xref: /linux/arch/arm/mm/dma-mapping.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 /**
82  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
83  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
84  * @handle: DMA address of buffer
85  * @size: size of buffer (same as passed to dma_map_page)
86  * @dir: DMA transfer direction (same as passed to dma_map_page)
87  *
88  * Unmap a page streaming mode DMA translation.  The handle and size
89  * must match what was provided in the previous dma_map_page() call.
90  * All other usages are undefined.
91  *
92  * After this call, reads by the CPU to the buffer are guaranteed to see
93  * whatever the device wrote there.
94  */
95 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
96 		size_t size, enum dma_data_direction dir,
97 		struct dma_attrs *attrs)
98 {
99 	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
100 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
101 				      handle & ~PAGE_MASK, size, dir);
102 }
103 
104 static void arm_dma_sync_single_for_cpu(struct device *dev,
105 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
106 {
107 	unsigned int offset = handle & (PAGE_SIZE - 1);
108 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
109 	if (!arch_is_coherent())
110 		__dma_page_dev_to_cpu(page, offset, size, dir);
111 }
112 
113 static void arm_dma_sync_single_for_device(struct device *dev,
114 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
115 {
116 	unsigned int offset = handle & (PAGE_SIZE - 1);
117 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
118 	if (!arch_is_coherent())
119 		__dma_page_cpu_to_dev(page, offset, size, dir);
120 }
121 
122 static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
123 
124 struct dma_map_ops arm_dma_ops = {
125 	.alloc			= arm_dma_alloc,
126 	.free			= arm_dma_free,
127 	.mmap			= arm_dma_mmap,
128 	.get_sgtable		= arm_dma_get_sgtable,
129 	.map_page		= arm_dma_map_page,
130 	.unmap_page		= arm_dma_unmap_page,
131 	.map_sg			= arm_dma_map_sg,
132 	.unmap_sg		= arm_dma_unmap_sg,
133 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
134 	.sync_single_for_device	= arm_dma_sync_single_for_device,
135 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
136 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
137 	.set_dma_mask		= arm_dma_set_mask,
138 };
139 EXPORT_SYMBOL(arm_dma_ops);
140 
141 static u64 get_coherent_dma_mask(struct device *dev)
142 {
143 	u64 mask = (u64)arm_dma_limit;
144 
145 	if (dev) {
146 		mask = dev->coherent_dma_mask;
147 
148 		/*
149 		 * Sanity check the DMA mask - it must be non-zero, and
150 		 * must be able to be satisfied by a DMA allocation.
151 		 */
152 		if (mask == 0) {
153 			dev_warn(dev, "coherent DMA mask is unset\n");
154 			return 0;
155 		}
156 
157 		if ((~mask) & (u64)arm_dma_limit) {
158 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
159 				 "than system GFP_DMA mask %#llx\n",
160 				 mask, (u64)arm_dma_limit);
161 			return 0;
162 		}
163 	}
164 
165 	return mask;
166 }
167 
168 static void __dma_clear_buffer(struct page *page, size_t size)
169 {
170 	void *ptr;
171 	/*
172 	 * Ensure that the allocated pages are zeroed, and that any data
173 	 * lurking in the kernel direct-mapped region is invalidated.
174 	 */
175 	ptr = page_address(page);
176 	if (ptr) {
177 		memset(ptr, 0, size);
178 		dmac_flush_range(ptr, ptr + size);
179 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
180 	}
181 }
182 
183 /*
184  * Allocate a DMA buffer for 'dev' of size 'size' using the
185  * specified gfp mask.  Note that 'size' must be page aligned.
186  */
187 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
188 {
189 	unsigned long order = get_order(size);
190 	struct page *page, *p, *e;
191 
192 	page = alloc_pages(gfp, order);
193 	if (!page)
194 		return NULL;
195 
196 	/*
197 	 * Now split the huge page and free the excess pages
198 	 */
199 	split_page(page, order);
200 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
201 		__free_page(p);
202 
203 	__dma_clear_buffer(page, size);
204 
205 	return page;
206 }
207 
208 /*
209  * Free a DMA buffer.  'size' must be page aligned.
210  */
211 static void __dma_free_buffer(struct page *page, size_t size)
212 {
213 	struct page *e = page + (size >> PAGE_SHIFT);
214 
215 	while (page < e) {
216 		__free_page(page);
217 		page++;
218 	}
219 }
220 
221 #ifdef CONFIG_MMU
222 #ifdef CONFIG_HUGETLB_PAGE
223 #error ARM Coherent DMA allocator does not (yet) support huge TLB
224 #endif
225 
226 static void *__alloc_from_contiguous(struct device *dev, size_t size,
227 				     pgprot_t prot, struct page **ret_page);
228 
229 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
230 				 pgprot_t prot, struct page **ret_page,
231 				 const void *caller);
232 
233 static void *
234 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
235 	const void *caller)
236 {
237 	struct vm_struct *area;
238 	unsigned long addr;
239 
240 	/*
241 	 * DMA allocation can be mapped to user space, so lets
242 	 * set VM_USERMAP flags too.
