1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/genalloc.h> 16 #include <linux/gfp.h> 17 #include <linux/errno.h> 18 #include <linux/list.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-contiguous.h> 23 #include <linux/highmem.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 #include <linux/iommu.h> 27 #include <linux/io.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sizes.h> 30 #include <linux/cma.h> 31 32 #include <asm/memory.h> 33 #include <asm/highmem.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mach/arch.h> 37 #include <asm/dma-iommu.h> 38 #include <asm/mach/map.h> 39 #include <asm/system_info.h> 40 #include <asm/dma-contiguous.h> 41 42 #include "dma.h" 43 #include "mm.h" 44 45 struct arm_dma_alloc_args { 46 struct device *dev; 47 size_t size; 48 gfp_t gfp; 49 pgprot_t prot; 50 const void *caller; 51 bool want_vaddr; 52 int coherent_flag; 53 }; 54 55 struct arm_dma_free_args { 56 struct device *dev; 57 size_t size; 58 void *cpu_addr; 59 struct page *page; 60 bool want_vaddr; 61 }; 62 63 #define NORMAL 0 64 #define COHERENT 1 65 66 struct arm_dma_allocator { 67 void *(*alloc)(struct arm_dma_alloc_args *args, 68 struct page **ret_page); 69 void (*free)(struct arm_dma_free_args *args); 70 }; 71 72 struct arm_dma_buffer { 73 struct list_head list; 74 void *virt; 75 struct arm_dma_allocator *allocator; 76 }; 77 78 static LIST_HEAD(arm_dma_bufs); 79 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 80 81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 82 { 83 struct arm_dma_buffer *buf, *found = NULL; 84 unsigned long flags; 85 86 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 87 list_for_each_entry(buf, &arm_dma_bufs, list) { 88 if (buf->virt == virt) { 89 list_del(&buf->list); 90 found = buf; 91 break; 92 } 93 } 94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 95 return found; 96 } 97 98 /* 99 * The DMA API is built upon the notion of "buffer ownership". A buffer 100 * is either exclusively owned by the CPU (and therefore may be accessed 101 * by it) or exclusively owned by the DMA device. These helper functions 102 * represent the transitions between these two ownership states. 103 * 104 * Note, however, that on later ARMs, this notion does not work due to 105 * speculative prefetches. We model our approach on the assumption that 106 * the CPU does do speculative prefetches, which means we clean caches 107 * before transfers and delay cache invalidation until transfer completion. 108 * 109 */ 110 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 111 size_t, enum dma_data_direction); 112 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 113 size_t, enum dma_data_direction); 114 115 /** 116 * arm_dma_map_page - map a portion of a page for streaming DMA 117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 118 * @page: page that buffer resides in 119 * @offset: offset into page for start of buffer 120 * @size: size of buffer to map 121 * @dir: DMA transfer direction 122 * 123 * Ensure that any data held in the cache is appropriately discarded 124 * or written back. 125 * 126 * The device owns this memory once this call has completed. The CPU 127 * can regain ownership by calling dma_unmap_page(). 128 */ 129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 130 unsigned long offset, size_t size, enum dma_data_direction dir, 131 unsigned long attrs) 132 { 133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 134 __dma_page_cpu_to_dev(page, offset, size, dir); 135 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 136 } 137 138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 139 unsigned long offset, size_t size, enum dma_data_direction dir, 140 unsigned long attrs) 141 { 142 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 143 } 144 145 /** 146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 148 * @handle: DMA address of buffer 149 * @size: size of buffer (same as passed to dma_map_page) 150 * @dir: DMA transfer direction (same as passed to dma_map_page) 151 * 152 * Unmap a page streaming mode DMA translation. The handle and size 153 * must match what was provided in the previous dma_map_page() call. 154 * All other usages are undefined. 155 * 156 * After this call, reads by the CPU to the buffer are guaranteed to see 157 * whatever the device wrote there. 158 */ 159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 160 size_t size, enum dma_data_direction dir, unsigned long attrs) 161 { 162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 164 handle & ~PAGE_MASK, size, dir); 165 } 166 167 static void arm_dma_sync_single_for_cpu(struct device *dev, 168 dma_addr_t handle, size_t size, enum dma_data_direction dir) 169 { 170 unsigned int offset = handle & (PAGE_SIZE - 1); 171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 172 __dma_page_dev_to_cpu(page, offset, size, dir); 173 } 174 175 static void arm_dma_sync_single_for_device(struct device *dev, 176 dma_addr_t handle, size_t size, enum dma_data_direction dir) 177 { 178 unsigned int offset = handle & (PAGE_SIZE - 1); 179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 180 __dma_page_cpu_to_dev(page, offset, size, dir); 181 } 182 183 struct dma_map_ops arm_dma_ops = { 184 .alloc = arm_dma_alloc, 185 .free = arm_dma_free, 186 .mmap = arm_dma_mmap, 187 .get_sgtable = arm_dma_get_sgtable, 188 .map_page = arm_dma_map_page, 189 .unmap_page = arm_dma_unmap_page, 190 .map_sg = arm_dma_map_sg, 191 .unmap_sg = arm_dma_unmap_sg, 192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 193 .sync_single_for_device = arm_dma_sync_single_for_device, 194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 195 .sync_sg_for_device = arm_dma_sync_sg_for_device, 196 }; 197 EXPORT_SYMBOL(arm_dma_ops); 198 199 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 200 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 201 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 202 dma_addr_t handle, unsigned long attrs); 203 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 204 void *cpu_addr, dma_addr_t dma_addr, size_t size, 205 unsigned long attrs); 206 207 struct dma_map_ops arm_coherent_dma_ops = { 208 .alloc = arm_coherent_dma_alloc, 209 .free = arm_coherent_dma_free, 210 .mmap = arm_coherent_dma_mmap, 211 .get_sgtable = arm_dma_get_sgtable, 212 .map_page = arm_coherent_dma_map_page, 213 .map_sg = arm_dma_map_sg, 214 }; 215 EXPORT_SYMBOL(arm_coherent_dma_ops); 216 217 static int __dma_supported(struct device *dev, u64 mask, bool warn) 218 { 219 unsigned long max_dma_pfn; 220 221 /* 222 * If the mask allows for more memory than we can address, 223 * and we actually have that much memory, then we must 224 * indicate that DMA to this device is not supported. 225 */ 226 if (sizeof(mask) != sizeof(dma_addr_t) && 227 mask > (dma_addr_t)~0 && 228 dma_to_pfn(dev, ~0) < max_pfn - 1) { 229 if (warn) { 230 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 231 mask); 232 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 233 } 234 return 0; 235 } 236 237 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 238 239 /* 240 * Translate the device's DMA mask to a PFN limit. This 241 * PFN number includes the page which we can DMA to. 242 */ 243 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 244 if (warn) 245 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 246 mask, 247 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 248 max_dma_pfn + 1); 249 return 0; 250 } 251 252 return 1; 253 } 254 255 static u64 get_coherent_dma_mask(struct device *dev) 256 { 257 u64 mask = (u64)DMA_BIT_MASK(32); 258 259 if (dev) { 260 mask = dev->coherent_dma_mask; 261 262 /* 263 * Sanity check the DMA mask - it must be non-zero, and 264 * must be able to be satisfied by a DMA allocation. 265 */ 266 if (mask == 0) { 267 dev_warn(dev, "coherent DMA mask is unset\n"); 268 return 0; 269 } 270 271 if (!__dma_supported(dev, mask, true)) 272 return 0; 273 } 274 275 return mask; 276 } 277 278 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 279 { 280 /* 281 * Ensure that the allocated pages are zeroed, and that any data 282 * lurking in the kernel direct-mapped region is invalidated. 