1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dma-contiguous.h> 21 #include <linux/highmem.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/iommu.h> 25 #include <linux/io.h> 26 #include <linux/vmalloc.h> 27 #include <linux/sizes.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "mm.h" 40 41 /* 42 * The DMA API is built upon the notion of "buffer ownership". A buffer 43 * is either exclusively owned by the CPU (and therefore may be accessed 44 * by it) or exclusively owned by the DMA device. These helper functions 45 * represent the transitions between these two ownership states. 46 * 47 * Note, however, that on later ARMs, this notion does not work due to 48 * speculative prefetches. We model our approach on the assumption that 49 * the CPU does do speculative prefetches, which means we clean caches 50 * before transfers and delay cache invalidation until transfer completion. 51 * 52 */ 53 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 54 size_t, enum dma_data_direction); 55 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 56 size_t, enum dma_data_direction); 57 58 /** 59 * arm_dma_map_page - map a portion of a page for streaming DMA 60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 61 * @page: page that buffer resides in 62 * @offset: offset into page for start of buffer 63 * @size: size of buffer to map 64 * @dir: DMA transfer direction 65 * 66 * Ensure that any data held in the cache is appropriately discarded 67 * or written back. 68 * 69 * The device owns this memory once this call has completed. The CPU 70 * can regain ownership by calling dma_unmap_page(). 71 */ 72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 73 unsigned long offset, size_t size, enum dma_data_direction dir, 74 struct dma_attrs *attrs) 75 { 76 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 77 __dma_page_cpu_to_dev(page, offset, size, dir); 78 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 79 } 80 81 /** 82 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 83 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 84 * @handle: DMA address of buffer 85 * @size: size of buffer (same as passed to dma_map_page) 86 * @dir: DMA transfer direction (same as passed to dma_map_page) 87 * 88 * Unmap a page streaming mode DMA translation. The handle and size 89 * must match what was provided in the previous dma_map_page() call. 90 * All other usages are undefined. 91 * 92 * After this call, reads by the CPU to the buffer are guaranteed to see 93 * whatever the device wrote there. 94 */ 95 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 96 size_t size, enum dma_data_direction dir, 97 struct dma_attrs *attrs) 98 { 99 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 100 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 101 handle & ~PAGE_MASK, size, dir); 102 } 103 104 static void arm_dma_sync_single_for_cpu(struct device *dev, 105 dma_addr_t handle, size_t size, enum dma_data_direction dir) 106 { 107 unsigned int offset = handle & (PAGE_SIZE - 1); 108 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 109 if (!arch_is_coherent()) 110 __dma_page_dev_to_cpu(page, offset, size, dir); 111 } 112 113 static void arm_dma_sync_single_for_device(struct device *dev, 114 dma_addr_t handle, size_t size, enum dma_data_direction dir) 115 { 116 unsigned int offset = handle & (PAGE_SIZE - 1); 117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 118 if (!arch_is_coherent()) 119 __dma_page_cpu_to_dev(page, offset, size, dir); 120 } 121 122 static int arm_dma_set_mask(struct device *dev, u64 dma_mask); 123 124 struct dma_map_ops arm_dma_ops = { 125 .alloc = arm_dma_alloc, 126 .free = arm_dma_free, 127 .mmap = arm_dma_mmap, 128 .get_sgtable = arm_dma_get_sgtable, 129 .map_page = arm_dma_map_page, 130 .unmap_page = arm_dma_unmap_page, 131 .map_sg = arm_dma_map_sg, 132 .unmap_sg = arm_dma_unmap_sg, 133 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 134 .sync_single_for_device = arm_dma_sync_single_for_device, 135 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 136 .sync_sg_for_device = arm_dma_sync_sg_for_device, 137 .set_dma_mask = arm_dma_set_mask, 138 }; 139 EXPORT_SYMBOL(arm_dma_ops); 140 141 static u64 get_coherent_dma_mask(struct device *dev) 142 { 143 u64 mask = (u64)arm_dma_limit; 144 145 if (dev) { 146 mask = dev->coherent_dma_mask; 147 148 /* 149 * Sanity check the DMA mask - it must be non-zero, and 150 * must be able to be satisfied by a DMA allocation. 151 */ 152 if (mask == 0) { 153 dev_warn(dev, "coherent DMA mask is unset\n"); 154 return 0; 155 } 156 157 if ((~mask) & (u64)arm_dma_limit) { 158 dev_warn(dev, "coherent DMA mask %#llx is smaller " 159 "than system GFP_DMA mask %#llx\n", 160 mask, (u64)arm_dma_limit); 161 return 0; 162 } 163 } 164 165 return mask; 166 } 167 168 static void __dma_clear_buffer(struct page *page, size_t size) 169 { 170 void *ptr; 171 /* 172 * Ensure that the allocated pages are zeroed, and that any data 173 * lurking in the kernel direct-mapped region is invalidated. 174 */ 175 ptr = page_address(page); 176 if (ptr) { 177 memset(ptr, 0, size); 178 dmac_flush_range(ptr, ptr + size); 179 outer_flush_range(__pa(ptr), __pa(ptr) + size); 180 } 181 } 182 183 /* 184 * Allocate a DMA buffer for 'dev' of size 'size' using the 185 * specified gfp mask. Note that 'size' must be page aligned. 