, size, dir);
172 }
173 
174 static void arm_dma_sync_single_for_device(struct device *dev,
175 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
176 {
177 	unsigned int offset = handle & (PAGE_SIZE - 1);
178 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 	__dma_page_cpu_to_dev(page, offset, size, dir);
180 }
181 
182 const struct dma_map_ops arm_dma_ops = {
183 	.alloc			= arm_dma_alloc,
184 	.free			= arm_dma_free,
185 	.mmap			= arm_dma_mmap,
186 	.get_sgtable		= arm_dma_get_sgtable,
187 	.map_page		= arm_dma_map_page,
188 	.unmap_page		= arm_dma_unmap_page,
189 	.map_sg			= arm_dma_map_sg,
190 	.unmap_sg		= arm_dma_unmap_sg,
191 	.map_resource		= dma_direct_map_resource,
192 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
193 	.sync_single_for_device	= arm_dma_sync_single_for_device,
194 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
195 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
196 	.dma_supported		= arm_dma_supported,
197 	.get_required_mask	= dma_direct_get_required_mask,
198 };
199 EXPORT_SYMBOL(arm_dma_ops);
200 
201 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
202 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
203 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
204 				  dma_addr_t handle, unsigned long attrs);
205 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
206 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
207 		 unsigned long attrs);
208 
209 const struct dma_map_ops arm_coherent_dma_ops = {
210 	.alloc			= arm_coherent_dma_alloc,
211 	.free			= arm_coherent_dma_free,
212 	.mmap			= arm_coherent_dma_mmap,
213 	.get_sgtable		= arm_dma_get_sgtable,
214 	.map_page		= arm_coherent_dma_map_page,
215 	.map_sg			= arm_dma_map_sg,
216 	.map_resource		= dma_direct_map_resource,
217 	.dma_supported		= arm_dma_supported,
218 	.get_required_mask	= dma_direct_get_required_mask,
219 };
220 EXPORT_SYMBOL(arm_coherent_dma_ops);
221 
222 static int __dma_supported(struct device *dev, u64 mask, bool warn)
223 {
224 	unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
225 
226 	/*
227 	 * Translate the device's DMA mask to a PFN limit.  This
228 	 * PFN number includes the page which we can DMA to.
229 	 */
230 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
231 		if (warn)
232 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
233 				 mask,
234 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
235 				 max_dma_pfn + 1);
236 		return 0;
237 	}
238 
239 	return 1;
240 }
241 
242 static u64 get_coherent_dma_mask(struct device *dev)
243 {
244 	u64 mask = (u64)DMA_BIT_MASK(32);
245 
246 	if (dev) {
247 		mask = dev->coherent_dma_mask;
248 
249 		/*
250 		 * Sanity check the DMA mask - it must be non-zero, and
251 		 * must be able to be satisfied by a DMA allocation.
252 		 */
253 		if (mask == 0) {
254 			dev_warn(dev, "coherent DMA mask is unset\n");
255 			return 0;
256 		}
257 
258 		if (!__dma_supported(dev, mask, true))
259 			return 0;
260 	}
261 
262 	return mask;
263 }
264 
265 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
266 {
267 	/*
268 	 * Ensure that the allocated pages are zeroed, and that any data
269 	 * lurking in the kernel direct-mapped region is invalidated.
270 	 */
271 	if (PageHighMem(page)) {
272 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
273 		phys_addr_t end = base + size;
274 		while (size > 0) {
275 			void *ptr = kmap_atomic(page);
276 			memset(ptr, 0, PAGE_SIZE);
277 			if (coherent_flag != COHERENT)
278 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
279 			kunmap_atomic(ptr);
280 			page++;
281 			size -= PAGE_SIZE;
282 		}
283 		if (coherent_flag != COHERENT)
284 			outer_flush_range(base, end);
285 	} else {
286 		void *ptr = page_address(page);
287 		memset(ptr, 0, size);
288 		if (coherent_flag != COHERENT) {
289 			dmac_flush_range(ptr, ptr + size);
290 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
291 		}
292 	}
293 }
294 
295 /*
296  * Allocate a DMA buffer for 'dev' of size 'size' using the
297  * specified gfp mask.  Note that 'size' must be page aligned.
298  */
299 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
300 				       gfp_t gfp, int coherent_flag)
301 {
302 	unsigned long order = get_order(size);
303 	struct page *page, *p, *e;
304 
305 	page = alloc_pages(gfp, order);
306 	if (!page)
307 		return NULL;
308 
309 	/*
310 	 * Now split the huge page and free the excess pages
311 	 */
312 	split_page(page, order);
313 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
314 		__free_page(p);
315 
316 	__dma_clear_buffer(page, size, coherent_flag);
317 
318 	return page;
319 }
320 
321 /*
322  * Free a DMA buffer.  'size' must be page aligned.
323  */
324 static void __dma_free_buffer(struct page *page, size_t size)
325 {
326 	struct page *e = page + (size >> PAGE_SHIFT);
327 
328 	while (page < e) {
329 		__free_page(page);
330 		page++;
331 	}
332 }
333 
334 static void *__alloc_from_contiguous(struct device *dev, size_t size,
335 				     pgprot_t prot, struct page **ret_page,
336 				     const void *caller, bool want_vaddr,
337 				     int coherent_flag, gfp_t gfp);
338 
339 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
340 				 pgprot_t prot, struct page **ret_page,
341 				 const void *caller, bool want_vaddr);
342 
343 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
344 static struct gen_pool *atomic_pool __ro_after_init;
345 
346 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
347 
348 static int __init early_coherent_pool(char *p)
349 {
350 	atomic_pool_size = memparse(p, &p);
351 	return 0;
352 }
353 early_param("coherent_pool", early_coherent_pool);
354 
355 /*
356  * Initialise the coherent pool for atomic allocations.
357  */
358 static int __init atomic_pool_init(void)
359 {
360 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
361 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
362 	struct page *page;
363 	void *ptr;
364 
365 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
366 	if (!atomic_pool)
367 		goto out;
368 	/*
369 	 * The atomic pool is only used for non-coherent allocations
370 	 * so we must pass NORMAL for coherent_flag.
371 	 */
372 	if (dev_get_cma_area(NULL))
373 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
374 				      &page, atomic_pool_init, true, NORMAL,
375 				      GFP_KERNEL);
376 	else
377 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
378 					   &page, atomic_pool_init, true);
379 	if (ptr) {
380 		int ret;
381 
382 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
383 					page_to_phys(page),
384 					atomic_pool_size, -1);
385 		if (ret)
386 			goto destroy_genpool;
387 
388 		gen_pool_set_algo(atomic_pool,
389 				gen_pool_first_fit_order_align,
390 				NULL);
391 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
392 		       atomic_pool_size / 1024);
393 		return 0;
394 	}
395 
396 destroy_genpool:
397 	gen_pool_destroy(atomic_pool);
398 	atomic_pool = NULL;
399 out:
400 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
401 	       atomic_pool_size / 1024);
402 	return -ENOMEM;
403 }
404 /*
405  * CMA is activated by core_initcall, so we must be called after it.