243 	 */
244 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
245 				  caller);
246 	if (!area)
247 		return NULL;
248 	addr = (unsigned long)area->addr;
249 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
250 
251 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
252 		vunmap((void *)addr);
253 		return NULL;
254 	}
255 	return (void *)addr;
256 }
257 
258 static void __dma_free_remap(void *cpu_addr, size_t size)
259 {
260 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
261 	struct vm_struct *area = find_vm_area(cpu_addr);
262 	if (!area || (area->flags & flags) != flags) {
263 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
264 		return;
265 	}
266 	unmap_kernel_range((unsigned long)cpu_addr, size);
267 	vunmap(cpu_addr);
268 }
269 
270 struct dma_pool {
271 	size_t size;
272 	spinlock_t lock;
273 	unsigned long *bitmap;
274 	unsigned long nr_pages;
275 	void *vaddr;
276 	struct page *page;
277 };
278 
279 static struct dma_pool atomic_pool = {
280 	.size = SZ_256K,
281 };
282 
283 static int __init early_coherent_pool(char *p)
284 {
285 	atomic_pool.size = memparse(p, &p);
286 	return 0;
287 }
288 early_param("coherent_pool", early_coherent_pool);
289 
290 /*
291  * Initialise the coherent pool for atomic allocations.
292  */
293 static int __init atomic_pool_init(void)
294 {
295 	struct dma_pool *pool = &atomic_pool;
296 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
297 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
298 	unsigned long *bitmap;
299 	struct page *page;
300 	void *ptr;
301 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
302 
303 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
304 	if (!bitmap)
305 		goto no_bitmap;
306 
307 	if (IS_ENABLED(CONFIG_CMA))
308 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
309 	else
310 		ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
311 					   &page, NULL);
312 	if (ptr) {
313 		spin_lock_init(&pool->lock);
314 		pool->vaddr = ptr;
315 		pool->page = page;
316 		pool->bitmap = bitmap;
317 		pool->nr_pages = nr_pages;
318 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
319 		       (unsigned)pool->size / 1024);
320 		return 0;
321 	}
322 	kfree(bitmap);
323 no_bitmap:
324 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
325 	       (unsigned)pool->size / 1024);
326 	return -ENOMEM;
327 }
328 /*
329  * CMA is activated by core_initcall, so we must be called after it.
330  */
331 postcore_initcall(atomic_pool_init);
332 
333 struct dma_contig_early_reserve {
334 	phys_addr_t base;
335 	unsigned long size;
336 };
337 
338 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
339 
340 static int dma_mmu_remap_num __initdata;
341 
342 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
343 {
344 	dma_mmu_remap[dma_mmu_remap_num].base = base;
345 	dma_mmu_remap[dma_mmu_remap_num].size = size;
346 	dma_mmu_remap_num++;
347 }
348 
349 void __init dma_contiguous_remap(void)
350 {
351 	int i;
352 	for (i = 0; i < dma_mmu_remap_num; i++) {
353 		phys_addr_t start = dma_mmu_remap[i].base;
354 		phys_addr_t end = start + dma_mmu_remap[i].size;
355 		struct map_desc map;
356 		unsigned long addr;
357 
358 		if (end > arm_lowmem_limit)
359 			end = arm_lowmem_limit;
360 		if (start >= end)
361 			return;
362 
363 		map.pfn = __phys_to_pfn(start);
364 		map.virtual = __phys_to_virt(start);
365 		map.length = end - start;
366 		map.type = MT_MEMORY_DMA_READY;
367 
368 		/*
369 		 * Clear previous low-memory mapping
370 		 */
371 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
372 		     addr += PMD_SIZE)
373 			pmd_clear(pmd_off_k(addr));
374 
375 		iotable_init(&map, 1);
376 	}
377 }
378 
379 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
380 			    void *data)
381 {
382 	struct page *page = virt_to_page(addr);
383 	pgprot_t prot = *(pgprot_t *)data;
384 
385 	set_pte_ext(pte, mk_pte(page, prot), 0);
386 	return 0;
387 }
388 
389 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
390 {
391 	unsigned long start = (unsigned long) page_address(page);
392 	unsigned end = start + size;
393 
394 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
395 	dsb();
396 	flush_tlb_kernel_range(start, end);
397 }
398 
399 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
400 				 pgprot_t prot, struct page **ret_page,
401 				 const void *caller)
402 {
403 	struct page *page;
404 	void *ptr;
405 	page = __dma_alloc_buffer(dev, size, gfp);
406 	if (!page)
407 		return NULL;
408 
409 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
410 	if (!ptr) {
411 		__dma_free_buffer(page, size);
412 		return NULL;
413 	}
414 
415 	*ret_page = page;
416 	return ptr;
417 }
418 
419 static void *__alloc_from_pool(size_t size, struct page **ret_page)
420 {
421 	struct dma_pool *pool = &atomic_pool;
422 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
423 	unsigned int pageno;
424 	unsigned long flags;
425 	void *ptr = NULL;
426 	size_t align;
427 
428 	if (!pool->vaddr) {
429 		WARN(1, "coherent pool not initialised!\n");
430 		return NULL;
431 	}
432 
433 	/*
434 	 * Align the region allocation - allocations from pool are rather
435 	 * small, so align them to their order in pages, minimum is a page
436 	 * size. This helps reduce fragmentation of the DMA space.