283 */ 284 if (PageHighMem(page)) { 285 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 286 phys_addr_t end = base + size; 287 while (size > 0) { 288 void *ptr = kmap_atomic(page); 289 memset(ptr, 0, PAGE_SIZE); 290 if (coherent_flag != COHERENT) 291 dmac_flush_range(ptr, ptr + PAGE_SIZE); 292 kunmap_atomic(ptr); 293 page++; 294 size -= PAGE_SIZE; 295 } 296 if (coherent_flag != COHERENT) 297 outer_flush_range(base, end); 298 } else { 299 void *ptr = page_address(page); 300 memset(ptr, 0, size); 301 if (coherent_flag != COHERENT) { 302 dmac_flush_range(ptr, ptr + size); 303 outer_flush_range(__pa(ptr), __pa(ptr) + size); 304 } 305 } 306 } 307 308 /* 309 * Allocate a DMA buffer for 'dev' of size 'size' using the 310 * specified gfp mask. Note that 'size' must be page aligned. 311 */ 312 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 313 gfp_t gfp, int coherent_flag) 314 { 315 unsigned long order = get_order(size); 316 struct page *page, *p, *e; 317 318 page = alloc_pages(gfp, order); 319 if (!page) 320 return NULL; 321 322 /* 323 * Now split the huge page and free the excess pages 324 */ 325 split_page(page, order); 326 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 327 __free_page(p); 328 329 __dma_clear_buffer(page, size, coherent_flag); 330 331 return page; 332 } 333 334 /* 335 * Free a DMA buffer. 'size' must be page aligned. 336 */ 337 static void __dma_free_buffer(struct page *page, size_t size) 338 { 339 struct page *e = page + (size >> PAGE_SHIFT); 340 341 while (page < e) { 342 __free_page(page); 343 page++; 344 } 345 } 346 347 #ifdef CONFIG_MMU 348 349 static void *__alloc_from_contiguous(struct device *dev, size_t size, 350 pgprot_t prot, struct page **ret_page, 351 const void *caller, bool want_vaddr, 352 int coherent_flag, gfp_t gfp); 353 354 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 355 pgprot_t prot, struct page **ret_page, 356 const void *caller, bool want_vaddr); 357 358 static void * 359 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 360 const void *caller) 361 { 362 /* 363 * DMA allocation can be mapped to user space, so lets 364 * set VM_USERMAP flags too. 365 */ 366 return dma_common_contiguous_remap(page, size, 367 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 368 prot, caller); 369 } 370 371 static void __dma_free_remap(void *cpu_addr, size_t size) 372 { 373 dma_common_free_remap(cpu_addr, size, 374 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 375 } 376 377 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 378 static struct gen_pool *atomic_pool; 379 380 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; 381 382 static int __init early_coherent_pool(char *p) 383 { 384 atomic_pool_size = memparse(p, &p); 385 return 0; 386 } 387 early_param("coherent_pool", early_coherent_pool); 388 389 void __init init_dma_coherent_pool_size(unsigned long size) 390 { 391 /* 392 * Catch any attempt to set the pool size too late. 393 */ 394 BUG_ON(atomic_pool); 395 396 /* 397 * Set architecture specific coherent pool size only if 398 * it has not been changed by kernel command line parameter. 399 */ 400 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE) 401 atomic_pool_size = size; 402 } 403 404 /* 405 * Initialise the coherent pool for atomic allocations. 406 */ 407 static int __init atomic_pool_init(void) 408 { 409 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 410 gfp_t gfp = GFP_KERNEL | GFP_DMA; 411 struct page *page; 412 void *ptr; 413 414 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 415 if (!atomic_pool) 416 goto out; 417 /* 418 * The atomic pool is only used for non-coherent allocations 419 * so we must pass NORMAL for coherent_flag. 420 */ 421 if (dev_get_cma_area(NULL)) 422 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 423 &page, atomic_pool_init, true, NORMAL, 424 GFP_KERNEL); 425 else 426 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 427 &page, atomic_pool_init, true); 428 if (ptr) { 429 int ret; 430 431 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 432 page_to_phys(page), 433 atomic_pool_size, -1); 434 if (ret) 435 goto destroy_genpool; 436 437 gen_pool_set_algo(atomic_pool, 438 gen_pool_first_fit_order_align, 439 (void *)PAGE_SHIFT); 440 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 441 atomic_pool_size / 1024); 442 return 0; 443 } 444 445 destroy_genpool: 446 gen_pool_destroy(atomic_pool); 447 atomic_pool = NULL; 448 out: 449 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 450 atomic_pool_size / 1024); 451 return -ENOMEM; 452 } 453 /* 454 * CMA is activated by core_initcall, so we must be called after it. 455 */ 456 postcore_initcall(atomic_pool_init); 457 458 struct dma_contig_early_reserve { 459 phys_addr_t base; 460 unsigned long size; 461 }; 462 463 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 464 465 static int dma_mmu_remap_num __initdata; 466 467 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 468 { 469 dma_mmu_remap[dma_mmu_remap_num].base = base; 470 dma_mmu_remap[dma_mmu_remap_num].size = size; 471 dma_mmu_remap_num++; 472 } 473 474 void __init dma_contiguous_remap(void) 475 { 476 int i; 477 for (i = 0; i < dma_mmu_remap_num; i++) { 478 phys_addr_t start = dma_mmu_remap[i].base; 479 phys_addr_t end = start + dma_mmu_remap[i].size; 480 struct map_desc map; 481 unsigned long addr; 482 483 if (end > arm_lowmem_limit) 484 end = arm_lowmem_limit; 485 if (start >= end) 486 continue; 487 488 map.pfn = __phys_to_pfn(start); 489 map.virtual = __phys_to_virt(start); 490 map.length = end - start; 491 map.type = MT_MEMORY_DMA_READY; 492 493 /* 494 * Clear previous low-memory mapping to ensure that the 495 * TLB does not see any conflicting entries, then flush 496 * the TLB of the old entries before creating new mappings. 497 * 498 * This ensures that any speculatively loaded TLB entries 499 * (even though they may be rare) can not cause any problems, 500 * and ensures that this code is architecturally compliant. 501 */ 502 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 503 addr += PMD_SIZE) 504 pmd_clear(pmd_off_k(addr)); 505 506 flush_tlb_kernel_range(__phys_to_virt(start), 507 __phys_to_virt(end)); 508 509 iotable_init(&map, 1); 510 } 511 } 512 513 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 514 void *data) 515 { 516 struct page *page = virt_to_page(addr); 517 pgprot_t prot = *(pgprot_t *)data; 518 519 set_pte_ext(pte, mk_pte(page, prot), 0); 520 return 0; 521 } 522 523 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 524 { 525 unsigned long start = (unsigned long) page_address(page); 526 unsigned end = start + size; 527 528 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 529 flush_tlb_kernel_range(start, end); 530 } 531 532 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 533 pgprot_t prot, struct page **ret_page, 534 const void *caller, bool want_vaddr) 535 { 536 struct page *page; 537 void *ptr = NULL; 538 /* 539 * __alloc_remap_buffer is only called when the device is 540 * non-coherent 541 */ 542 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 543 if (!page) 544 return NULL; 545 if (!want_vaddr) 546 goto out; 547 548 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 549 if (!ptr) { 550 __dma_free_buffer(page, size); 551 return NULL; 552 } 553 554 out: 555 *ret_page = page; 556 return ptr; 557 } 558 559 static void *__alloc_from_pool(size_t size, struct page **ret_page) 560 { 561 unsigned long val; 562 void *ptr = NULL; 563 564 if (!atomic_pool) { 565 WARN(1, "coherent pool not initialised!\n"); 566 return NULL; 567 } 568 569 val = gen_pool_alloc(atomic_pool, size); 570 if (val) { 571 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 572 573 *ret_page = phys_to_page(phys); 574 ptr = (void *)val; 575 } 576 577 return ptr; 578 } 579 580 static bool __in_atomic_pool(void *start, size_t size) 581 { 582 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 583 } 584 585 static int __free_from_pool(void *start, size_t size) 586 { 587 if (!