406  */
407 postcore_initcall(atomic_pool_init);
408 
409 struct dma_contig_early_reserve {
410 	phys_addr_t base;
411 	unsigned long size;
412 };
413 
414 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
415 
416 static int dma_mmu_remap_num __initdata;
417 
418 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
419 {
420 	dma_mmu_remap[dma_mmu_remap_num].base = base;
421 	dma_mmu_remap[dma_mmu_remap_num].size = size;
422 	dma_mmu_remap_num++;
423 }
424 
425 void __init dma_contiguous_remap(void)
426 {
427 	int i;
428 	for (i = 0; i < dma_mmu_remap_num; i++) {
429 		phys_addr_t start = dma_mmu_remap[i].base;
430 		phys_addr_t end = start + dma_mmu_remap[i].size;
431 		struct map_desc map;
432 		unsigned long addr;
433 
434 		if (end > arm_lowmem_limit)
435 			end = arm_lowmem_limit;
436 		if (start >= end)
437 			continue;
438 
439 		map.pfn = __phys_to_pfn(start);
440 		map.virtual = __phys_to_virt(start);
441 		map.length = end - start;
442 		map.type = MT_MEMORY_DMA_READY;
443 
444 		/*
445 		 * Clear previous low-memory mapping to ensure that the
446 		 * TLB does not see any conflicting entries, then flush
447 		 * the TLB of the old entries before creating new mappings.
448 		 *
449 		 * This ensures that any speculatively loaded TLB entries
450 		 * (even though they may be rare) can not cause any problems,
451 		 * and ensures that this code is architecturally compliant.
452 		 */
453 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
454 		     addr += PMD_SIZE)
455 			pmd_clear(pmd_off_k(addr));
456 
457 		flush_tlb_kernel_range(__phys_to_virt(start),
458 				       __phys_to_virt(end));
459 
460 		iotable_init(&map, 1);
461 	}
462 }
463 
464 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
465 {
466 	struct page *page = virt_to_page(addr);
467 	pgprot_t prot = *(pgprot_t *)data;
468 
469 	set_pte_ext(pte, mk_pte(page, prot), 0);
470 	return 0;
471 }
472 
473 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
474 {
475 	unsigned long start = (unsigned long) page_address(page);
476 	unsigned end = start + size;
477 
478 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
479 	flush_tlb_kernel_range(start, end);
480 }
481 
482 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
483 				 pgprot_t prot, struct page **ret_page,
484 				 const void *caller, bool want_vaddr)
485 {
486 	struct page *page;
487 	void *ptr = NULL;
488 	/*
489 	 * __alloc_remap_buffer is only called when the device is
490 	 * non-coherent
491 	 */
492 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
493 	if (!page)
494 		return NULL;
495 	if (!want_vaddr)
496 		goto out;
497 
498 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
499 	if (!ptr) {
500 		__dma_free_buffer(page, size);
501 		return NULL;
502 	}
503 
504  out:
505 	*ret_page = page;
506 	return ptr;
507 }
508 
509 static void *__alloc_from_pool(size_t size, struct page **ret_page)
510 {
511 	unsigned long val;
512 	void *ptr = NULL;
513 
514 	if (!atomic_pool) {
515 		WARN(1, "coherent pool not initialised!\n");
516 		return NULL;
517 	}
518 
519 	val = gen_pool_alloc(atomic_pool, size);
520 	if (val) {
521 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
522 
523 		*ret_page = phys_to_page(phys);
524 		ptr = (void *)val;
525 	}
526 
527 	return ptr;
528 }
529 
530 static bool __in_atomic_pool(void *start, size_t size)
531 {
532 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
533 }
534 
535 static int __free_from_pool(void *start, size_t size)
536 {
537 	if (!__in_atomic_pool(start, size))
538 		return 0;
539 
540 	gen_pool_free(atomic_pool, (unsigned long)start, size);
541 
542 	return 1;
543 }
544 
545 static void *__alloc_from_contiguous(struct device *dev, size_t size,
546 				     pgprot_t prot, struct page **ret_page,
547 				     const void *caller, bool want_vaddr,
548 				     int coherent_flag, gfp_t gfp)
549 {
550 	unsigned long order = get_order(size);
551 	size_t count = size >> PAGE_SHIFT;
552 	struct page *page;
553 	void *ptr = NULL;
554 
555 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
556 	if (!page)
557 		return NULL;
558 
559 	__dma_clear_buffer(page, size, coherent_flag);
560 
561 	if (!want_vaddr)
562 		goto out;
563 
564 	if (PageHighMem(page)) {
565 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
566 		if (!ptr) {
567 			dma_release_from_contiguous(dev, page, count);
568 			return NULL;
569 		}
570 	} else {
571 		__dma_remap(page, size, prot);
572 		ptr = page_address(page);
573 	}
574 
575  out:
576 	*ret_page = page;
577 	return ptr;
578 }
579 
580 static void __free_from_contiguous(struct device *dev, struct page *page,
581 				   void *cpu_addr, size_t size, bool want_vaddr)
582 {
583 	if (want_vaddr) {
584 		if (PageHighMem(page))
585 			dma_common_free_remap(cpu_addr, size);
586 		else
587 			__dma_remap(page, size, PAGE_KERNEL);
588 	}
589 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
590 }
591 
592 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
593 {
594 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
595 			pgprot_writecombine(prot) :
596 			pgprot_dmacoherent(prot);
597 	return prot;
598 }
599 
600 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 				   struct page **ret_page)
602 {
603 	struct page *page;
604 	/* __alloc_simple_buffer is only called when the device is coherent */
605 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
606 	if (!page)
607 		return NULL;
608 
609 	*ret_page = page;
610 	return page_address(page);
611 }
612 
613 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
614 				    struct page **ret_page)
615 {
616 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
617 				     ret_page);
618 }
619 
620 static void simple_allocator_free(struct arm_dma_free_args *args)
621 {
622 	__dma_free_buffer(args->page, args->size);
623 }
624 
625 static struct arm_dma_allocator simple_allocator = {
626 	.alloc = simple_allocator_alloc,
627 	.free = simple_allocator_free,
628 };
629 
630 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
631 				 struct page **ret_page)
632 {
633 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
634 				       ret_page, args->caller,
635 				       args->want_vaddr, args->coherent_flag,
636 				       args->gfp);
637 }
638 
639 static void cma_allocator_free(struct arm_dma_free_args *args)
640 {
641 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
642 			       args->size, args->want_vaddr);
643 }
644 
645 static struct arm_dma_allocator cma_allocator = {
646 	.alloc = cma_allocator_alloc,
647 	.free = cma_allocator_free,
648 };
649 
650 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
651 				  struct page **ret_page)
652 {
653 	return __alloc_from_pool(args->size, ret_page);
654 }
655 
656 static void pool_allocator_free(struct arm_dma_free_args *args)
657 {
658 	__free_from_pool(args->cpu_addr, args->size);
659 }
660 
661 static struct arm_dma_allocator pool_allocator = {
662 	.alloc = pool_allocator_alloc,
663 	.free = pool_allocator_free,
664 };
665 
666 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
667 				   struct page **ret_page)
668 {
669 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
670 				    args->prot, ret_page, args->caller,
671 				    args->want_vaddr);
672 }
673 
674 static void remap_allocator_free(struct arm_dma_free_args *args)
675 {
676 	if (args->want_vaddr)
677 		dma_common_free_remap(args->cpu_addr, args->size);
678 
679 	__dma_free_buffer(args->page, args->size);
680 }
681 
682 static struct arm_dma_allocator remap_allocator = {
683 	.alloc = remap_allocator_alloc,
684 	.free = remap_allocator_free,
685 };
686 
687 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
689 			 unsigned long attrs, const void *caller)
690 {
691 	u64 mask = get_coherent_dma_mask(dev);
692 	struct page *page = NULL;
693 	void *addr;
694 	bool allowblock, cma;
695 	struct arm_dma_buffer *buf;
696 	struct arm_dma_alloc_args args = {
697 		.dev = dev,
698 		.size = PAGE_ALIGN(size),
699 		.gfp = gfp,
700 		.prot = prot,
701 		.caller = caller,
702 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
703 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
704 	};
705 
706 #ifdef CONFIG_DMA_API_DEBUG
707 	u64 limit = (mask + 1) & ~mask;
708 	if (limit && size >= limit) {
709 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
710 			size, mask);
711 		return NULL;
712 	}
713 #endif
714 
715 	if (!mask)
716 		return NULL;
717 
718 	buf = kzalloc(sizeof(*buf),
719 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
720 	if (!buf)
721 		return NULL;
722 
723 	if (mask < 0xffffffffULL)
724 		gfp |= GFP_DMA;
725 
726 	/*
727 	 * Following is a work-around (a.k.a. hack) to prevent pages
728 	 * with __GFP_COMP being passed to split_page() which cannot
729 	 * handle them.  The real problem is that this flag probably
730 	 * should be 0 on ARM as it is not supported on this
731 	 * platform; see CONFIG_HUGETLBFS.