437 	 */
438 	align = PAGE_SIZE << get_order(size);
439 
440 	spin_lock_irqsave(&pool->lock, flags);
441 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
442 					    0, count, (1 << align) - 1);
443 	if (pageno < pool->nr_pages) {
444 		bitmap_set(pool->bitmap, pageno, count);
445 		ptr = pool->vaddr + PAGE_SIZE * pageno;
446 		*ret_page = pool->page + pageno;
447 	}
448 	spin_unlock_irqrestore(&pool->lock, flags);
449 
450 	return ptr;
451 }
452 
453 static int __free_from_pool(void *start, size_t size)
454 {
455 	struct dma_pool *pool = &atomic_pool;
456 	unsigned long pageno, count;
457 	unsigned long flags;
458 
459 	if (start < pool->vaddr || start > pool->vaddr + pool->size)
460 		return 0;
461 
462 	if (start + size > pool->vaddr + pool->size) {
463 		WARN(1, "freeing wrong coherent size from pool\n");
464 		return 0;
465 	}
466 
467 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
468 	count = size >> PAGE_SHIFT;
469 
470 	spin_lock_irqsave(&pool->lock, flags);
471 	bitmap_clear(pool->bitmap, pageno, count);
472 	spin_unlock_irqrestore(&pool->lock, flags);
473 
474 	return 1;
475 }
476 
477 static void *__alloc_from_contiguous(struct device *dev, size_t size,
478 				     pgprot_t prot, struct page **ret_page)
479 {
480 	unsigned long order = get_order(size);
481 	size_t count = size >> PAGE_SHIFT;
482 	struct page *page;
483 
484 	page = dma_alloc_from_contiguous(dev, count, order);
485 	if (!page)
486 		return NULL;
487 
488 	__dma_clear_buffer(page, size);
489 	__dma_remap(page, size, prot);
490 
491 	*ret_page = page;
492 	return page_address(page);
493 }
494 
495 static void __free_from_contiguous(struct device *dev, struct page *page,
496 				   size_t size)
497 {
498 	__dma_remap(page, size, pgprot_kernel);
499 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
500 }
501 
502 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
503 {
504 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
505 			    pgprot_writecombine(prot) :
506 			    pgprot_dmacoherent(prot);
507 	return prot;
508 }
509 
510 #define nommu() 0
511 
512 #else	/* !CONFIG_MMU */
513 
514 #define nommu() 1
515 
516 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
517 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
518 #define __alloc_from_pool(size, ret_page)			NULL
519 #define __alloc_from_contiguous(dev, size, prot, ret)		NULL
520 #define __free_from_pool(cpu_addr, size)			0
521 #define __free_from_contiguous(dev, page, size)			do { } while (0)
522 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
523 
524 #endif	/* CONFIG_MMU */
525 
526 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
527 				   struct page **ret_page)
528 {
529 	struct page *page;
530 	page = __dma_alloc_buffer(dev, size, gfp);
531 	if (!page)
532 		return NULL;
533 
534 	*ret_page = page;
535 	return page_address(page);
536 }
537 
538 
539 
540 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
541 			 gfp_t gfp, pgprot_t prot, const void *caller)
542 {
543 	u64 mask = get_coherent_dma_mask(dev);
544 	struct page *page;
545 	void *addr;
546 
547 #ifdef CONFIG_DMA_API_DEBUG
548 	u64 limit = (mask + 1) & ~mask;
549 	if (limit && size >= limit) {
550 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
551 			size, mask);
552 		return NULL;
553 	}
554 #endif
555 
556 	if (!mask)
557 		return NULL;
558 
559 	if (mask < 0xffffffffULL)
560 		gfp |= GFP_DMA;
561 
562 	/*
563 	 * Following is a work-around (a.k.a. hack) to prevent pages
564 	 * with __GFP_COMP being passed to split_page() which cannot
565 	 * handle them.  The real problem is that this flag probably
566 	 * should be 0 on ARM as it is not supported on this
567 	 * platform; see CONFIG_HUGETLBFS.
568 	 */
569 	gfp &= ~(__GFP_COMP);
570 
571 	*handle = DMA_ERROR_CODE;
572 	size = PAGE_ALIGN(size);
573 
574 	if (arch_is_coherent() || nommu())
575 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
576 	else if (gfp & GFP_ATOMIC)
577 		addr = __alloc_from_pool(size, &page);
578 	else if (!IS_ENABLED(CONFIG_CMA))
579 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
580 	else
581 		addr = __alloc_from_contiguous(dev, size, prot, &page);
582 
583 	if (addr)
584 		*handle = pfn_to_dma(dev, page_to_pfn(page));
585 
586 	return addr;
587 }
588 
589 /*
590  * Allocate DMA-coherent memory space and return both the kernel remapped
591  * virtual and bus address for that space.
592  */
593 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
594 		    gfp_t gfp, struct dma_attrs *attrs)
595 {
596 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
597 	void *memory;
598 
599 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
600 		return memory;
601 
602 	return __dma_alloc(dev, size, handle, gfp, prot,
603 			   __builtin_return_address(0));
604 }
605 
606 /*
607  * Create userspace mapping for the DMA-coherent memory.
608  */
609 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
610 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
611 		 struct dma_attrs *attrs)
612 {
613 	int ret = -ENXIO;
614 #ifdef CONFIG_MMU
615 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
616 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
617 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
618 	unsigned long off = vma->vm_pgoff;
619 
620 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
621 
622 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
623 		return ret;
624 
625 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
626 		ret = remap_pfn_range(vma, vma->vm_start,
627 				      pfn + off,
628 				      vma->vm_end - vma->vm_start,
629 				      vma->vm_page_prot);
630 	}
631 #endif	/* CONFIG_MMU */
632 
633 	return ret;
634 }
635 
636 /*
637  * Free a buffer as defined by the above mapping.