__in_atomic_pool(start, size)) 588 return 0; 589 590 gen_pool_free(atomic_pool, (unsigned long)start, size); 591 592 return 1; 593 } 594 595 static void *__alloc_from_contiguous(struct device *dev, size_t size, 596 pgprot_t prot, struct page **ret_page, 597 const void *caller, bool want_vaddr, 598 int coherent_flag, gfp_t gfp) 599 { 600 unsigned long order = get_order(size); 601 size_t count = size >> PAGE_SHIFT; 602 struct page *page; 603 void *ptr = NULL; 604 605 page = dma_alloc_from_contiguous(dev, count, order, gfp); 606 if (!page) 607 return NULL; 608 609 __dma_clear_buffer(page, size, coherent_flag); 610 611 if (!want_vaddr) 612 goto out; 613 614 if (PageHighMem(page)) { 615 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 616 if (!ptr) { 617 dma_release_from_contiguous(dev, page, count); 618 return NULL; 619 } 620 } else { 621 __dma_remap(page, size, prot); 622 ptr = page_address(page); 623 } 624 625 out: 626 *ret_page = page; 627 return ptr; 628 } 629 630 static void __free_from_contiguous(struct device *dev, struct page *page, 631 void *cpu_addr, size_t size, bool want_vaddr) 632 { 633 if (want_vaddr) { 634 if (PageHighMem(page)) 635 __dma_free_remap(cpu_addr, size); 636 else 637 __dma_remap(page, size, PAGE_KERNEL); 638 } 639 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 640 } 641 642 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 643 { 644 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 645 pgprot_writecombine(prot) : 646 pgprot_dmacoherent(prot); 647 return prot; 648 } 649 650 #define nommu() 0 651 652 #else /* !CONFIG_MMU */ 653 654 #define nommu() 1 655 656 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 657 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL 658 #define __alloc_from_pool(size, ret_page) NULL 659 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp) NULL 660 #define __free_from_pool(cpu_addr, size) do { } while (0) 661 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0) 662 #define __dma_free_remap(cpu_addr, size) do { } while (0) 663 664 #endif /* CONFIG_MMU */ 665 666 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 667 struct page **ret_page) 668 { 669 struct page *page; 670 /* __alloc_simple_buffer is only called when the device is coherent */ 671 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 672 if (!page) 673 return NULL; 674 675 *ret_page = page; 676 return page_address(page); 677 } 678 679 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 680 struct page **ret_page) 681 { 682 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 683 ret_page); 684 } 685 686 static void simple_allocator_free(struct arm_dma_free_args *args) 687 { 688 __dma_free_buffer(args->page, args->size); 689 } 690 691 static struct arm_dma_allocator simple_allocator = { 692 .alloc = simple_allocator_alloc, 693 .free = simple_allocator_free, 694 }; 695 696 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 697 struct page **ret_page) 698 { 699 return __alloc_from_contiguous(args->dev, args->size, args->prot, 700 ret_page, args->caller, 701 args->want_vaddr, args->coherent_flag, 702 args->gfp); 703 } 704 705 static void cma_allocator_free(struct arm_dma_free_args *args) 706 { 707 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 708 args->size, args->want_vaddr); 709 } 710 711 static struct arm_dma_allocator cma_allocator = { 712 .alloc = cma_allocator_alloc, 713 .free = cma_allocator_free, 714 }; 715 716 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 717 struct page **ret_page) 718 { 719 return __alloc_from_pool(args->size, ret_page); 720 } 721 722 static void pool_allocator_free(struct arm_dma_free_args *args) 723 { 724 __free_from_pool(args->cpu_addr, args->size); 725 } 726 727 static struct arm_dma_allocator pool_allocator = { 728 .alloc = pool_allocator_alloc, 729 .free = pool_allocator_free, 730 }; 731 732 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 733 struct page **ret_page) 734 { 735 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 736 args->prot, ret_page, args->caller, 737 args->want_vaddr); 738 } 739 740 static void remap_allocator_free(struct arm_dma_free_args *args) 741 { 742 if (args->want_vaddr) 743 __dma_free_remap(args->cpu_addr, args->size); 744 745 __dma_free_buffer(args->page, args->size); 746 } 747 748 static struct arm_dma_allocator remap_allocator = { 749 .alloc = remap_allocator_alloc, 750 .free = remap_allocator_free, 751 }; 752 753 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 754 gfp_t gfp, pgprot_t prot, bool is_coherent, 755 unsigned long attrs, const void *caller) 756 { 757 u64 mask = get_coherent_dma_mask(dev); 758 struct page *page = NULL; 759 void *addr; 760 bool allowblock, cma; 761 struct arm_dma_buffer *buf; 762 struct arm_dma_alloc_args args = { 763 .dev = dev, 764 .size = PAGE_ALIGN(size), 765 .gfp = gfp, 766 .prot = prot, 767 .caller = caller, 768 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 769 .coherent_flag = is_coherent ? COHERENT : NORMAL, 770 }; 771 772 #ifdef CONFIG_DMA_API_DEBUG 773 u64 limit = (mask + 1) & ~mask; 774 if (limit && size >= limit) { 775 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 776 size, mask); 777 return NULL; 778 } 779 #endif 780 781 if (!mask) 782 return NULL; 783 784 buf = kzalloc(sizeof(*buf), 785 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 786 if (!buf) 787 return NULL; 788 789 if (mask < 0xffffffffULL) 790 gfp |= GFP_DMA; 791 792 /* 793 * Following is a work-around (a.k.a. hack) to prevent pages 794 * with __GFP_COMP being passed to split_page() which cannot 795 * handle them. The real problem is that this flag probably 796 * should be 0 on ARM as it is not supported on this 797 * platform; see CONFIG_HUGETLBFS. 798 */ 799 gfp &= ~(__GFP_COMP); 800 args.gfp = gfp; 801 802 *handle = DMA_ERROR_CODE; 803 allowblock = gfpflags_allow_blocking(gfp); 804 cma = allowblock ? dev_get_cma_area(dev) : false; 805 806 if (cma) 807 buf->allocator = &cma_allocator; 808 else if (nommu() || is_coherent) 809 buf->allocator = &simple_allocator; 810 else if (allowblock) 811 buf->allocator = &remap_allocator; 812 else 813 buf->allocator = &pool_allocator; 814 815 addr = buf->allocator->alloc(&args, &page); 816 817 if (page) { 818 unsigned long flags; 819 820 *handle = pfn_to_dma(dev, page_to_pfn(page)); 821 buf->virt = args.want_vaddr ? addr : page; 822 823 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 824 list_add(&buf->list, &arm_dma_bufs); 825 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 826 } else { 827 kfree(buf); 828 } 829 830 return args.want_vaddr ? addr : page; 831 } 832 833 /* 834 * Allocate DMA-coherent memory space and return both the kernel remapped 835 * virtual and bus address for that space. 836 */ 837 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 838 gfp_t gfp, unsigned long attrs) 839 { 840 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 841 842 return __dma_alloc(dev, size, handle, gfp, prot, false, 843 attrs, __builtin_return_address(0)); 844 } 845 846 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 847 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 848 { 849 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 850 attrs, __builtin_return_address(0)); 851 } 852 853 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 854 void *cpu_addr, dma_addr_t dma_addr, size_t size, 855 unsigned long attrs) 856 { 857 int ret = -ENXIO; 858 #ifdef CONFIG_MMU 859 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 860 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 861 unsigned long pfn = dma_to_pfn(dev, dma_addr); 862 unsigned long off = vma->vm_pgoff; 863 864 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 865 return ret; 866 867 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 868 ret = remap_pfn_range(vma, vma->vm_start, 869 pfn + off, 870 vma->vm_end - vma->vm_start, 871 vma->vm_page_prot); 872 } 873 #endif /* CONFIG_MMU */ 874 875 return ret; 876 } 877 878 /* 879 * Create userspace mapping for the DMA-coherent memory. 880 */ 881 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 882 void *cpu_addr, dma_addr_t dma_addr, size_t size, 883 unsigned long attrs) 884 { 885 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 886 } 887 888 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 889 void *cpu_addr, dma_addr_t dma_addr, size_t size, 890 unsigned long attrs) 891 { 892 #ifdef CONFIG_MMU 893 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 894 #endif /* CONFIG_MMU */ 895 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 896 } 897 898 /* 899 * Free a buffer as defined by the above mapping. 