732 	 */
733 	gfp &= ~(__GFP_COMP);
734 	args.gfp = gfp;
735 
736 	*handle = DMA_MAPPING_ERROR;
737 	allowblock = gfpflags_allow_blocking(gfp);
738 	cma = allowblock ? dev_get_cma_area(dev) : false;
739 
740 	if (cma)
741 		buf->allocator = &cma_allocator;
742 	else if (is_coherent)
743 		buf->allocator = &simple_allocator;
744 	else if (allowblock)
745 		buf->allocator = &remap_allocator;
746 	else
747 		buf->allocator = &pool_allocator;
748 
749 	addr = buf->allocator->alloc(&args, &page);
750 
751 	if (page) {
752 		unsigned long flags;
753 
754 		*handle = pfn_to_dma(dev, page_to_pfn(page));
755 		buf->virt = args.want_vaddr ? addr : page;
756 
757 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
758 		list_add(&buf->list, &arm_dma_bufs);
759 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
760 	} else {
761 		kfree(buf);
762 	}
763 
764 	return args.want_vaddr ? addr : page;
765 }
766 
767 /*
768  * Allocate DMA-coherent memory space and return both the kernel remapped
769  * virtual and bus address for that space.
770  */
771 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
772 		    gfp_t gfp, unsigned long attrs)
773 {
774 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
775 
776 	return __dma_alloc(dev, size, handle, gfp, prot, false,
777 			   attrs, __builtin_return_address(0));
778 }
779 
780 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
781 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
782 {
783 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
784 			   attrs, __builtin_return_address(0));
785 }
786 
787 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
788 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
789 		 unsigned long attrs)
790 {
791 	int ret = -ENXIO;
792 	unsigned long nr_vma_pages = vma_pages(vma);
793 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
794 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
795 	unsigned long off = vma->vm_pgoff;
796 
797 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
798 		return ret;
799 
800 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
801 		ret = remap_pfn_range(vma, vma->vm_start,
802 				      pfn + off,
803 				      vma->vm_end - vma->vm_start,
804 				      vma->vm_page_prot);
805 	}
806 
807 	return ret;
808 }
809 
810 /*
811  * Create userspace mapping for the DMA-coherent memory.
812  */
813 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
814 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
815 		 unsigned long attrs)
816 {
817 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
818 }
819 
820 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
821 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
822 		 unsigned long attrs)
823 {
824 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
825 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
826 }
827 
828 /*
829  * Free a buffer as defined by the above mapping.
830  */
831 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
832 			   dma_addr_t handle, unsigned long attrs,
833 			   bool is_coherent)
834 {
835 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
836 	struct arm_dma_buffer *buf;
837 	struct arm_dma_free_args args = {
838 		.dev = dev,
839 		.size = PAGE_ALIGN(size),
840 		.cpu_addr = cpu_addr,
841 		.page = page,
842 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
843 	};
844 
845 	buf = arm_dma_buffer_find(cpu_addr);
846 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
847 		return;
848 
849 	buf->allocator->free(&args);
850 	kfree(buf);
851 }
852 
853 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
854 		  dma_addr_t handle, unsigned long attrs)
855 {
856 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
857 }
858 
859 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
860 				  dma_addr_t handle, unsigned long attrs)
861 {
862 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
863 }
864 
865 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
866 		 void *cpu_addr, dma_addr_t handle, size_t size,
867 		 unsigned long attrs)
868 {
869 	unsigned long pfn = dma_to_pfn(dev, handle);
870 	struct page *page;
871 	int ret;
872 
873 	/* If the PFN is not valid, we do not have a struct page */
874 	if (!pfn_valid(pfn))
875 		return -ENXIO;
876 
877 	page = pfn_to_page(pfn);
878 
879 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
880 	if (unlikely(ret))
881 		return ret;
882 
883 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
884 	return 0;
885 }
886 
887 static void dma_cache_maint_page(struct page *page, unsigned long offset,
888 	size_t size, enum dma_data_direction dir,
889 	void (*op)(const void *, size_t, int))
890 {
891 	unsigned long pfn;
892 	size_t left = size;
893 
894 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
895 	offset %= PAGE_SIZE;
896 
897 	/*
898 	 * A single sg entry may refer to multiple physically contiguous
899 	 * pages.  But we still need to process highmem pages individually.
900 	 * If highmem is not configured then the bulk of this loop gets
901 	 * optimized out.
902 	 */
903 	do {
904 		size_t len = left;
905 		void *vaddr;
906 
907 		page = pfn_to_page(pfn);
908 
909 		if (PageHighMem(page)) {
910 			if (len + offset > PAGE_SIZE)
911 				len = PAGE_SIZE - offset;
912 
913 			if (cache_is_vipt_nonaliasing()) {
914 				vaddr = kmap_atomic(page);
915 				op(vaddr + offset, len, dir);
916 				kunmap_atomic(vaddr);
917 			} else {
918 				vaddr = kmap_high_get(page);
919 				if (vaddr) {
920 					op(vaddr + offset, len, dir);
921 					kunmap_high(page);
922 				}
923 			}
924 		} else {
925 			vaddr = page_address(page) + offset;
926 			op(vaddr, len, dir);
927 		}
928 		offset = 0;
929 		pfn++;
930 		left -= len;
931 	} while (left);
932 }
933 
934 /*
935  * Make an area consistent for devices.
936  * Note: Drivers should NOT use this function directly, as it will break
937  * platforms with CONFIG_DMABOUNCE.
938  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
939  */
940 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
941 	size_t size, enum dma_data_direction dir)
942 {
943 	phys_addr_t paddr;
944 
945 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
946 
947 	paddr = page_to_phys(page) + off;
948 	if (dir == DMA_FROM_DEVICE) {
949 		outer_inv_range(paddr, paddr + size);
950 	} else {
951 		outer_clean_range(paddr, paddr + size);
952 	}
953 	/* FIXME: non-speculating: flush on bidirectional mappings? */
954 }
955 
956 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
957 	size_t size, enum dma_data_direction dir)
958 {
959 	phys_addr_t paddr = page_to_phys(page) + off;
960 
961 	/* FIXME: non-speculating: not required */
962 	/* in any case, don't bother invalidating if DMA to device */
963 	if (dir != DMA_TO_DEVICE) {
964 		outer_inv_range(paddr, paddr + size);
965 
966 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
967 	}
968 
969 	/*
970 	 * Mark the D-cache clean for these pages to avoid extra flushing.
971 	 */
972 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
973 		unsigned long pfn;
974 		size_t left = size;
975 
976 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
977 		off %= PAGE_SIZE;
978 		if (off) {
979 			pfn++;
980 			left -= PAGE_SIZE - off;
981 		}
982 		while (left >= PAGE_SIZE) {
983 			page = pfn_to_page(pfn++);
984 			set_bit(PG_dcache_clean, &page->flags);
985 			left -= PAGE_SIZE;
986 		}
987 	}
988 }
989 
990 /**
991  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
992  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
993  * @sg: list of buffers
994  * @nents: number of buffers to map
995  * @dir: DMA transfer direction
996  *
997  * Map a set of buffers described by scatterlist in streaming mode for DMA.