638  */
639 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
640 		  dma_addr_t handle, struct dma_attrs *attrs)
641 {
642 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
643 
644 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
645 		return;
646 
647 	size = PAGE_ALIGN(size);
648 
649 	if (arch_is_coherent() || nommu()) {
650 		__dma_free_buffer(page, size);
651 	} else if (!IS_ENABLED(CONFIG_CMA)) {
652 		__dma_free_remap(cpu_addr, size);
653 		__dma_free_buffer(page, size);
654 	} else {
655 		if (__free_from_pool(cpu_addr, size))
656 			return;
657 		/*
658 		 * Non-atomic allocations cannot be freed with IRQs disabled
659 		 */
660 		WARN_ON(irqs_disabled());
661 		__free_from_contiguous(dev, page, size);
662 	}
663 }
664 
665 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
666 		 void *cpu_addr, dma_addr_t handle, size_t size,
667 		 struct dma_attrs *attrs)
668 {
669 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
670 	int ret;
671 
672 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
673 	if (unlikely(ret))
674 		return ret;
675 
676 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
677 	return 0;
678 }
679 
680 static void dma_cache_maint_page(struct page *page, unsigned long offset,
681 	size_t size, enum dma_data_direction dir,
682 	void (*op)(const void *, size_t, int))
683 {
684 	/*
685 	 * A single sg entry may refer to multiple physically contiguous
686 	 * pages.  But we still need to process highmem pages individually.
687 	 * If highmem is not configured then the bulk of this loop gets
688 	 * optimized out.
689 	 */
690 	size_t left = size;
691 	do {
692 		size_t len = left;
693 		void *vaddr;
694 
695 		if (PageHighMem(page)) {
696 			if (len + offset > PAGE_SIZE) {
697 				if (offset >= PAGE_SIZE) {
698 					page += offset / PAGE_SIZE;
699 					offset %= PAGE_SIZE;
700 				}
701 				len = PAGE_SIZE - offset;
702 			}
703 			vaddr = kmap_high_get(page);
704 			if (vaddr) {
705 				vaddr += offset;
706 				op(vaddr, len, dir);
707 				kunmap_high(page);
708 			} else if (cache_is_vipt()) {
709 				/* unmapped pages might still be cached */
710 				vaddr = kmap_atomic(page);
711 				op(vaddr + offset, len, dir);
712 				kunmap_atomic(vaddr);
713 			}
714 		} else {
715 			vaddr = page_address(page) + offset;
716 			op(vaddr, len, dir);
717 		}
718 		offset = 0;
719 		page++;
720 		left -= len;
721 	} while (left);
722 }
723 
724 /*
725  * Make an area consistent for devices.
726  * Note: Drivers should NOT use this function directly, as it will break
727  * platforms with CONFIG_DMABOUNCE.
728  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
729  */
730 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
731 	size_t size, enum dma_data_direction dir)
732 {
733 	unsigned long paddr;
734 
735 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
736 
737 	paddr = page_to_phys(page) + off;
738 	if (dir == DMA_FROM_DEVICE) {
739 		outer_inv_range(paddr, paddr + size);
740 	} else {
741 		outer_clean_range(paddr, paddr + size);
742 	}
743 	/* FIXME: non-speculating: flush on bidirectional mappings? */
744 }
745 
746 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
747 	size_t size, enum dma_data_direction dir)
748 {
749 	unsigned long paddr = page_to_phys(page) + off;
750 
751 	/* FIXME: non-speculating: not required */
752 	/* don't bother invalidating if DMA to device */
753 	if (dir != DMA_TO_DEVICE)
754 		outer_inv_range(paddr, paddr + size);
755 
756 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
757 
758 	/*
759 	 * Mark the D-cache clean for this page to avoid extra flushing.
760 	 */
761 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
762 		set_bit(PG_dcache_clean, &page->flags);
763 }
764 
765 /**
766  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
767  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
768  * @sg: list of buffers
769  * @nents: number of buffers to map
770  * @dir: DMA transfer direction
771  *
772  * Map a set of buffers described by scatterlist in streaming mode for DMA.
773  * This is the scatter-gather version of the dma_map_single interface.
774  * Here the scatter gather list elements are each tagged with the
775  * appropriate dma address and length.  They are obtained via
776  * sg_dma_{address,length}.
777  *
778  * Device ownership issues as mentioned for dma_map_single are the same
779  * here.
780  */
781 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
782 		enum dma_data_direction dir, struct dma_attrs *attrs)
783 {
784 	struct dma_map_ops *ops = get_dma_ops(dev);
785 	struct scatterlist *s;
786 	int i, j;
787 
788 	for_each_sg(sg, s, nents, i) {
789 #ifdef CONFIG_NEED_SG_DMA_LENGTH
790 		s->dma_length = s->length;
791 #endif
792 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
793 						s->length, dir, attrs);
794 		if (dma_mapping_error(dev, s->dma_address))
795 			goto bad_mapping;
796 	}
797 	return nents;
798 
799  bad_mapping:
800 	for_each_sg(sg, s, i, j)
801 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
802 	return 0;
803 }
804 
805 /**
806  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
807  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
808  * @sg: list of buffers
809  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
810  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
811  *
812  * Unmap a set of streaming mode DMA translations.  Again, CPU access
813  * rules concerning calls here are the same as for dma_unmap_single().