900 */ 901 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 902 dma_addr_t handle, unsigned long attrs, 903 bool is_coherent) 904 { 905 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 906 struct arm_dma_buffer *buf; 907 struct arm_dma_free_args args = { 908 .dev = dev, 909 .size = PAGE_ALIGN(size), 910 .cpu_addr = cpu_addr, 911 .page = page, 912 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 913 }; 914 915 buf = arm_dma_buffer_find(cpu_addr); 916 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 917 return; 918 919 buf->allocator->free(&args); 920 kfree(buf); 921 } 922 923 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 924 dma_addr_t handle, unsigned long attrs) 925 { 926 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 927 } 928 929 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 930 dma_addr_t handle, unsigned long attrs) 931 { 932 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 933 } 934 935 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 936 void *cpu_addr, dma_addr_t handle, size_t size, 937 unsigned long attrs) 938 { 939 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 940 int ret; 941 942 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 943 if (unlikely(ret)) 944 return ret; 945 946 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 947 return 0; 948 } 949 950 static void dma_cache_maint_page(struct page *page, unsigned long offset, 951 size_t size, enum dma_data_direction dir, 952 void (*op)(const void *, size_t, int)) 953 { 954 unsigned long pfn; 955 size_t left = size; 956 957 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 958 offset %= PAGE_SIZE; 959 960 /* 961 * A single sg entry may refer to multiple physically contiguous 962 * pages. But we still need to process highmem pages individually. 963 * If highmem is not configured then the bulk of this loop gets 964 * optimized out. 965 */ 966 do { 967 size_t len = left; 968 void *vaddr; 969 970 page = pfn_to_page(pfn); 971 972 if (PageHighMem(page)) { 973 if (len + offset > PAGE_SIZE) 974 len = PAGE_SIZE - offset; 975 976 if (cache_is_vipt_nonaliasing()) { 977 vaddr = kmap_atomic(page); 978 op(vaddr + offset, len, dir); 979 kunmap_atomic(vaddr); 980 } else { 981 vaddr = kmap_high_get(page); 982 if (vaddr) { 983 op(vaddr + offset, len, dir); 984 kunmap_high(page); 985 } 986 } 987 } else { 988 vaddr = page_address(page) + offset; 989 op(vaddr, len, dir); 990 } 991 offset = 0; 992 pfn++; 993 left -= len; 994 } while (left); 995 } 996 997 /* 998 * Make an area consistent for devices. 999 * Note: Drivers should NOT use this function directly, as it will break 1000 * platforms with CONFIG_DMABOUNCE. 1001 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 1002 */ 1003 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 1004 size_t size, enum dma_data_direction dir) 1005 { 1006 phys_addr_t paddr; 1007 1008 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 1009 1010 paddr = page_to_phys(page) + off; 1011 if (dir == DMA_FROM_DEVICE) { 1012 outer_inv_range(paddr, paddr + size); 1013 } else { 1014 outer_clean_range(paddr, paddr + size); 1015 } 1016 /* FIXME: non-speculating: flush on bidirectional mappings? */ 1017 } 1018 1019 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1020 size_t size, enum dma_data_direction dir) 1021 { 1022 phys_addr_t paddr = page_to_phys(page) + off; 1023 1024 /* FIXME: non-speculating: not required */ 1025 /* in any case, don't bother invalidating if DMA to device */ 1026 if (dir != DMA_TO_DEVICE) { 1027 outer_inv_range(paddr, paddr + size); 1028 1029 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1030 } 1031 1032 /* 1033 * Mark the D-cache clean for these pages to avoid extra flushing. 1034 */ 1035 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1036 unsigned long pfn; 1037 size_t left = size; 1038 1039 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1040 off %= PAGE_SIZE; 1041 if (off) { 1042 pfn++; 1043 left -= PAGE_SIZE - off; 1044 } 1045 while (left >= PAGE_SIZE) { 1046 page = pfn_to_page(pfn++); 1047 set_bit(PG_dcache_clean, &page->flags); 1048 left -= PAGE_SIZE; 1049 } 1050 } 1051 } 1052 1053 /** 1054 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1055 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1056 * @sg: list of buffers 1057 * @nents: number of buffers to map 1058 * @dir: DMA transfer direction 1059 * 1060 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1061 * This is the scatter-gather version of the dma_map_single interface. 1062 * Here the scatter gather list elements are each tagged with the 1063 * appropriate dma address and length. They are obtained via 1064 * sg_dma_{address,length}. 1065 * 1066 * Device ownership issues as mentioned for dma_map_single are the same 1067 * here. 1068 */ 1069 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1070 enum dma_data_direction dir, unsigned long attrs) 1071 { 1072 struct dma_map_ops *ops = get_dma_ops(dev); 1073 struct scatterlist *s; 1074 int i, j; 1075 1076 for_each_sg(sg, s, nents, i) { 1077 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1078 s->dma_length = s->length; 1079 #endif 1080 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1081 s->length, dir, attrs); 1082 if (dma_mapping_error(dev, s->dma_address)) 1083 goto bad_mapping; 1084 } 1085 return nents; 1086 1087 bad_mapping: 1088 for_each_sg(sg, s, i, j) 1089 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1090 return 0; 1091 } 1092 1093 /** 1094 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1095 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1096 * @sg: list of buffers 1097 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1098 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1099 * 1100 * Unmap a set of streaming mode DMA translations. Again, CPU access 1101 * rules concerning calls here are the same as for dma_unmap_single(). 1102 */ 1103 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1104 enum dma_data_direction dir, unsigned long attrs) 1105 { 1106 struct dma_map_ops *ops = get_dma_ops(dev); 1107 struct scatterlist *s; 1108 1109 int i; 1110 1111 for_each_sg(sg, s, nents, i) 1112 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1113 } 1114 1115 /** 1116 * arm_dma_sync_sg_for_cpu 1117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1118 * @sg: list of buffers 1119 * @nents: number of buffers to map (returned from dma_map_sg) 1120 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1121 */ 1122 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1123 int nents, enum dma_data_direction dir) 1124 { 1125 struct dma_map_ops *ops = get_dma_ops(dev); 1126 struct scatterlist *s; 1127 int i; 1128 1129 for_each_sg(sg, s, nents, i) 1130 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1131 dir); 1132 } 1133 1134 /** 1135 * arm_dma_sync_sg_for_device 1136 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1137 * @sg: list of buffers 1138 * @nents: number of buffers to map (returned from dma_map_sg) 1139 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1140 */ 1141 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1142 int nents, enum dma_data_direction dir) 1143 { 1144 struct dma_map_ops *ops = get_dma_ops(dev); 1145 struct scatterlist *s; 1146 int i; 1147 1148 for_each_sg(sg, s, nents, i) 1149 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1150 dir); 1151 } 1152 1153 /* 1154 * Return whether the given device DMA address mask can be supported 1155 * properly. For example, if your device can only drive the low 24-bits 1156 * during bus mastering, then you would pass 0x00ffffff as the mask 1157 * to this function. 1158 */ 1159 int dma_supported(struct device *dev, u64 mask) 1160 { 1161 return __dma_supported(dev, mask, false); 1162 } 1163 EXPORT_SYMBOL(dma_supported); 1164 1165 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1166 1167 static int __init dma_debug_do_init(void) 1168 { 1169 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1170 return 0; 1171 } 1172 core_initcall(dma_debug_do_init); 1173 1174 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1175 1176 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1177 { 1178 int prot = 0; 1179 1180 if (attrs & DMA_ATTR_PRIVILEGED) 1181 prot |= IOMMU_PRIV; 1182 1183 switch (dir) { 1184 case DMA_BIDIRECTIONAL: 1185 return prot | IOMMU_READ | IOMMU_WRITE; 1186 case DMA_TO_DEVICE: 1187 return prot | IOMMU_READ; 1188 case DMA_FROM_DEVICE: 1189 return prot | IOMMU_WRITE; 1190 default: 1191 return prot; 1192 } 1193 } 1194 1195 /* IOMMU */ 1196 1197 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1198 1199 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1200 size_t size) 1201 { 1202 unsigned int order = get_order(size); 1203 unsigned int align = 0; 1204 unsigned int count, start; 1205 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1206 unsigned long flags; 1207 dma_addr_t iova; 1208 int i; 1209 1210 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1211 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1212 1213 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1214 align = (1 << order) - 1; 1215 1216 spin_lock_irqsave(&mapping->lock, flags); 1217 for (i = 0; i < mapping->nr_bitmaps; i++) { 1218 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1219 mapping->bits, 0, count, align); 1220 1221 if (start > mapping->bits) 1222 continue; 1223 1224 bitmap_set(mapping->bitmaps[i], start, count); 1225 break; 1226 } 1227 1228 /* 1229 * No unused range found. Try to extend the existing mapping 1230 * and perform a second attempt to reserve an IO virtual 1231 * address range of size bytes. 