998  * This is the scatter-gather version of the dma_map_single interface.
999  * Here the scatter gather list elements are each tagged with the
1000  * appropriate dma address and length.  They are obtained via
1001  * sg_dma_{address,length}.
1002  *
1003  * Device ownership issues as mentioned for dma_map_single are the same
1004  * here.
1005  */
1006 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1007 		enum dma_data_direction dir, unsigned long attrs)
1008 {
1009 	const struct dma_map_ops *ops = get_dma_ops(dev);
1010 	struct scatterlist *s;
1011 	int i, j;
1012 
1013 	for_each_sg(sg, s, nents, i) {
1014 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1015 		s->dma_length = s->length;
1016 #endif
1017 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018 						s->length, dir, attrs);
1019 		if (dma_mapping_error(dev, s->dma_address))
1020 			goto bad_mapping;
1021 	}
1022 	return nents;
1023 
1024  bad_mapping:
1025 	for_each_sg(sg, s, i, j)
1026 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1027 	return 0;
1028 }
1029 
1030 /**
1031  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033  * @sg: list of buffers
1034  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036  *
1037  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1038  * rules concerning calls here are the same as for dma_unmap_single().
1039  */
1040 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1041 		enum dma_data_direction dir, unsigned long attrs)
1042 {
1043 	const struct dma_map_ops *ops = get_dma_ops(dev);
1044 	struct scatterlist *s;
1045 
1046 	int i;
1047 
1048 	for_each_sg(sg, s, nents, i)
1049 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1050 }
1051 
1052 /**
1053  * arm_dma_sync_sg_for_cpu
1054  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055  * @sg: list of buffers
1056  * @nents: number of buffers to map (returned from dma_map_sg)
1057  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058  */
1059 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1060 			int nents, enum dma_data_direction dir)
1061 {
1062 	const struct dma_map_ops *ops = get_dma_ops(dev);
1063 	struct scatterlist *s;
1064 	int i;
1065 
1066 	for_each_sg(sg, s, nents, i)
1067 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068 					 dir);
1069 }
1070 
1071 /**
1072  * arm_dma_sync_sg_for_device
1073  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074  * @sg: list of buffers
1075  * @nents: number of buffers to map (returned from dma_map_sg)
1076  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077  */
1078 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1079 			int nents, enum dma_data_direction dir)
1080 {
1081 	const struct dma_map_ops *ops = get_dma_ops(dev);
1082 	struct scatterlist *s;
1083 	int i;
1084 
1085 	for_each_sg(sg, s, nents, i)
1086 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087 					    dir);
1088 }
1089 
1090 /*
1091  * Return whether the given device DMA address mask can be supported
1092  * properly.  For example, if your device can only drive the low 24-bits
1093  * during bus mastering, then you would pass 0x00ffffff as the mask
1094  * to this function.
1095  */
1096 int arm_dma_supported(struct device *dev, u64 mask)
1097 {
1098 	return __dma_supported(dev, mask, false);
1099 }
1100 
1101 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102 {
1103 	/*
1104 	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105 	 * 32-bits, which then can't be addressed by devices that only support
1106 	 * 32-bit DMA.
1107 	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108 	 * handles bounce buffering for us.
1109 	 */
1110 	if (IS_ENABLED(CONFIG_ARM_LPAE))
1111 		return NULL;
1112 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113 }
1114 
1115 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1116 
1117 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118 {
1119 	int prot = 0;
1120 
1121 	if (attrs & DMA_ATTR_PRIVILEGED)
1122 		prot |= IOMMU_PRIV;
1123 
1124 	switch (dir) {
1125 	case DMA_BIDIRECTIONAL:
1126 		return prot | IOMMU_READ | IOMMU_WRITE;
1127 	case DMA_TO_DEVICE:
1128 		return prot | IOMMU_READ;
1129 	case DMA_FROM_DEVICE:
1130 		return prot | IOMMU_WRITE;
1131 	default:
1132 		return prot;
1133 	}
1134 }
1135 
1136 /* IOMMU */
1137 
1138 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139 
1140 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141 				      size_t size)
1142 {
1143 	unsigned int order = get_order(size);
1144 	unsigned int align = 0;
1145 	unsigned int count, start;
1146 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1147 	unsigned long flags;
1148 	dma_addr_t iova;
1149 	int i;
1150 
1151 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153 
1154 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155 	align = (1 << order) - 1;
1156 
1157 	spin_lock_irqsave(&mapping->lock, flags);
1158 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1159 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160 				mapping->bits, 0, count, align);
1161 
1162 		if (start > mapping->bits)
1163 			continue;
1164 
1165 		bitmap_set(mapping->bitmaps[i], start, count);
1166 		break;
1167 	}
1168 
1169 	/*
1170 	 * No unused range found. Try to extend the existing mapping
1171 	 * and perform a second attempt to reserve an IO virtual
1172 	 * address range of size bytes.
1173 	 */
1174 	if (i == mapping->nr_bitmaps) {
1175 		if (extend_iommu_mapping(mapping)) {
1176 			spin_unlock_irqrestore(&mapping->lock, flags);
1177 			return DMA_MAPPING_ERROR;
1178 		}
1179 
1180 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181 				mapping->bits, 0, count, align);
1182 
1183 		if (start > mapping->bits) {
1184 			spin_unlock_irqrestore(&mapping->lock, flags);
1185 			return DMA_MAPPING_ERROR;
1186 		}
1187 
1188 		bitmap_set(mapping->bitmaps[i], start, count);
1189 	}
1190 	spin_unlock_irqrestore(&mapping->lock, flags);
1191 
1192 	iova = mapping->base + (mapping_size * i);
1193 	iova += start << PAGE_SHIFT;
1194 
1195 	return iova;
1196 }
1197 
1198 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199 			       dma_addr_t addr, size_t size)
1200 {
1201 	unsigned int start, count;
1202 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1203 	unsigned long flags;
1204 	dma_addr_t bitmap_base;
1205 	u32 bitmap_index;
1206 
1207 	if (!size)
1208 		return;
1209 
1210 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1211 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212 
1213 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1214 
1215 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1216 
1217 	if (addr + size > bitmap_base + mapping_size) {
1218 		/*
1219 		 * The address range to be freed reaches into the iova
1220 		 * range of the next bitmap. This should not happen as
1221 		 * we don't allow this in __alloc_iova (at the
1222 		 * moment).