814  */
815 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
816 		enum dma_data_direction dir, struct dma_attrs *attrs)
817 {
818 	struct dma_map_ops *ops = get_dma_ops(dev);
819 	struct scatterlist *s;
820 
821 	int i;
822 
823 	for_each_sg(sg, s, nents, i)
824 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
825 }
826 
827 /**
828  * arm_dma_sync_sg_for_cpu
829  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
830  * @sg: list of buffers
831  * @nents: number of buffers to map (returned from dma_map_sg)
832  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
833  */
834 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
835 			int nents, enum dma_data_direction dir)
836 {
837 	struct dma_map_ops *ops = get_dma_ops(dev);
838 	struct scatterlist *s;
839 	int i;
840 
841 	for_each_sg(sg, s, nents, i)
842 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
843 					 dir);
844 }
845 
846 /**
847  * arm_dma_sync_sg_for_device
848  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
849  * @sg: list of buffers
850  * @nents: number of buffers to map (returned from dma_map_sg)
851  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
852  */
853 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
854 			int nents, enum dma_data_direction dir)
855 {
856 	struct dma_map_ops *ops = get_dma_ops(dev);
857 	struct scatterlist *s;
858 	int i;
859 
860 	for_each_sg(sg, s, nents, i)
861 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
862 					    dir);
863 }
864 
865 /*
866  * Return whether the given device DMA address mask can be supported
867  * properly.  For example, if your device can only drive the low 24-bits
868  * during bus mastering, then you would pass 0x00ffffff as the mask
869  * to this function.
870  */
871 int dma_supported(struct device *dev, u64 mask)
872 {
873 	if (mask < (u64)arm_dma_limit)
874 		return 0;
875 	return 1;
876 }
877 EXPORT_SYMBOL(dma_supported);
878 
879 static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
880 {
881 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
882 		return -EIO;
883 
884 	*dev->dma_mask = dma_mask;
885 
886 	return 0;
887 }
888 
889 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
890 
891 static int __init dma_debug_do_init(void)
892 {
893 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
894 	return 0;
895 }
896 fs_initcall(dma_debug_do_init);
897 
898 #ifdef CONFIG_ARM_DMA_USE_IOMMU
899 
900 /* IOMMU */
901 
902 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
903 				      size_t size)
904 {
905 	unsigned int order = get_order(size);
906 	unsigned int align = 0;
907 	unsigned int count, start;
908 	unsigned long flags;
909 
910 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
911 		 (1 << mapping->order) - 1) >> mapping->order;
912 
913 	if (order > mapping->order)
914 		align = (1 << (order - mapping->order)) - 1;
915 
916 	spin_lock_irqsave(&mapping->lock, flags);
917 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
918 					   count, align);
919 	if (start > mapping->bits) {
920 		spin_unlock_irqrestore(&mapping->lock, flags);
921 		return DMA_ERROR_CODE;
922 	}
923 
924 	bitmap_set(mapping->bitmap, start, count);
925 	spin_unlock_irqrestore(&mapping->lock, flags);
926 
927 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
928 }
929 
930 static inline void __free_iova(struct dma_iommu_mapping *mapping,
931 			       dma_addr_t addr, size_t size)
932 {
933 	unsigned int start = (addr - mapping->base) >>
934 			     (mapping->order + PAGE_SHIFT);
935 	unsigned int count = ((size >> PAGE_SHIFT) +
936 			      (1 << mapping->order) - 1) >> mapping->order;
937 	unsigned long flags;
938 
939 	spin_lock_irqsave(&mapping->lock, flags);
940 	bitmap_clear(mapping->bitmap, start, count);
941 	spin_unlock_irqrestore(&mapping->lock, flags);
942 }
943 
944 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
945 {
946 	struct page **pages;
947 	int count = size >> PAGE_SHIFT;
948 	int array_size = count * sizeof(struct page *);
949 	int i = 0;
950 
951 	if (array_size <= PAGE_SIZE)
952 		pages = kzalloc(array_size, gfp);
953 	else
954 		pages = vzalloc(array_size);
955 	if (!pages)
956 		return NULL;
957 
958 	while (count) {
959 		int j, order = __fls(count);
960 
961 		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
962 		while (!pages[i] && order)
963 			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
964 		if (!pages[i])
965 			goto error;
966 
967 		if (order)
968 			split_page(pages[i], order);
969 		j = 1 << order;
970 		while (--j)
971 			pages[i + j] = pages[i] + j;
972 
973 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
974 		i += 1 << order;
975 		count -= 1 << order;
976 	}
977 
978 	return pages;
979 error:
980 	while (i--)
981 		if (pages[i])
982 			__free_pages(pages[i], 0);
983 	if (array_size <= PAGE_SIZE)
984 		kfree(pages);
985 	else
986 		vfree(pages);
987 	return NULL;
988 }
989 
990 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
991 {
992 	int count = size >> PAGE_SHIFT;
993 	int array_size = count * sizeof(struct page *);
994 	int i;
995 	for (i = 0; i < count; i++)
996 		if (pages[i])
997 			__free_pages(pages[i], 0);
998 	if (array_size <= PAGE_SIZE)
999 		kfree(pages);
1000 	else
1001 		vfree(pages);
1002 	return 0;
1003 }
1004 
1005 /*
1006  * Create a CPU mapping for a specified pages
1007  */
1008 static void *
1009 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1010 		    const void *caller)
1011 {
1012 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1013 	struct vm_struct *area;
1014 	unsigned long p;
1015 
1016 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1017 				  caller);
1018 	if (!area)
1019 		return NULL;
1020 
1021 	area->pages = pages;
1022 	area->nr_pages = nr_pages;
1023 	p = (unsigned long)area->addr;
1024 
1025 	for (i = 0; i < nr_pages; i++) {
1026 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1027 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1028 			goto err;
1029 		p += PAGE_SIZE;
1030 	}
1031 	return area->addr;
1032 err:
1033 	unmap_kernel_range((unsigned long)area->addr, size);
1034 	vunmap(area->addr);
1035 	return NULL;
1036 }
1037 
1038 /*
1039  * Create a mapping in device IO address space for specified pages
1040  */
1041 static dma_addr_t
1042 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1043 {