1232 */ 1233 if (i == mapping->nr_bitmaps) { 1234 if (extend_iommu_mapping(mapping)) { 1235 spin_unlock_irqrestore(&mapping->lock, flags); 1236 return DMA_ERROR_CODE; 1237 } 1238 1239 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1240 mapping->bits, 0, count, align); 1241 1242 if (start > mapping->bits) { 1243 spin_unlock_irqrestore(&mapping->lock, flags); 1244 return DMA_ERROR_CODE; 1245 } 1246 1247 bitmap_set(mapping->bitmaps[i], start, count); 1248 } 1249 spin_unlock_irqrestore(&mapping->lock, flags); 1250 1251 iova = mapping->base + (mapping_size * i); 1252 iova += start << PAGE_SHIFT; 1253 1254 return iova; 1255 } 1256 1257 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1258 dma_addr_t addr, size_t size) 1259 { 1260 unsigned int start, count; 1261 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1262 unsigned long flags; 1263 dma_addr_t bitmap_base; 1264 u32 bitmap_index; 1265 1266 if (!size) 1267 return; 1268 1269 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1270 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1271 1272 bitmap_base = mapping->base + mapping_size * bitmap_index; 1273 1274 start = (addr - bitmap_base) >> PAGE_SHIFT; 1275 1276 if (addr + size > bitmap_base + mapping_size) { 1277 /* 1278 * The address range to be freed reaches into the iova 1279 * range of the next bitmap. This should not happen as 1280 * we don't allow this in __alloc_iova (at the 1281 * moment). 1282 */ 1283 BUG(); 1284 } else 1285 count = size >> PAGE_SHIFT; 1286 1287 spin_lock_irqsave(&mapping->lock, flags); 1288 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1289 spin_unlock_irqrestore(&mapping->lock, flags); 1290 } 1291 1292 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1293 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1294 1295 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1296 gfp_t gfp, unsigned long attrs, 1297 int coherent_flag) 1298 { 1299 struct page **pages; 1300 int count = size >> PAGE_SHIFT; 1301 int array_size = count * sizeof(struct page *); 1302 int i = 0; 1303 int order_idx = 0; 1304 1305 if (array_size <= PAGE_SIZE) 1306 pages = kzalloc(array_size, GFP_KERNEL); 1307 else 1308 pages = vzalloc(array_size); 1309 if (!pages) 1310 return NULL; 1311 1312 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1313 { 1314 unsigned long order = get_order(size); 1315 struct page *page; 1316 1317 page = dma_alloc_from_contiguous(dev, count, order, gfp); 1318 if (!page) 1319 goto error; 1320 1321 __dma_clear_buffer(page, size, coherent_flag); 1322 1323 for (i = 0; i < count; i++) 1324 pages[i] = page + i; 1325 1326 return pages; 1327 } 1328 1329 /* Go straight to 4K chunks if caller says it's OK. */ 1330 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1331 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1332 1333 /* 1334 * IOMMU can map any pages, so himem can also be used here 1335 */ 1336 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1337 1338 while (count) { 1339 int j, order; 1340 1341 order = iommu_order_array[order_idx]; 1342 1343 /* Drop down when we get small */ 1344 if (__fls(count) < order) { 1345 order_idx++; 1346 continue; 1347 } 1348 1349 if (order) { 1350 /* See if it's easy to allocate a high-order chunk */ 1351 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1352 1353 /* Go down a notch at first sign of pressure */ 1354 if (!pages[i]) { 1355 order_idx++; 1356 continue; 1357 } 1358 } else { 1359 pages[i] = alloc_pages(gfp, 0); 1360 if (!pages[i]) 1361 goto error; 1362 } 1363 1364 if (order) { 1365 split_page(pages[i], order); 1366 j = 1 << order; 1367 while (--j) 1368 pages[i + j] = pages[i] + j; 1369 } 1370 1371 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1372 i += 1 << order; 1373 count -= 1 << order; 1374 } 1375 1376 return pages; 1377 error: 1378 while (i--) 1379 if (pages[i]) 1380 __free_pages(pages[i], 0); 1381 kvfree(pages); 1382 return NULL; 1383 } 1384 1385 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1386 size_t size, unsigned long attrs) 1387 { 1388 int count = size >> PAGE_SHIFT; 1389 int i; 1390 1391 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1392 dma_release_from_contiguous(dev, pages[0], count); 1393 } else { 1394 for (i = 0; i < count; i++) 1395 if (pages[i]) 1396 __free_pages(pages[i], 0); 1397 } 1398 1399 kvfree(pages); 1400 return 0; 1401 } 1402 1403 /* 1404 * Create a CPU mapping for a specified pages 1405 */ 1406 static void * 1407 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1408 const void *caller) 1409 { 1410 return dma_common_pages_remap(pages, size, 1411 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1412 } 1413 1414 /* 1415 * Create a mapping in device IO address space for specified pages 1416 */ 1417 static dma_addr_t 1418 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1419 unsigned long attrs) 1420 { 1421 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1422 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1423 dma_addr_t dma_addr, iova; 1424 int i; 1425 1426 dma_addr = __alloc_iova(mapping, size); 1427 if (dma_addr == DMA_ERROR_CODE) 1428 return dma_addr; 1429 1430 iova = dma_addr; 1431 for (i = 0; i < count; ) { 1432 int ret; 1433 1434 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1435 phys_addr_t phys = page_to_phys(pages[i]); 1436 unsigned int len, j; 1437 1438 for (j = i + 1; j < count; j++, next_pfn++) 1439 if (page_to_pfn(pages[j]) != next_pfn) 1440 break; 1441 1442 len = (j - i) << PAGE_SHIFT; 1443 ret = iommu_map(mapping->domain, iova, phys, len, 1444 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1445 if (ret < 0) 1446 goto fail; 1447 iova += len; 1448 i = j; 1449 } 1450 return dma_addr; 1451 fail: 1452 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1453 __free_iova(mapping, dma_addr, size); 1454 return DMA_ERROR_CODE; 1455 } 1456 1457 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1458 { 1459 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1460 1461 /* 1462 * add optional in-page offset from iova to size and align 1463 * result to page size 1464 */ 1465 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1466 iova &= PAGE_MASK; 1467 1468 iommu_unmap(mapping->domain, iova, size); 1469 __free_iova(mapping, iova, size); 1470 return 0; 1471 } 1472 1473 static struct page **__atomic_get_pages(void *addr) 1474 { 1475 struct page *page; 1476 phys_addr_t phys; 1477 1478 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1479 page = phys_to_page(phys); 1480 1481 return (struct page **)page; 1482 } 1483 1484 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1485 { 1486 struct vm_struct *area; 1487 1488 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1489 return __atomic_get_pages(cpu_addr); 1490 1491 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1492 return cpu_addr; 1493 1494 area = find_vm_area(cpu_addr); 1495 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1496 return area->pages; 1497 return NULL; 1498 } 1499 1500 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1501 dma_addr_t *handle, int coherent_flag, 1502 unsigned long attrs) 1503 { 1504 struct page *page; 1505 void *addr; 1506 1507 if (coherent_flag == COHERENT) 1508 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1509 else 1510 addr = __alloc_from_pool(size, &page); 1511 if (!addr) 1512 return NULL; 1513 1514 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1515 if (*handle == DMA_ERROR_CODE) 1516 goto err_mapping; 1517 1518 return addr; 1519 1520 err_mapping: 1521 __free_from_pool(addr, size); 1522 return NULL; 1523 } 1524 1525 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1526 dma_addr_t handle, size_t size, int coherent_flag) 1527 { 1528 __iommu_remove_mapping(dev, handle, size); 1529 if (coherent_flag == COHERENT) 1530 __dma_free_buffer(virt_to_page(cpu_addr), size); 1531 else 1532 __free_from_pool(cpu_addr, size); 1533 } 1534 1535 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1536 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1537 int coherent_flag) 1538 { 1539 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1540 struct page **pages; 1541 void *addr = NULL; 1542 1543 *handle = DMA_ERROR_CODE; 1544 size = PAGE_ALIGN(size); 1545 1546 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1547 return __iommu_alloc_simple(dev, size, gfp, handle, 1548 coherent_flag, attrs); 1549 1550 /* 1551 * Following is a work-around (a.k.a. hack) to prevent pages 1552 * with __GFP_COMP being passed to split_page() which cannot 1553 * handle them. The real problem is that this flag probably 1554 * should be 0 on ARM as it is not supported on this 1555 * platform; see CONFIG_HUGETLBFS. 