1223 		 */
1224 		BUG();
1225 	} else
1226 		count = size >> PAGE_SHIFT;
1227 
1228 	spin_lock_irqsave(&mapping->lock, flags);
1229 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1230 	spin_unlock_irqrestore(&mapping->lock, flags);
1231 }
1232 
1233 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235 
1236 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1237 					  gfp_t gfp, unsigned long attrs,
1238 					  int coherent_flag)
1239 {
1240 	struct page **pages;
1241 	int count = size >> PAGE_SHIFT;
1242 	int array_size = count * sizeof(struct page *);
1243 	int i = 0;
1244 	int order_idx = 0;
1245 
1246 	if (array_size <= PAGE_SIZE)
1247 		pages = kzalloc(array_size, GFP_KERNEL);
1248 	else
1249 		pages = vzalloc(array_size);
1250 	if (!pages)
1251 		return NULL;
1252 
1253 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1254 	{
1255 		unsigned long order = get_order(size);
1256 		struct page *page;
1257 
1258 		page = dma_alloc_from_contiguous(dev, count, order,
1259 						 gfp & __GFP_NOWARN);
1260 		if (!page)
1261 			goto error;
1262 
1263 		__dma_clear_buffer(page, size, coherent_flag);
1264 
1265 		for (i = 0; i < count; i++)
1266 			pages[i] = page + i;
1267 
1268 		return pages;
1269 	}
1270 
1271 	/* Go straight to 4K chunks if caller says it's OK. */
1272 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1273 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274 
1275 	/*
1276 	 * IOMMU can map any pages, so himem can also be used here
1277 	 */
1278 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279 
1280 	while (count) {
1281 		int j, order;
1282 
1283 		order = iommu_order_array[order_idx];
1284 
1285 		/* Drop down when we get small */
1286 		if (__fls(count) < order) {
1287 			order_idx++;
1288 			continue;
1289 		}
1290 
1291 		if (order) {
1292 			/* See if it's easy to allocate a high-order chunk */
1293 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294 
1295 			/* Go down a notch at first sign of pressure */
1296 			if (!pages[i]) {
1297 				order_idx++;
1298 				continue;
1299 			}
1300 		} else {
1301 			pages[i] = alloc_pages(gfp, 0);
1302 			if (!pages[i])
1303 				goto error;
1304 		}
1305 
1306 		if (order) {
1307 			split_page(pages[i], order);
1308 			j = 1 << order;
1309 			while (--j)
1310 				pages[i + j] = pages[i] + j;
1311 		}
1312 
1313 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1314 		i += 1 << order;
1315 		count -= 1 << order;
1316 	}
1317 
1318 	return pages;
1319 error:
1320 	while (i--)
1321 		if (pages[i])
1322 			__free_pages(pages[i], 0);
1323 	kvfree(pages);
1324 	return NULL;
1325 }
1326 
1327 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1328 			       size_t size, unsigned long attrs)
1329 {
1330 	int count = size >> PAGE_SHIFT;
1331 	int i;
1332 
1333 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1334 		dma_release_from_contiguous(dev, pages[0], count);
1335 	} else {
1336 		for (i = 0; i < count; i++)
1337 			if (pages[i])
1338 				__free_pages(pages[i], 0);
1339 	}
1340 
1341 	kvfree(pages);
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Create a mapping in device IO address space for specified pages
1347  */
1348 static dma_addr_t
1349 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350 		       unsigned long attrs)
1351 {
1352 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354 	dma_addr_t dma_addr, iova;
1355 	int i;
1356 
1357 	dma_addr = __alloc_iova(mapping, size);
1358 	if (dma_addr == DMA_MAPPING_ERROR)
1359 		return dma_addr;
1360 
1361 	iova = dma_addr;
1362 	for (i = 0; i < count; ) {
1363 		int ret;
1364 
1365 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366 		phys_addr_t phys = page_to_phys(pages[i]);
1367 		unsigned int len, j;
1368 
1369 		for (j = i + 1; j < count; j++, next_pfn++)
1370 			if (page_to_pfn(pages[j]) != next_pfn)
1371 				break;
1372 
1373 		len = (j - i) << PAGE_SHIFT;
1374 		ret = iommu_map(mapping->domain, iova, phys, len,
1375 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1376 		if (ret < 0)
1377 			goto fail;
1378 		iova += len;
1379 		i = j;
1380 	}
1381 	return dma_addr;
1382 fail:
1383 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384 	__free_iova(mapping, dma_addr, size);
1385 	return DMA_MAPPING_ERROR;
1386 }
1387 
1388 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389 {
1390 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391 
1392 	/*
1393 	 * add optional in-page offset from iova to size and align
1394 	 * result to page size
1395 	 */
1396 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397 	iova &= PAGE_MASK;
1398 
1399 	iommu_unmap(mapping->domain, iova, size);
1400 	__free_iova(mapping, iova, size);
1401 	return 0;
1402 }
1403 
1404 static struct page **__atomic_get_pages(void *addr)
1405 {
1406 	struct page *page;
1407 	phys_addr_t phys;
1408 
1409 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410 	page = phys_to_page(phys);
1411 
1412 	return (struct page **)page;
1413 }
1414 
1415 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1416 {
1417 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418 		return __atomic_get_pages(cpu_addr);
1419 
1420 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1421 		return cpu_addr;
1422 
1423 	return dma_common_find_pages(cpu_addr);
1424 }
1425 
1426 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1427 				  dma_addr_t *handle, int coherent_flag,
1428 				  unsigned long attrs)
1429 {
1430 	struct page *page;
1431 	void *addr;
1432 
1433 	if (coherent_flag  == COHERENT)
1434 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435 	else
1436 		addr = __alloc_from_pool(size, &page);
1437 	if (!addr)
1438 		return NULL;
1439 
1440 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1441 	if (*handle == DMA_MAPPING_ERROR)
1442 		goto err_mapping;
1443 
1444 	return addr;
1445 
1446 err_mapping:
1447 	__free_from_pool(addr, size);
1448 	return NULL;
1449 }
1450 
1451 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1452 			dma_addr_t handle, size_t size, int coherent_flag)
1453 {
1454 	__iommu_remove_mapping(dev, handle, size);
1455 	if (coherent_flag == COHERENT)
1456 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1457 	else
1458 		__free_from_pool(cpu_addr, size);
1459 }
1460 
1461 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1462 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1463 	    int coherent_flag)
1464 {
1465 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1466 	struct page **pages;
1467 	void *addr = NULL;
1468 
1469 	*handle = DMA_MAPPING_ERROR;
1470 	size = PAGE_ALIGN(size);
1471 
1472 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1473 		return __iommu_alloc_simple(dev, size, gfp, handle,
1474 					    coherent_flag, attrs);
1475 
1476 	/*
1477 	 * Following is a work-around (a.k.a. hack) to prevent pages
1478 	 * with __GFP_COMP being passed to split_page() which cannot
1479 	 * handle them.  The real problem is that this flag probably
1480 	 * should be 0 on ARM as it is not supported on this
1481 	 * platform; see CONFIG_HUGETLBFS.
1482 	 */
1483 	gfp &= ~(__GFP_COMP);
1484 
1485 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1486 	if (!pages)
1487 		return NULL;
1488 
1489 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1490 	if (*handle == DMA_MAPPING_ERROR)
1491 		goto err_buffer;
1492 
1493 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1494 		return pages;
1495 
1496 	addr = dma_common_pages_remap(pages, size, prot,
1497 				   __builtin_return_address(0));
1498 	if (!addr)
1499 		goto err_mapping;
1500 
1501 	return addr;
1502 
1503 err_mapping:
1504 	__iommu_remove_mapping(dev, *handle, size);
1505 err_buffer:
1506 	__iommu_free_buffer(dev, pages, size, attrs);
1507 	return NULL;
1508 }
1509 
1510 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1511 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512 {
1513 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514 }
1515 
1516 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1517 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1518 {
1519 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520 }
1521 
1522 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1523 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1524 		    unsigned long attrs)
1525 {
1526 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1527 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1528 	int err;
1529 
1530 	if (!pages)
1531 		return -ENXIO;
1532 
1533 	if (vma->vm_pgoff >= nr_pages)
1534 		return -ENXIO;
1535 
1536 	err = vm_map_pages(vma, pages, nr_pages);
1537 	if (err)
1538 		pr_err("Remapping memory failed: %d\n", err);
1539 
1540 	return err;
1541 }
1542 static int arm_iommu_mmap_attrs(struct device *dev,
1543 		struct vm_area_struct *vma, void *cpu_addr,
1544 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1545 {
1546 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547 
1548 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549 }
1550 
1551 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552 		struct vm_area_struct *vma, void *cpu_addr,
1553 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1554 {
1555 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556 }
1557 
1558 /*
1559  * free a page as defined by the above mapping.
1560  * Must not be called with IRQs disabled.