1044 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1045 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1046 	dma_addr_t dma_addr, iova;
1047 	int i, ret = DMA_ERROR_CODE;
1048 
1049 	dma_addr = __alloc_iova(mapping, size);
1050 	if (dma_addr == DMA_ERROR_CODE)
1051 		return dma_addr;
1052 
1053 	iova = dma_addr;
1054 	for (i = 0; i < count; ) {
1055 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1056 		phys_addr_t phys = page_to_phys(pages[i]);
1057 		unsigned int len, j;
1058 
1059 		for (j = i + 1; j < count; j++, next_pfn++)
1060 			if (page_to_pfn(pages[j]) != next_pfn)
1061 				break;
1062 
1063 		len = (j - i) << PAGE_SHIFT;
1064 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1065 		if (ret < 0)
1066 			goto fail;
1067 		iova += len;
1068 		i = j;
1069 	}
1070 	return dma_addr;
1071 fail:
1072 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1073 	__free_iova(mapping, dma_addr, size);
1074 	return DMA_ERROR_CODE;
1075 }
1076 
1077 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1078 {
1079 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1080 
1081 	/*
1082 	 * add optional in-page offset from iova to size and align
1083 	 * result to page size
1084 	 */
1085 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1086 	iova &= PAGE_MASK;
1087 
1088 	iommu_unmap(mapping->domain, iova, size);
1089 	__free_iova(mapping, iova, size);
1090 	return 0;
1091 }
1092 
1093 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1094 {
1095 	struct vm_struct *area;
1096 
1097 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1098 		return cpu_addr;
1099 
1100 	area = find_vm_area(cpu_addr);
1101 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1102 		return area->pages;
1103 	return NULL;
1104 }
1105 
1106 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1107 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1108 {
1109 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1110 	struct page **pages;
1111 	void *addr = NULL;
1112 
1113 	*handle = DMA_ERROR_CODE;
1114 	size = PAGE_ALIGN(size);
1115 
1116 	pages = __iommu_alloc_buffer(dev, size, gfp);
1117 	if (!pages)
1118 		return NULL;
1119 
1120 	*handle = __iommu_create_mapping(dev, pages, size);
1121 	if (*handle == DMA_ERROR_CODE)
1122 		goto err_buffer;
1123 
1124 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1125 		return pages;
1126 
1127 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1128 				   __builtin_return_address(0));
1129 	if (!addr)
1130 		goto err_mapping;
1131 
1132 	return addr;
1133 
1134 err_mapping:
1135 	__iommu_remove_mapping(dev, *handle, size);
1136 err_buffer:
1137 	__iommu_free_buffer(dev, pages, size);
1138 	return NULL;
1139 }
1140 
1141 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1142 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1143 		    struct dma_attrs *attrs)
1144 {
1145 	unsigned long uaddr = vma->vm_start;
1146 	unsigned long usize = vma->vm_end - vma->vm_start;
1147 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1148 
1149 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1150 
1151 	if (!pages)
1152 		return -ENXIO;
1153 
1154 	do {
1155 		int ret = vm_insert_page(vma, uaddr, *pages++);
1156 		if (ret) {
1157 			pr_err("Remapping memory failed: %d\n", ret);
1158 			return ret;
1159 		}
1160 		uaddr += PAGE_SIZE;
1161 		usize -= PAGE_SIZE;
1162 	} while (usize > 0);
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * free a page as defined by the above mapping.
1169  * Must not be called with IRQs disabled.
1170  */
1171 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1172 			  dma_addr_t handle, struct dma_attrs *attrs)
1173 {
1174 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1175 	size = PAGE_ALIGN(size);
1176 
1177 	if (!pages) {
1178 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1179 		return;
1180 	}
1181 
1182 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1183 		unmap_kernel_range((unsigned long)cpu_addr, size);
1184 		vunmap(cpu_addr);
1185 	}
1186 
1187 	__iommu_remove_mapping(dev, handle, size);
1188 	__iommu_free_buffer(dev, pages, size);
1189 }
1190 
1191 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1192 				 void *cpu_addr, dma_addr_t dma_addr,
1193 				 size_t size, struct dma_attrs *attrs)
1194 {
1195 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1196 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1197 
1198 	if (!pages)
1199 		return -ENXIO;
1200 
1201 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1202 					 GFP_KERNEL);
1203 }
1204 
1205 /*
1206  * Map a part of the scatter-gather list into contiguous io address space
1207  */
1208 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1209 			  size_t size, dma_addr_t *handle,
1210 			  enum dma_data_direction dir, struct dma_attrs *attrs)
1211 {
1212 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1213 	dma_addr_t iova, iova_base;
1214 	int ret = 0;
1215 	unsigned int count;
1216 	struct scatterlist *s;
1217 
1218 	size = PAGE_ALIGN(size);
1219 	*handle = DMA_ERROR_CODE;
1220 
1221 	iova_base = iova = __alloc_iova(mapping, size);
1222 	if (iova == DMA_ERROR_CODE)
1223 		return -ENOMEM;
1224 
1225 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1226 		phys_addr_t phys = page_to_phys(sg_page(s));
1227 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1228 
1229 		if (!arch_is_coherent() &&
1230 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1231 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1232 
1233 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1234 		if (ret < 0)
1235 			goto fail;
1236 		count += len >> PAGE_SHIFT;
1237 		iova += len;
1238 	}
1239 	*handle = iova_base;
1240 
1241 	return 0;
1242 fail:
1243 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1244 	__free_iova(mapping, iova_base, size);
1245 	return ret;
1246 }
1247 
1248 /**
1249  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1250  * @dev: valid struct device pointer
1251  * @sg: list of buffers
1252  * @nents: number of buffers to map
1253  * @dir: DMA transfer direction
1254  *
1255  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1256  * The scatter gather list elements are merged together (if possible) and
1257  * tagged with the appropriate dma address and length. They are obtained via
1258  * sg_dma_{address,length}.