1556 */ 1557 gfp &= ~(__GFP_COMP); 1558 1559 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1560 if (!pages) 1561 return NULL; 1562 1563 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1564 if (*handle == DMA_ERROR_CODE) 1565 goto err_buffer; 1566 1567 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1568 return pages; 1569 1570 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1571 __builtin_return_address(0)); 1572 if (!addr) 1573 goto err_mapping; 1574 1575 return addr; 1576 1577 err_mapping: 1578 __iommu_remove_mapping(dev, *handle, size); 1579 err_buffer: 1580 __iommu_free_buffer(dev, pages, size, attrs); 1581 return NULL; 1582 } 1583 1584 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1585 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1586 { 1587 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1588 } 1589 1590 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1591 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1592 { 1593 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1594 } 1595 1596 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1597 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1598 unsigned long attrs) 1599 { 1600 unsigned long uaddr = vma->vm_start; 1601 unsigned long usize = vma->vm_end - vma->vm_start; 1602 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1603 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1604 unsigned long off = vma->vm_pgoff; 1605 1606 if (!pages) 1607 return -ENXIO; 1608 1609 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1610 return -ENXIO; 1611 1612 pages += off; 1613 1614 do { 1615 int ret = vm_insert_page(vma, uaddr, *pages++); 1616 if (ret) { 1617 pr_err("Remapping memory failed: %d\n", ret); 1618 return ret; 1619 } 1620 uaddr += PAGE_SIZE; 1621 usize -= PAGE_SIZE; 1622 } while (usize > 0); 1623 1624 return 0; 1625 } 1626 static int arm_iommu_mmap_attrs(struct device *dev, 1627 struct vm_area_struct *vma, void *cpu_addr, 1628 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1629 { 1630 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1631 1632 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1633 } 1634 1635 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1636 struct vm_area_struct *vma, void *cpu_addr, 1637 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1638 { 1639 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1640 } 1641 1642 /* 1643 * free a page as defined by the above mapping. 1644 * Must not be called with IRQs disabled. 1645 */ 1646 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1647 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1648 { 1649 struct page **pages; 1650 size = PAGE_ALIGN(size); 1651 1652 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1653 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1654 return; 1655 } 1656 1657 pages = __iommu_get_pages(cpu_addr, attrs); 1658 if (!pages) { 1659 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1660 return; 1661 } 1662 1663 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1664 dma_common_free_remap(cpu_addr, size, 1665 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1666 } 1667 1668 __iommu_remove_mapping(dev, handle, size); 1669 __iommu_free_buffer(dev, pages, size, attrs); 1670 } 1671 1672 void arm_iommu_free_attrs(struct device *dev, size_t size, 1673 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1674 { 1675 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1676 } 1677 1678 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1679 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1680 { 1681 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1682 } 1683 1684 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1685 void *cpu_addr, dma_addr_t dma_addr, 1686 size_t size, unsigned long attrs) 1687 { 1688 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1689 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1690 1691 if (!pages) 1692 return -ENXIO; 1693 1694 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1695 GFP_KERNEL); 1696 } 1697 1698 /* 1699 * Map a part of the scatter-gather list into contiguous io address space 1700 */ 1701 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1702 size_t size, dma_addr_t *handle, 1703 enum dma_data_direction dir, unsigned long attrs, 1704 bool is_coherent) 1705 { 1706 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1707 dma_addr_t iova, iova_base; 1708 int ret = 0; 1709 unsigned int count; 1710 struct scatterlist *s; 1711 int prot; 1712 1713 size = PAGE_ALIGN(size); 1714 *handle = DMA_ERROR_CODE; 1715 1716 iova_base = iova = __alloc_iova(mapping, size); 1717 if (iova == DMA_ERROR_CODE) 1718 return -ENOMEM; 1719 1720 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1721 phys_addr_t phys = page_to_phys(sg_page(s)); 1722 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1723 1724 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1725 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1726 1727 prot = __dma_info_to_prot(dir, attrs); 1728 1729 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1730 if (ret < 0) 1731 goto fail; 1732 count += len >> PAGE_SHIFT; 1733 iova += len; 1734 } 1735 *handle = iova_base; 1736 1737 return 0; 1738 fail: 1739 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1740 __free_iova(mapping, iova_base, size); 1741 return ret; 1742 } 1743 1744 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1745 enum dma_data_direction dir, unsigned long attrs, 1746 bool is_coherent) 1747 { 1748 struct scatterlist *s = sg, *dma = sg, *start = sg; 1749 int i, count = 0; 1750 unsigned int offset = s->offset; 1751 unsigned int size = s->offset + s->length; 1752 unsigned int max = dma_get_max_seg_size(dev); 1753 1754 for (i = 1; i < nents; i++) { 1755 s = sg_next(s); 1756 1757 s->dma_address = DMA_ERROR_CODE; 1758 s->dma_length = 0; 1759 1760 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1761 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1762 dir, attrs, is_coherent) < 0) 1763 goto bad_mapping; 1764 1765 dma->dma_address += offset; 1766 dma->dma_length = size - offset; 1767 1768 size = offset = s->offset; 1769 start = s; 1770 dma = sg_next(dma); 1771 count += 1; 1772 } 1773 size += s->length; 1774 } 1775 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1776 is_coherent) < 0) 1777 goto bad_mapping; 1778 1779 dma->dma_address += offset; 1780 dma->dma_length = size - offset; 1781 1782 return count+1; 1783 1784 bad_mapping: 1785 for_each_sg(sg, s, count, i) 1786 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1787 return 0; 1788 } 1789 1790 /** 1791 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1792 * @dev: valid struct device pointer 1793 * @sg: list of buffers 1794 * @nents: number of buffers to map 1795 * @dir: DMA transfer direction 1796 * 1797 * Map a set of i/o coherent buffers described by scatterlist in streaming 1798 * mode for DMA. The scatter gather list elements are merged together (if 1799 * possible) and tagged with the appropriate dma address and length. They are 1800 * obtained via sg_dma_{address,length}. 1801 */ 1802 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1803 int nents, enum dma_data_direction dir, unsigned long attrs) 1804 { 1805 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1806 } 1807 1808 /** 1809 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1810 * @dev: valid struct device pointer 1811 * @sg: list of buffers 1812 * @nents: number of buffers to map 1813 * @dir: DMA transfer direction 1814 * 1815 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1816 * The scatter gather list elements are merged together (if possible) and 1817 * tagged with the appropriate dma address and length. They are obtained via 1818 * sg_dma_{address,length}. 