1561  */
1562 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1563 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1564 {
1565 	struct page **pages;
1566 	size = PAGE_ALIGN(size);
1567 
1568 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1570 		return;
1571 	}
1572 
1573 	pages = __iommu_get_pages(cpu_addr, attrs);
1574 	if (!pages) {
1575 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1576 		return;
1577 	}
1578 
1579 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1580 		dma_common_free_remap(cpu_addr, size);
1581 
1582 	__iommu_remove_mapping(dev, handle, size);
1583 	__iommu_free_buffer(dev, pages, size, attrs);
1584 }
1585 
1586 void arm_iommu_free_attrs(struct device *dev, size_t size,
1587 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1588 {
1589 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1590 }
1591 
1592 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1593 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1594 {
1595 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1596 }
1597 
1598 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1599 				 void *cpu_addr, dma_addr_t dma_addr,
1600 				 size_t size, unsigned long attrs)
1601 {
1602 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1603 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1604 
1605 	if (!pages)
1606 		return -ENXIO;
1607 
1608 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1609 					 GFP_KERNEL);
1610 }
1611 
1612 /*
1613  * Map a part of the scatter-gather list into contiguous io address space
1614  */
1615 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1616 			  size_t size, dma_addr_t *handle,
1617 			  enum dma_data_direction dir, unsigned long attrs,
1618 			  bool is_coherent)
1619 {
1620 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1621 	dma_addr_t iova, iova_base;
1622 	int ret = 0;
1623 	unsigned int count;
1624 	struct scatterlist *s;
1625 	int prot;
1626 
1627 	size = PAGE_ALIGN(size);
1628 	*handle = DMA_MAPPING_ERROR;
1629 
1630 	iova_base = iova = __alloc_iova(mapping, size);
1631 	if (iova == DMA_MAPPING_ERROR)
1632 		return -ENOMEM;
1633 
1634 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1635 		phys_addr_t phys = page_to_phys(sg_page(s));
1636 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1637 
1638 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1639 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1640 
1641 		prot = __dma_info_to_prot(dir, attrs);
1642 
1643 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1644 		if (ret < 0)
1645 			goto fail;
1646 		count += len >> PAGE_SHIFT;
1647 		iova += len;
1648 	}
1649 	*handle = iova_base;
1650 
1651 	return 0;
1652 fail:
1653 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1654 	__free_iova(mapping, iova_base, size);
1655 	return ret;
1656 }
1657 
1658 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1659 		     enum dma_data_direction dir, unsigned long attrs,
1660 		     bool is_coherent)
1661 {
1662 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1663 	int i, count = 0;
1664 	unsigned int offset = s->offset;
1665 	unsigned int size = s->offset + s->length;
1666 	unsigned int max = dma_get_max_seg_size(dev);
1667 
1668 	for (i = 1; i < nents; i++) {
1669 		s = sg_next(s);
1670 
1671 		s->dma_address = DMA_MAPPING_ERROR;
1672 		s->dma_length = 0;
1673 
1674 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1675 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1676 			    dir, attrs, is_coherent) < 0)
1677 				goto bad_mapping;
1678 
1679 			dma->dma_address += offset;
1680 			dma->dma_length = size - offset;
1681 
1682 			size = offset = s->offset;
1683 			start = s;
1684 			dma = sg_next(dma);
1685 			count += 1;
1686 		}
1687 		size += s->length;
1688 	}
1689 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1690 		is_coherent) < 0)
1691 		goto bad_mapping;
1692 
1693 	dma->dma_address += offset;
1694 	dma->dma_length = size - offset;
1695 
1696 	return count+1;
1697 
1698 bad_mapping:
1699 	for_each_sg(sg, s, count, i)
1700 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1701 	return 0;
1702 }
1703 
1704 /**
1705  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1706  * @dev: valid struct device pointer
1707  * @sg: list of buffers
1708  * @nents: number of buffers to map
1709  * @dir: DMA transfer direction
1710  *
1711  * Map a set of i/o coherent buffers described by scatterlist in streaming
1712  * mode for DMA. The scatter gather list elements are merged together (if
1713  * possible) and tagged with the appropriate dma address and length. They are
1714  * obtained via sg_dma_{address,length}.
1715  */
1716 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1717 		int nents, enum dma_data_direction dir, unsigned long attrs)
1718 {
1719 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1720 }
1721 
1722 /**
1723  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1724  * @dev: valid struct device pointer
1725  * @sg: list of buffers
1726  * @nents: number of buffers to map
1727  * @dir: DMA transfer direction
1728  *
1729  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1730  * The scatter gather list elements are merged together (if possible) and
1731  * tagged with the appropriate dma address and length. They are obtained via
1732  * sg_dma_{address,length}.
1733  */
1734 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1735 		int nents, enum dma_data_direction dir, unsigned long attrs)
1736 {
1737 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1738 }
1739 
1740 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1741 		int nents, enum dma_data_direction dir,
1742 		unsigned long attrs, bool is_coherent)
1743 {
1744 	struct scatterlist *s;
1745 	int i;
1746 
1747 	for_each_sg(sg, s, nents, i) {
1748 		if (sg_dma_len(s))
1749 			__iommu_remove_mapping(dev, sg_dma_address(s),
1750 					       sg_dma_len(s));
1751 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1752 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1753 					      s->length, dir);
1754 	}
1755 }
1756 
1757 /**
1758  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1759  * @dev: valid struct device pointer
1760  * @sg: list of buffers
1761  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1762  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763  *
1764  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1765  * rules concerning calls here are the same as for dma_unmap_single().
1766  */
1767 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1768 		int nents, enum dma_data_direction dir,
1769 		unsigned long attrs)
1770 {
1771 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1772 }
1773 
1774 /**
1775  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1776  * @dev: valid struct device pointer
1777  * @sg: list of buffers
1778  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1779  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780  *
1781  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1782  * rules concerning calls here are the same as for dma_unmap_single().