1259  */
1260 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1261 		     enum dma_data_direction dir, struct dma_attrs *attrs)
1262 {
1263 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1264 	int i, count = 0;
1265 	unsigned int offset = s->offset;
1266 	unsigned int size = s->offset + s->length;
1267 	unsigned int max = dma_get_max_seg_size(dev);
1268 
1269 	for (i = 1; i < nents; i++) {
1270 		s = sg_next(s);
1271 
1272 		s->dma_address = DMA_ERROR_CODE;
1273 		s->dma_length = 0;
1274 
1275 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1276 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1277 			    dir, attrs) < 0)
1278 				goto bad_mapping;
1279 
1280 			dma->dma_address += offset;
1281 			dma->dma_length = size - offset;
1282 
1283 			size = offset = s->offset;
1284 			start = s;
1285 			dma = sg_next(dma);
1286 			count += 1;
1287 		}
1288 		size += s->length;
1289 	}
1290 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
1291 		goto bad_mapping;
1292 
1293 	dma->dma_address += offset;
1294 	dma->dma_length = size - offset;
1295 
1296 	return count+1;
1297 
1298 bad_mapping:
1299 	for_each_sg(sg, s, count, i)
1300 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1301 	return 0;
1302 }
1303 
1304 /**
1305  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1306  * @dev: valid struct device pointer
1307  * @sg: list of buffers
1308  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1309  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1310  *
1311  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1312  * rules concerning calls here are the same as for dma_unmap_single().
1313  */
1314 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1315 			enum dma_data_direction dir, struct dma_attrs *attrs)
1316 {
1317 	struct scatterlist *s;
1318 	int i;
1319 
1320 	for_each_sg(sg, s, nents, i) {
1321 		if (sg_dma_len(s))
1322 			__iommu_remove_mapping(dev, sg_dma_address(s),
1323 					       sg_dma_len(s));
1324 		if (!arch_is_coherent() &&
1325 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1326 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1327 					      s->length, dir);
1328 	}
1329 }
1330 
1331 /**
1332  * arm_iommu_sync_sg_for_cpu
1333  * @dev: valid struct device pointer
1334  * @sg: list of buffers
1335  * @nents: number of buffers to map (returned from dma_map_sg)
1336  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1337  */
1338 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1339 			int nents, enum dma_data_direction dir)
1340 {
1341 	struct scatterlist *s;
1342 	int i;
1343 
1344 	for_each_sg(sg, s, nents, i)
1345 		if (!arch_is_coherent())
1346 			__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1347 
1348 }
1349 
1350 /**
1351  * arm_iommu_sync_sg_for_device
1352  * @dev: valid struct device pointer
1353  * @sg: list of buffers
1354  * @nents: number of buffers to map (returned from dma_map_sg)
1355  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1356  */
1357 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1358 			int nents, enum dma_data_direction dir)
1359 {
1360 	struct scatterlist *s;
1361 	int i;
1362 
1363 	for_each_sg(sg, s, nents, i)
1364 		if (!arch_is_coherent())
1365 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1366 }
1367 
1368 
1369 /**
1370  * arm_iommu_map_page
1371  * @dev: valid struct device pointer
1372  * @page: page that buffer resides in
1373  * @offset: offset into page for start of buffer
1374  * @size: size of buffer to map
1375  * @dir: DMA transfer direction
1376  *
1377  * IOMMU aware version of arm_dma_map_page()
1378  */
1379 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1380 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1381 	     struct dma_attrs *attrs)
1382 {
1383 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1384 	dma_addr_t dma_addr;
1385 	int ret, len = PAGE_ALIGN(size + offset);
1386 
1387 	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1388 		__dma_page_cpu_to_dev(page, offset, size, dir);
1389 
1390 	dma_addr = __alloc_iova(mapping, len);
1391 	if (dma_addr == DMA_ERROR_CODE)
1392 		return dma_addr;
1393 
1394 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1395 	if (ret < 0)
1396 		goto fail;
1397 
1398 	return dma_addr + offset;
1399 fail:
1400 	__free_iova(mapping, dma_addr, len);
1401 	return DMA_ERROR_CODE;
1402 }
1403 
1404 /**
1405  * arm_iommu_unmap_page
1406  * @dev: valid struct device pointer
1407  * @handle: DMA address of buffer
1408  * @size: size of buffer (same as passed to dma_map_page)
1409  * @dir: DMA transfer direction (same as passed to dma_map_page)
1410  *
1411  * IOMMU aware version of arm_dma_unmap_page()
1412  */
1413 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1414 		size_t size, enum dma_data_direction dir,
1415 		struct dma_attrs *attrs)
1416 {
1417 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1418 	dma_addr_t iova = handle & PAGE_MASK;