1819 */ 1820 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1821 int nents, enum dma_data_direction dir, unsigned long attrs) 1822 { 1823 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1824 } 1825 1826 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1827 int nents, enum dma_data_direction dir, 1828 unsigned long attrs, bool is_coherent) 1829 { 1830 struct scatterlist *s; 1831 int i; 1832 1833 for_each_sg(sg, s, nents, i) { 1834 if (sg_dma_len(s)) 1835 __iommu_remove_mapping(dev, sg_dma_address(s), 1836 sg_dma_len(s)); 1837 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1838 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1839 s->length, dir); 1840 } 1841 } 1842 1843 /** 1844 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1845 * @dev: valid struct device pointer 1846 * @sg: list of buffers 1847 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1848 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1849 * 1850 * Unmap a set of streaming mode DMA translations. Again, CPU access 1851 * rules concerning calls here are the same as for dma_unmap_single(). 1852 */ 1853 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1854 int nents, enum dma_data_direction dir, 1855 unsigned long attrs) 1856 { 1857 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1858 } 1859 1860 /** 1861 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1862 * @dev: valid struct device pointer 1863 * @sg: list of buffers 1864 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1865 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1866 * 1867 * Unmap a set of streaming mode DMA translations. Again, CPU access 1868 * rules concerning calls here are the same as for dma_unmap_single(). 1869 */ 1870 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1871 enum dma_data_direction dir, 1872 unsigned long attrs) 1873 { 1874 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1875 } 1876 1877 /** 1878 * arm_iommu_sync_sg_for_cpu 1879 * @dev: valid struct device pointer 1880 * @sg: list of buffers 1881 * @nents: number of buffers to map (returned from dma_map_sg) 1882 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1883 */ 1884 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1885 int nents, enum dma_data_direction dir) 1886 { 1887 struct scatterlist *s; 1888 int i; 1889 1890 for_each_sg(sg, s, nents, i) 1891 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1892 1893 } 1894 1895 /** 1896 * arm_iommu_sync_sg_for_device 1897 * @dev: valid struct device pointer 1898 * @sg: list of buffers 1899 * @nents: number of buffers to map (returned from dma_map_sg) 1900 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1901 */ 1902 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1903 int nents, enum dma_data_direction dir) 1904 { 1905 struct scatterlist *s; 1906 int i; 1907 1908 for_each_sg(sg, s, nents, i) 1909 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1910 } 1911 1912 1913 /** 1914 * arm_coherent_iommu_map_page 1915 * @dev: valid struct device pointer 1916 * @page: page that buffer resides in 1917 * @offset: offset into page for start of buffer 1918 * @size: size of buffer to map 1919 * @dir: DMA transfer direction 1920 * 1921 * Coherent IOMMU aware version of arm_dma_map_page() 1922 */ 1923 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1924 unsigned long offset, size_t size, enum dma_data_direction dir, 1925 unsigned long attrs) 1926 { 1927 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1928 dma_addr_t dma_addr; 1929 int ret, prot, len = PAGE_ALIGN(size + offset); 1930 1931 dma_addr = __alloc_iova(mapping, len); 1932 if (dma_addr == DMA_ERROR_CODE) 1933 return dma_addr; 1934 1935 prot = __dma_info_to_prot(dir, attrs); 1936 1937 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1938 if (ret < 0) 1939 goto fail; 1940 1941 return dma_addr + offset; 1942 fail: 1943 __free_iova(mapping, dma_addr, len); 1944 return DMA_ERROR_CODE; 1945 } 1946 1947 /** 1948 * arm_iommu_map_page 1949 * @dev: valid struct device pointer 1950 * @page: page that buffer resides in 1951 * @offset: offset into page for start of buffer 1952 * @size: size of buffer to map 1953 * @dir: DMA transfer direction 1954 * 1955 * IOMMU aware version of arm_dma_map_page() 1956 */ 1957 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1958 unsigned long offset, size_t size, enum dma_data_direction dir, 1959 unsigned long attrs) 1960 { 1961 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1962 __dma_page_cpu_to_dev(page, offset, size, dir); 1963 1964 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1965 } 1966 1967 /** 1968 * arm_coherent_iommu_unmap_page 1969 * @dev: valid struct device pointer 1970 * @handle: DMA address of buffer 1971 * @size: size of buffer (same as passed to dma_map_page) 1972 * @dir: DMA transfer direction (same as passed to dma_map_page) 1973 * 1974 * Coherent IOMMU aware version of arm_dma_unmap_page() 1975 */ 1976 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1977 size_t size, enum dma_data_direction dir, unsigned long attrs) 1978 { 1979 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1980 dma_addr_t iova = handle & PAGE_MASK; 1981 int offset = handle & ~PAGE_MASK; 1982 int len = PAGE_ALIGN(size + offset); 1983 1984 if (!iova) 1985 return; 1986 1987 iommu_unmap(mapping->domain, iova, len); 1988 __free_iova(mapping, iova, len); 1989 } 1990 1991 /** 1992 * arm_iommu_unmap_page 1993 * @dev: valid struct device pointer 1994 * @handle: DMA address of buffer 1995 * @size: size of buffer (same as passed to dma_map_page) 1996 * @dir: DMA transfer direction (same as passed to dma_map_page) 1997 * 1998 * IOMMU aware version of arm_dma_unmap_page() 1999 */ 2000 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 2001 size_t size, enum dma_data_direction dir, unsigned long attrs) 2002 { 2003 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2004 dma_addr_t iova = handle & PAGE_MASK; 2005 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2006 int offset = handle & ~PAGE_MASK; 2007 int len = PAGE_ALIGN(size + offset); 2008 2009 if (!iova) 2010 return; 2011 2012 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 2013 __dma_page_dev_to_cpu(page, offset, size, dir); 2014 2015 iommu_unmap(mapping->domain, iova, len); 2016 __free_iova(mapping, iova, len); 2017 } 2018 2019 /** 2020 * arm_iommu_map_resource - map a device resource for DMA 2021 * @dev: valid struct device pointer 2022 * @phys_addr: physical address of resource 2023 * @size: size of resource to map 2024 * @dir: DMA transfer direction 2025 */ 2026 static dma_addr_t arm_iommu_map_resource(struct device *dev, 2027 phys_addr_t phys_addr, size_t size, 2028 enum dma_data_direction dir, unsigned long attrs) 2029 { 2030 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2031 dma_addr_t dma_addr; 2032 int ret, prot; 2033 phys_addr_t addr = phys_addr & PAGE_MASK; 2034 unsigned int offset = phys_addr & ~PAGE_MASK; 2035 size_t len = PAGE_ALIGN(size + offset); 2036 2037 dma_addr = __alloc_iova(mapping, len); 2038 if (dma_addr == DMA_ERROR_CODE) 2039 return dma_addr; 2040 2041 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2042 2043 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2044 if (ret < 0) 2045 goto fail; 2046 2047 return dma_addr + offset; 2048 fail: 2049 __free_iova(mapping, dma_addr, len); 2050 return DMA_ERROR_CODE; 2051 } 2052 2053 /** 2054 * arm_iommu_unmap_resource - unmap a device DMA resource 2055 * @dev: valid struct device pointer 2056 * @dma_handle: DMA address to resource 2057 * @size: size of resource to map 2058 * @dir: DMA transfer direction 2059 */ 2060 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2061 size_t size, enum dma_data_direction dir, 2062 unsigned long attrs) 2063 { 2064 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2065 dma_addr_t iova = dma_handle & PAGE_MASK; 2066 unsigned int offset = dma_handle & ~PAGE_MASK; 2067 size_t len = PAGE_ALIGN(size + offset); 2068 2069 if (!iova) 2070 return; 2071 2072 iommu_unmap(mapping->domain, iova, len); 2073 __free_iova(mapping, iova, len); 2074 } 2075 2076 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2077 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2078 { 2079 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2080 dma_addr_t iova = handle & PAGE_MASK; 2081 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2082 unsigned int offset = handle & ~PAGE_MASK; 2083 2084 if (!iova) 2085 return; 2086 2087 __dma_page_dev_to_cpu(page, offset, size, dir); 2088 } 2089 2090 static void arm_iommu_sync_single_for_device(struct device *dev, 2091 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2092 { 2093 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2094 dma_addr_t iova = handle & PAGE_MASK; 2095 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2096 