1783  */
1784 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1785 			enum dma_data_direction dir,
1786 			unsigned long attrs)
1787 {
1788 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1789 }
1790 
1791 /**
1792  * arm_iommu_sync_sg_for_cpu
1793  * @dev: valid struct device pointer
1794  * @sg: list of buffers
1795  * @nents: number of buffers to map (returned from dma_map_sg)
1796  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797  */
1798 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1799 			int nents, enum dma_data_direction dir)
1800 {
1801 	struct scatterlist *s;
1802 	int i;
1803 
1804 	for_each_sg(sg, s, nents, i)
1805 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1806 
1807 }
1808 
1809 /**
1810  * arm_iommu_sync_sg_for_device
1811  * @dev: valid struct device pointer
1812  * @sg: list of buffers
1813  * @nents: number of buffers to map (returned from dma_map_sg)
1814  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1815  */
1816 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1817 			int nents, enum dma_data_direction dir)
1818 {
1819 	struct scatterlist *s;
1820 	int i;
1821 
1822 	for_each_sg(sg, s, nents, i)
1823 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1824 }
1825 
1826 
1827 /**
1828  * arm_coherent_iommu_map_page
1829  * @dev: valid struct device pointer
1830  * @page: page that buffer resides in
1831  * @offset: offset into page for start of buffer
1832  * @size: size of buffer to map
1833  * @dir: DMA transfer direction
1834  *
1835  * Coherent IOMMU aware version of arm_dma_map_page()
1836  */
1837 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1838 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1839 	     unsigned long attrs)
1840 {
1841 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842 	dma_addr_t dma_addr;
1843 	int ret, prot, len = PAGE_ALIGN(size + offset);
1844 
1845 	dma_addr = __alloc_iova(mapping, len);
1846 	if (dma_addr == DMA_MAPPING_ERROR)
1847 		return dma_addr;
1848 
1849 	prot = __dma_info_to_prot(dir, attrs);
1850 
1851 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1852 	if (ret < 0)
1853 		goto fail;
1854 
1855 	return dma_addr + offset;
1856 fail:
1857 	__free_iova(mapping, dma_addr, len);
1858 	return DMA_MAPPING_ERROR;
1859 }
1860 
1861 /**
1862  * arm_iommu_map_page
1863  * @dev: valid struct device pointer
1864  * @page: page that buffer resides in
1865  * @offset: offset into page for start of buffer
1866  * @size: size of buffer to map
1867  * @dir: DMA transfer direction
1868  *
1869  * IOMMU aware version of arm_dma_map_page()
1870  */
1871 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1872 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1873 	     unsigned long attrs)
1874 {
1875 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1876 		__dma_page_cpu_to_dev(page, offset, size, dir);
1877 
1878 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1879 }
1880 
1881 /**
1882  * arm_coherent_iommu_unmap_page
1883  * @dev: valid struct device pointer
1884  * @handle: DMA address of buffer
1885  * @size: size of buffer (same as passed to dma_map_page)
1886  * @dir: DMA transfer direction (same as passed to dma_map_page)
1887  *
1888  * Coherent IOMMU aware version of arm_dma_unmap_page()
1889  */
1890 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1891 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1892 {
1893 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1894 	dma_addr_t iova = handle & PAGE_MASK;
1895 	int offset = handle & ~PAGE_MASK;
1896 	int len = PAGE_ALIGN(size + offset);
1897 
1898 	if (!iova)
1899 		return;
1900 
1901 	iommu_unmap(mapping->domain, iova, len);
1902 	__free_iova(mapping, iova, len);
1903 }
1904 
1905 /**
1906  * arm_iommu_unmap_page
1907  * @dev: valid struct device pointer
1908  * @handle: DMA address of buffer
1909  * @size: size of buffer (same as passed to dma_map_page)
1910  * @dir: DMA transfer direction (same as passed to dma_map_page)
1911  *
1912  * IOMMU aware version of arm_dma_unmap_page()
1913  */
1914 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1915 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1916 {
1917 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918 	dma_addr_t iova = handle & PAGE_MASK;
1919 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1920 	int offset = handle & ~PAGE_MASK;
1921 	int len = PAGE_ALIGN(size + offset);
1922 
1923 	if (!iova)
1924 		return;
1925 
1926 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1927 		__dma_page_dev_to_cpu(page, offset, size, dir);
1928 
1929 	iommu_unmap(mapping->domain, iova, len);
1930 	__free_iova(mapping, iova, len);
1931 }
1932 
1933 /**
1934  * arm_iommu_map_resource - map a device resource for DMA
1935  * @dev: valid struct device pointer
1936  * @phys_addr: physical address of resource
1937  * @size: size of resource to map
1938  * @dir: DMA transfer direction
1939  */
1940 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1941 		phys_addr_t phys_addr, size_t size,
1942 		enum dma_data_direction dir, unsigned long attrs)
1943 {
1944 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1945 	dma_addr_t dma_addr;
1946 	int ret, prot;
1947 	phys_addr_t addr = phys_addr & PAGE_MASK;
1948 	unsigned int offset = phys_addr & ~PAGE_MASK;
1949 	size_t len = PAGE_ALIGN(size + offset);
1950 
1951 	dma_addr = __alloc_iova(mapping, len);
1952 	if (dma_addr == DMA_MAPPING_ERROR)
1953 		return dma_addr;
1954 
1955 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1956 
1957 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1958 	if (ret < 0)
1959 		goto fail;
1960 
1961 	return dma_addr + offset;
1962 fail:
1963 	__free_iova(mapping, dma_addr, len);
1964 	return DMA_MAPPING_ERROR;
1965 }
1966 
1967 /**
1968  * arm_iommu_unmap_resource - unmap a device DMA resource
1969  * @dev: valid struct device pointer
1970  * @dma_handle: DMA address to resource
1971  * @size: size of resource to map
1972  * @dir: DMA transfer direction
1973  */
1974 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1975 		size_t size, enum dma_data_direction dir,
1976 		unsigned long attrs)
1977 {
1978 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979 	dma_addr_t iova = dma_handle & PAGE_MASK;
1980 	unsigned int offset = dma_handle & ~PAGE_MASK;
1981 	size_t len = PAGE_ALIGN(size + offset);
1982 
1983 	if (!iova)
1984 		return;
1985 
1986 	iommu_unmap(mapping->domain, iova, len);
1987 	__free_iova(mapping, iova, len);
1988 }
1989 
1990 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1991 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1992 {
1993 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1994 	dma_addr_t iova = handle & PAGE_MASK;
1995 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1996 	unsigned int offset = handle & ~PAGE_MASK;
1997 
1998 	if (!iova)
1999 		return;
2000 
2001 	__dma_page_dev_to_cpu(page, offset, size, dir);
2002 }
2003 
2004 static void arm_iommu_sync_single_for_device(struct device *dev,
2005 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2006 {
2007 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008 	dma_addr_t iova = handle & PAGE_MASK;
2009 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010 	unsigned int offset = handle & ~PAGE_MASK;
2011 
2012 	if (!iova)
2013 		return;
2014 
2015 	__dma_page_cpu_to_dev(page, offset, size, dir);
2016 }
2017 
2018 const struct dma_map_ops iommu_ops = {
2019 	.alloc		= arm_iommu_alloc_attrs,
2020 	.free		= arm_iommu_free_attrs,
2021 	.mmap		= arm_iommu_mmap_attrs,
2022 	.get_sgtable	= arm_iommu_get_sgtable,
2023 
2024 	.map_page		= arm_iommu_map_page,
2025 	.unmap_page		= arm_iommu_unmap_page,
2026 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2027 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2028 
2029 	.map_sg			= arm_iommu_map_sg,
2030 	.unmap_sg		= arm_iommu_unmap_sg,
2031 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2032 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2033 
2034 	.map_resource		= arm_iommu_map_resource,
2035 	.unmap_resource		= arm_iommu_unmap_resource,
2036 
2037 	.dma_supported		= arm_dma_supported,
2038 };
2039 
2040 const struct dma_map_ops iommu_coherent_ops = {
2041 	.alloc		= arm_coherent_iommu_alloc_attrs,
2042 	.free		= arm_coherent_iommu_free_attrs,
2043 	.mmap		= arm_coherent_iommu_mmap_attrs,
2044 	.get_sgtable	= arm_iommu_get_sgtable,
2045 
2046 	.map_page	= arm_coherent_iommu_map_page,
2047 	.unmap_page	= arm_coherent_iommu_unmap_page,
2048 
2049 	.map_sg		= arm_coherent_iommu_map_sg,
2050 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2051 
2052 	.map_resource	= arm_iommu_map_resource,
2053 	.unmap_resource	= arm_iommu_unmap_resource,
2054 
2055 	.dma_supported		= arm_dma_supported,
2056 };
2057 
2058 /**
2059  * arm_iommu_create_mapping
2060  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2061  * @base: start address of the valid IO address space
2062  * @size: maximum size of the valid IO address space
2063  *
2064  * Creates a mapping structure which holds information about used/unused
2065  * IO address ranges, which is required to perform memory allocation and
2066  * mapping with IOMMU aware functions.
2067  *
2068  * The client device need to be attached to the mapping with
2069  * arm_iommu_attach_device function.