1419 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1420 	int offset = handle & ~PAGE_MASK;
1421 	int len = PAGE_ALIGN(size + offset);
1422 
1423 	if (!iova)
1424 		return;
1425 
1426 	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1427 		__dma_page_dev_to_cpu(page, offset, size, dir);
1428 
1429 	iommu_unmap(mapping->domain, iova, len);
1430 	__free_iova(mapping, iova, len);
1431 }
1432 
1433 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1434 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1435 {
1436 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1437 	dma_addr_t iova = handle & PAGE_MASK;
1438 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1439 	unsigned int offset = handle & ~PAGE_MASK;
1440 
1441 	if (!iova)
1442 		return;
1443 
1444 	if (!arch_is_coherent())
1445 		__dma_page_dev_to_cpu(page, offset, size, dir);
1446 }
1447 
1448 static void arm_iommu_sync_single_for_device(struct device *dev,
1449 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1450 {
1451 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1452 	dma_addr_t iova = handle & PAGE_MASK;
1453 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1454 	unsigned int offset = handle & ~PAGE_MASK;
1455 
1456 	if (!iova)
1457 		return;
1458 
1459 	__dma_page_cpu_to_dev(page, offset, size, dir);
1460 }
1461 
1462 struct dma_map_ops iommu_ops = {
1463 	.alloc		= arm_iommu_alloc_attrs,
1464 	.free		= arm_iommu_free_attrs,
1465 	.mmap		= arm_iommu_mmap_attrs,
1466 	.get_sgtable	= arm_iommu_get_sgtable,
1467 
1468 	.map_page		= arm_iommu_map_page,
1469 	.unmap_page		= arm_iommu_unmap_page,
1470 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1471 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1472 
1473 	.map_sg			= arm_iommu_map_sg,
1474 	.unmap_sg		= arm_iommu_unmap_sg,
1475 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1476 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1477 };
1478 
1479 /**
1480  * arm_iommu_create_mapping
1481  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1482  * @base: start address of the valid IO address space
1483  * @size: size of the valid IO address space
1484  * @order: accuracy of the IO addresses allocations
1485  *
1486  * Creates a mapping structure which holds information about used/unused
1487  * IO address ranges, which is required to perform memory allocation and
1488  * mapping with IOMMU aware functions.
1489  *
1490  * The client device need to be attached to the mapping with
1491  * arm_iommu_attach_device function.
1492  */
1493 struct dma_iommu_mapping *
1494 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1495 			 int order)
1496 {
1497 	unsigned int count = size >> (PAGE_SHIFT + order);
1498 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1499 	struct dma_iommu_mapping *mapping;
1500 	int err = -ENOMEM;
1501 
1502 	if (!count)
1503 		return ERR_PTR(-EINVAL);
1504 
1505 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1506 	if (!mapping)
1507 		goto err;
1508 
1509 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1510 	if (!mapping->bitmap)
1511 		goto err2;
1512 
1513 	mapping->base = base;
1514 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1515 	mapping->order = order;
1516 	spin_lock_init(&mapping->lock);
1517 
1518 	mapping->domain = iommu_domain_alloc(bus);
1519 	if (!mapping->domain)
1520 		goto err3;
1521 
1522 	kref_init(&mapping->kref);
1523 	return mapping;
1524 err3:
1525 	kfree(mapping->bitmap);
1526 err2:
1527 	kfree(mapping);
1528 err:
1529 	return ERR_PTR(err);
1530 }
1531 
1532 static void release_iommu_mapping(struct kref *kref)
1533 {
1534 	struct dma_iommu_mapping *mapping =
1535 		container_of(kref, struct dma_iommu_mapping, kref);
1536 
1537 	iommu_domain_free(mapping->domain);
1538 	kfree(mapping->bitmap);
1539 	kfree(mapping);
1540 }
1541 
1542 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1543 {
1544 	if (mapping)
1545 		kref_put(&mapping->kref, release_iommu_mapping);
1546 }
1547 
1548 /**
1549  * arm_iommu_attach_device
1550  * @dev: valid struct device pointer
1551  * @mapping: io address space mapping structure (returned from
1552  *	arm_iommu_create_mapping)
1553  *
1554  * Attaches specified io address space mapping to the provided device,
1555  * this replaces the dma operations (dma_map_ops pointer) with the
1556  * IOMMU aware version. More than one client might be attached to
1557  * the same io address space mapping.
1558  */
1559 int arm_iommu_attach_device(struct device *dev,
1560 			    struct dma_iommu_mapping *mapping)
1561 {
1562 	int err;
1563 
1564 	err = iommu_attach_device(mapping->domain, dev);
1565 	if (err)
1566 		return err;
1567 
1568 	kref_get(&mapping->kref);
1569 	dev->archdata.mapping = mapping;
1570 	set_dma_ops(dev, &iommu_ops);
1571 
1572 	pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1573 	return 0;
1574 }
1575 
1576 #endif
1577