unsigned int offset = handle & ~PAGE_MASK; 2097 2098 if (!iova) 2099 return; 2100 2101 __dma_page_cpu_to_dev(page, offset, size, dir); 2102 } 2103 2104 struct dma_map_ops iommu_ops = { 2105 .alloc = arm_iommu_alloc_attrs, 2106 .free = arm_iommu_free_attrs, 2107 .mmap = arm_iommu_mmap_attrs, 2108 .get_sgtable = arm_iommu_get_sgtable, 2109 2110 .map_page = arm_iommu_map_page, 2111 .unmap_page = arm_iommu_unmap_page, 2112 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2113 .sync_single_for_device = arm_iommu_sync_single_for_device, 2114 2115 .map_sg = arm_iommu_map_sg, 2116 .unmap_sg = arm_iommu_unmap_sg, 2117 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2118 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2119 2120 .map_resource = arm_iommu_map_resource, 2121 .unmap_resource = arm_iommu_unmap_resource, 2122 }; 2123 2124 struct dma_map_ops iommu_coherent_ops = { 2125 .alloc = arm_coherent_iommu_alloc_attrs, 2126 .free = arm_coherent_iommu_free_attrs, 2127 .mmap = arm_coherent_iommu_mmap_attrs, 2128 .get_sgtable = arm_iommu_get_sgtable, 2129 2130 .map_page = arm_coherent_iommu_map_page, 2131 .unmap_page = arm_coherent_iommu_unmap_page, 2132 2133 .map_sg = arm_coherent_iommu_map_sg, 2134 .unmap_sg = arm_coherent_iommu_unmap_sg, 2135 2136 .map_resource = arm_iommu_map_resource, 2137 .unmap_resource = arm_iommu_unmap_resource, 2138 }; 2139 2140 /** 2141 * arm_iommu_create_mapping 2142 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2143 * @base: start address of the valid IO address space 2144 * @size: maximum size of the valid IO address space 2145 * 2146 * Creates a mapping structure which holds information about used/unused 2147 * IO address ranges, which is required to perform memory allocation and 2148 * mapping with IOMMU aware functions. 2149 * 2150 * The client device need to be attached to the mapping with 2151 * arm_iommu_attach_device function. 2152 */ 2153 struct dma_iommu_mapping * 2154 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2155 { 2156 unsigned int bits = size >> PAGE_SHIFT; 2157 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2158 struct dma_iommu_mapping *mapping; 2159 int extensions = 1; 2160 int err = -ENOMEM; 2161 2162 /* currently only 32-bit DMA address space is supported */ 2163 if (size > DMA_BIT_MASK(32) + 1) 2164 return ERR_PTR(-ERANGE); 2165 2166 if (!bitmap_size) 2167 return ERR_PTR(-EINVAL); 2168 2169 if (bitmap_size > PAGE_SIZE) { 2170 extensions = bitmap_size / PAGE_SIZE; 2171 bitmap_size = PAGE_SIZE; 2172 } 2173 2174 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2175 if (!mapping) 2176 goto err; 2177 2178 mapping->bitmap_size = bitmap_size; 2179 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 2180 GFP_KERNEL); 2181 if (!mapping->bitmaps) 2182 goto err2; 2183 2184 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2185 if (!mapping->bitmaps[0]) 2186 goto err3; 2187 2188 mapping->nr_bitmaps = 1; 2189 mapping->extensions = extensions; 2190 mapping->base = base; 2191 mapping->bits = BITS_PER_BYTE * bitmap_size; 2192 2193 spin_lock_init(&mapping->lock); 2194 2195 mapping->domain = iommu_domain_alloc(bus); 2196 if (!mapping->domain) 2197 goto err4; 2198 2199 kref_init(&mapping->kref); 2200 return mapping; 2201 err4: 2202 kfree(mapping->bitmaps[0]); 2203 err3: 2204 kfree(mapping->bitmaps); 2205 err2: 2206 kfree(mapping); 2207 err: 2208 return ERR_PTR(err); 2209 } 2210 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2211 2212 static void release_iommu_mapping(struct kref *kref) 2213 { 2214 int i; 2215 struct dma_iommu_mapping *mapping = 2216 container_of(kref, struct dma_iommu_mapping, kref); 2217 2218 iommu_domain_free(mapping->domain); 2219 for (i = 0; i < mapping->nr_bitmaps; i++) 2220 kfree(mapping->bitmaps[i]); 2221 kfree(mapping->bitmaps); 2222 kfree(mapping); 2223 } 2224 2225 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2226 { 2227 int next_bitmap; 2228 2229 if (mapping->nr_bitmaps >= mapping->extensions) 2230 return -EINVAL; 2231 2232 next_bitmap = mapping->nr_bitmaps; 2233 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2234 GFP_ATOMIC); 2235 if (!mapping->bitmaps[next_bitmap]) 2236 return -ENOMEM; 2237 2238 mapping->nr_bitmaps++; 2239 2240 return 0; 2241 } 2242 2243 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2244 { 2245 if (mapping) 2246 kref_put(&mapping->kref, release_iommu_mapping); 2247 } 2248 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2249 2250 static int __arm_iommu_attach_device(struct device *dev, 2251 struct dma_iommu_mapping *mapping) 2252 { 2253 int err; 2254 2255 err = iommu_attach_device(mapping->domain, dev); 2256 if (err) 2257 return err; 2258 2259 kref_get(&mapping->kref); 2260 to_dma_iommu_mapping(dev) = mapping; 2261 2262 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2263 return 0; 2264 } 2265 2266 /** 2267 * arm_iommu_attach_device 2268 * @dev: valid struct device pointer 2269 * @mapping: io address space mapping structure (returned from 2270 * arm_iommu_create_mapping) 2271 * 2272 * Attaches specified io address space mapping to the provided device. 2273 * This replaces the dma operations (dma_map_ops pointer) with the 2274 * IOMMU aware version. 2275 * 2276 * More than one client might be attached to the same io address space 2277 * mapping. 2278 */ 2279 int arm_iommu_attach_device(struct device *dev, 2280 struct dma_iommu_mapping *mapping) 2281 { 2282 int err; 2283 2284 err = __arm_iommu_attach_device(dev, mapping); 2285 if (err) 2286 return err; 2287 2288 set_dma_ops(dev, &iommu_ops); 2289 return 0; 2290 } 2291 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2292 2293 static void __arm_iommu_detach_device(struct device *dev) 2294 { 2295 struct dma_iommu_mapping *mapping; 2296 2297 mapping = to_dma_iommu_mapping(dev); 2298 if (!mapping) { 2299 dev_warn(dev, "Not attached\n"); 2300 return; 2301 } 2302 2303 iommu_detach_device(mapping->domain, dev); 2304 kref_put(&mapping->kref, release_iommu_mapping); 2305 to_dma_iommu_mapping(dev) = NULL; 2306 2307 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2308 } 2309 2310 /** 2311 * arm_iommu_detach_device 2312 * @dev: valid struct device pointer 2313 * 2314 * Detaches the provided device from a previously attached map. 2315 * This voids the dma operations (dma_map_ops pointer) 2316 */ 2317 void arm_iommu_detach_device(struct device *dev) 2318 { 2319 __arm_iommu_detach_device(dev); 2320 set_dma_ops(dev, NULL); 2321 } 2322 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2323 2324 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2325 { 2326 return coherent ? &iommu_coherent_ops : &iommu_ops; 2327 } 2328 2329 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2330 const struct iommu_ops *iommu) 2331 { 2332 struct dma_iommu_mapping *mapping; 2333 2334 if (!iommu) 2335 return false; 2336 2337 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2338 if (IS_ERR(mapping)) { 2339 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2340 size, dev_name(dev)); 2341 return false; 2342 } 2343 2344 if (__arm_iommu_attach_device(dev, mapping)) { 2345 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2346 dev_name(dev)); 2347 arm_iommu_release_mapping(mapping); 2348 return false; 2349 } 2350 2351 return true; 2352 } 2353 2354 static void arm_teardown_iommu_dma_ops(struct device *dev) 2355 { 2356 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2357 2358 if (!mapping) 2359 return; 2360 2361 __arm_iommu_detach_device(dev); 2362 arm_iommu_release_mapping(mapping); 2363 } 2364 2365 #else 2366 2367 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2368 const struct iommu_ops *iommu) 2369 { 2370 return false; 2371 } 2372 2373 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2374 2375 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2376 2377 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2378 2379 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2380 { 2381 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2382 } 2383 2384 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2385 const struct iommu_ops *iommu, bool coherent) 2386 { 2387 struct dma_map_ops *dma_ops; 2388 2389 dev->archdata.dma_coherent = coherent; 2390 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2391 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2392 else 2393 dma_ops = arm_get_dma_map_ops(coherent); 2394 2395 set_dma_ops(dev, dma_ops); 2396 } 2397 2398 void arch_teardown_dma_ops(struct device *dev) 2399 { 2400 arm_teardown_iommu_dma_ops(dev); 2401 } 2402