2070  */
2071 struct dma_iommu_mapping *
2072 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2073 {
2074 	unsigned int bits = size >> PAGE_SHIFT;
2075 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2076 	struct dma_iommu_mapping *mapping;
2077 	int extensions = 1;
2078 	int err = -ENOMEM;
2079 
2080 	/* currently only 32-bit DMA address space is supported */
2081 	if (size > DMA_BIT_MASK(32) + 1)
2082 		return ERR_PTR(-ERANGE);
2083 
2084 	if (!bitmap_size)
2085 		return ERR_PTR(-EINVAL);
2086 
2087 	if (bitmap_size > PAGE_SIZE) {
2088 		extensions = bitmap_size / PAGE_SIZE;
2089 		bitmap_size = PAGE_SIZE;
2090 	}
2091 
2092 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2093 	if (!mapping)
2094 		goto err;
2095 
2096 	mapping->bitmap_size = bitmap_size;
2097 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2098 				   GFP_KERNEL);
2099 	if (!mapping->bitmaps)
2100 		goto err2;
2101 
2102 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2103 	if (!mapping->bitmaps[0])
2104 		goto err3;
2105 
2106 	mapping->nr_bitmaps = 1;
2107 	mapping->extensions = extensions;
2108 	mapping->base = base;
2109 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2110 
2111 	spin_lock_init(&mapping->lock);
2112 
2113 	mapping->domain = iommu_domain_alloc(bus);
2114 	if (!mapping->domain)
2115 		goto err4;
2116 
2117 	kref_init(&mapping->kref);
2118 	return mapping;
2119 err4:
2120 	kfree(mapping->bitmaps[0]);
2121 err3:
2122 	kfree(mapping->bitmaps);
2123 err2:
2124 	kfree(mapping);
2125 err:
2126 	return ERR_PTR(err);
2127 }
2128 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2129 
2130 static void release_iommu_mapping(struct kref *kref)
2131 {
2132 	int i;
2133 	struct dma_iommu_mapping *mapping =
2134 		container_of(kref, struct dma_iommu_mapping, kref);
2135 
2136 	iommu_domain_free(mapping->domain);
2137 	for (i = 0; i < mapping->nr_bitmaps; i++)
2138 		kfree(mapping->bitmaps[i]);
2139 	kfree(mapping->bitmaps);
2140 	kfree(mapping);
2141 }
2142 
2143 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2144 {
2145 	int next_bitmap;
2146 
2147 	if (mapping->nr_bitmaps >= mapping->extensions)
2148 		return -EINVAL;
2149 
2150 	next_bitmap = mapping->nr_bitmaps;
2151 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2152 						GFP_ATOMIC);
2153 	if (!mapping->bitmaps[next_bitmap])
2154 		return -ENOMEM;
2155 
2156 	mapping->nr_bitmaps++;
2157 
2158 	return 0;
2159 }
2160 
2161 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2162 {
2163 	if (mapping)
2164 		kref_put(&mapping->kref, release_iommu_mapping);
2165 }
2166 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2167 
2168 static int __arm_iommu_attach_device(struct device *dev,
2169 				     struct dma_iommu_mapping *mapping)
2170 {
2171 	int err;
2172 
2173 	err = iommu_attach_device(mapping->domain, dev);
2174 	if (err)
2175 		return err;
2176 
2177 	kref_get(&mapping->kref);
2178 	to_dma_iommu_mapping(dev) = mapping;
2179 
2180 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2181 	return 0;
2182 }
2183 
2184 /**
2185  * arm_iommu_attach_device
2186  * @dev: valid struct device pointer
2187  * @mapping: io address space mapping structure (returned from
2188  *	arm_iommu_create_mapping)
2189  *
2190  * Attaches specified io address space mapping to the provided device.
2191  * This replaces the dma operations (dma_map_ops pointer) with the
2192  * IOMMU aware version.
2193  *
2194  * More than one client might be attached to the same io address space
2195  * mapping.
2196  */
2197 int arm_iommu_attach_device(struct device *dev,
2198 			    struct dma_iommu_mapping *mapping)
2199 {
2200 	int err;
2201 
2202 	err = __arm_iommu_attach_device(dev, mapping);
2203 	if (err)
2204 		return err;
2205 
2206 	set_dma_ops(dev, &iommu_ops);
2207 	return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2210 
2211 /**
2212  * arm_iommu_detach_device
2213  * @dev: valid struct device pointer
2214  *
2215  * Detaches the provided device from a previously attached map.
2216  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2217  */
2218 void arm_iommu_detach_device(struct device *dev)
2219 {
2220 	struct dma_iommu_mapping *mapping;
2221 
2222 	mapping = to_dma_iommu_mapping(dev);
2223 	if (!mapping) {
2224 		dev_warn(dev, "Not attached\n");
2225 		return;
2226 	}
2227 
2228 	iommu_detach_device(mapping->domain, dev);
2229 	kref_put(&mapping->kref, release_iommu_mapping);
2230 	to_dma_iommu_mapping(dev) = NULL;
2231 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2232 
2233 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2234 }
2235 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2236 
2237 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2238 {
2239 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2240 }
2241 
2242 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2243 				    const struct iommu_ops *iommu)
2244 {
2245 	struct dma_iommu_mapping *mapping;
2246 
2247 	if (!iommu)
2248 		return false;
2249 
2250 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2251 	if (IS_ERR(mapping)) {
2252 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2253 				size, dev_name(dev));
2254 		return false;
2255 	}
2256 
2257 	if (__arm_iommu_attach_device(dev, mapping)) {
2258 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2259 				dev_name(dev));
2260 		arm_iommu_release_mapping(mapping);
2261 		return false;
2262 	}
2263 
2264 	return true;
2265 }
2266 
2267 static void arm_teardown_iommu_dma_ops(struct device *dev)
2268 {
2269 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2270 
2271 	if (!mapping)
2272 		return;
2273 
2274 	arm_iommu_detach_device(dev);
2275 	arm_iommu_release_mapping(mapping);
2276 }
2277 
2278 #else
2279 
2280 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2281 				    const struct iommu_ops *iommu)
2282 {
2283 	return false;
2284 }
2285 
2286 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2287 
2288 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2289 
2290 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2291 
2292 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2293 			const struct iommu_ops *iommu, bool coherent)
2294 {
2295 	const struct dma_map_ops *dma_ops;
2296 
2297 	dev->archdata.dma_coherent = coherent;
2298 #ifdef CONFIG_SWIOTLB
2299 	dev->dma_coherent = coherent;
2300 #endif
2301 
2302 	/*
2303 	 * Don't override the dma_ops if they have already been set. Ideally
2304 	 * this should be the only location where dma_ops are set, remove this
2305 	 * check when all other callers of set_dma_ops will have disappeared.
2306 	 */
2307 	if (dev->dma_ops)
2308 		return;
2309 
2310 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2311 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2312 	else
2313 		dma_ops = arm_get_dma_map_ops(coherent);
2314 
2315 	set_dma_ops(dev, dma_ops);
2316 
2317 #ifdef CONFIG_XEN
2318 	if (xen_initial_domain())
2319 		dev->dma_ops = &xen_swiotlb_dma_ops;
2320 #endif
2321 	dev->archdata.dma_ops_setup = true;
2322 }
2323 
2324 void arch_teardown_dma_ops(struct device *dev)
2325 {
2326 	if (!dev->archdata.dma_ops_setup)
2327 		return;
2328 
2329 	arm_teardown_iommu_dma_ops(dev);
2330 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2331 	set_dma_ops(dev, NULL);
2332 }
2333 
2334 #ifdef CONFIG_SWIOTLB
2335 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2336 		size_t size, enum dma_data_direction dir)
2337 {
2338 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2339 			      size, dir);
2340 }
2341 
2342 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2343 		size_t size, enum dma_data_direction dir)
2344 {
2345 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2346 			      size, dir);
2347 }
2348 
2349 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2350 		dma_addr_t dma_addr)
2351 {
2352 	return dma_to_pfn(dev, dma_addr);
2353 }
2354 
2355 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2356 		gfp_t gfp, unsigned long attrs)
2357 {
2358 	return __dma_alloc(dev, size, dma_handle, gfp,
2359 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2360 			   attrs, __builtin_return_address(0));
2361 }
2362 
2363 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2364 		dma_addr_t dma_handle, unsigned long attrs)
2365 {
2366 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2367 }
2368 #endif /* CONFIG_SWIOTLB */
2369