186 */ 187 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 188 { 189 unsigned long order = get_order(size); 190 struct page *page, *p, *e; 191 192 page = alloc_pages(gfp, order); 193 if (!page) 194 return NULL; 195 196 /* 197 * Now split the huge page and free the excess pages 198 */ 199 split_page(page, order); 200 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 201 __free_page(p); 202 203 __dma_clear_buffer(page, size); 204 205 return page; 206 } 207 208 /* 209 * Free a DMA buffer. 'size' must be page aligned. 210 */ 211 static void __dma_free_buffer(struct page *page, size_t size) 212 { 213 struct page *e = page + (size >> PAGE_SHIFT); 214 215 while (page < e) { 216 __free_page(page); 217 page++; 218 } 219 } 220 221 #ifdef CONFIG_MMU 222 #ifdef CONFIG_HUGETLB_PAGE 223 #error ARM Coherent DMA allocator does not (yet) support huge TLB 224 #endif 225 226 static void *__alloc_from_contiguous(struct device *dev, size_t size, 227 pgprot_t prot, struct page **ret_page); 228 229 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 230 pgprot_t prot, struct page **ret_page, 231 const void *caller); 232 233 static void * 234 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 235 const void *caller) 236 { 237 struct vm_struct *area; 238 unsigned long addr; 239 240 /* 241 * DMA allocation can be mapped to user space, so lets 242 * set VM_USERMAP flags too. 243 */ 244 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 245 caller); 246 if (!area) 247 return NULL; 248 addr = (unsigned long)area->addr; 249 area->phys_addr = __pfn_to_phys(page_to_pfn(page)); 250 251 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { 252 vunmap((void *)addr); 253 return NULL; 254 } 255 return (void *)addr; 256 } 257 258 static void __dma_free_remap(void *cpu_addr, size_t size) 259 { 260 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; 261 struct vm_struct *area = find_vm_area(cpu_addr); 262 if (!area || (area->flags & flags) != flags) { 263 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 264 return; 265 } 266 unmap_kernel_range((unsigned long)cpu_addr, size); 267 vunmap(cpu_addr); 268 } 269 270 struct dma_pool { 271 size_t size; 272 spinlock_t lock; 273 unsigned long *bitmap; 274 unsigned long nr_pages; 275 void *vaddr; 276 struct page *page; 277 }; 278 279 static struct dma_pool atomic_pool = { 280 .size = SZ_256K, 281 }; 282 283 static int __init early_coherent_pool(char *p) 284 { 285 atomic_pool.size = memparse(p, &p); 286 return 0; 287 } 288 early_param("coherent_pool", early_coherent_pool); 289 290 /* 291 * Initialise the coherent pool for atomic allocations. 292 */ 293 static int __init atomic_pool_init(void) 294 { 295 struct dma_pool *pool = &atomic_pool; 296 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); 297 unsigned long nr_pages = pool->size >> PAGE_SHIFT; 298 unsigned long *bitmap; 299 struct page *page; 300 void *ptr; 301 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); 302 303 bitmap = kzalloc(bitmap_size, GFP_KERNEL); 304 if (!bitmap) 305 goto no_bitmap; 306 307 if (IS_ENABLED(CONFIG_CMA)) 308 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page); 309 else 310 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot, 311 &page, NULL); 312 if (ptr) { 313 spin_lock_init(&pool->lock); 314 pool->vaddr = ptr; 315 pool->page = page; 316 pool->bitmap = bitmap; 317 pool->nr_pages = nr_pages; 318 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", 319 (unsigned)pool->size / 1024); 320 return 0; 321 } 322 kfree(bitmap); 323 no_bitmap: 324 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", 325 (unsigned)pool->size / 1024); 326 return -ENOMEM; 327 } 328 /* 329 * CMA is activated by core_initcall, so we must be called after it. 330 */ 331 postcore_initcall(atomic_pool_init); 332 333 struct dma_contig_early_reserve { 334 phys_addr_t base; 335 unsigned long size; 336 }; 337 338 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 339 340 static int dma_mmu_remap_num __initdata; 341 342 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 343 { 344 dma_mmu_remap[dma_mmu_remap_num].base = base; 345 dma_mmu_remap[dma_mmu_remap_num].size = size; 346 dma_mmu_remap_num++; 347 } 348 349 void __init dma_contiguous_remap(void) 350 { 351 int i; 352 for (i = 0; i < dma_mmu_remap_num; i++) { 353 phys_addr_t start = dma_mmu_remap[i].base; 354 phys_addr_t end = start + dma_mmu_remap[i].size; 355 struct map_desc map; 356 unsigned long addr; 357 358 if (end > arm_lowmem_limit) 359 end = arm_lowmem_limit; 360 if (start >= end) 361 return; 362 363 map.pfn = __phys_to_pfn(start); 364 map.virtual = __phys_to_virt(start); 365 map.length = end - start; 366 map.type = MT_MEMORY_DMA_READY; 367 368 /* 369 * Clear previous low-memory mapping 370 */ 371 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 372 addr += PMD_SIZE) 373 pmd_clear(pmd_off_k(addr)); 374 375 iotable_init(&map, 1); 376 } 377 } 378 379 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 380 void *data) 381 { 382 struct page *page = virt_to_page(addr); 383 pgprot_t prot = *(pgprot_t *)data; 384 385 set_pte_ext(pte, mk_pte(page, prot), 0); 386 return 0; 387 } 388 389 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 390 { 391 unsigned long start = (unsigned long) page_address(page); 392 unsigned end = start + size; 393 394 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 395 dsb(); 396 flush_tlb_kernel_range(start, end); 397 } 398 399 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 400 pgprot_t prot, struct page **ret_page, 401 const void *caller) 402 { 403 struct page *page; 404 void *ptr; 405 page = __dma_alloc_buffer(dev, size, gfp); 406 if (!page) 407 return NULL; 408 409 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 410 if (!ptr) { 411 __dma_free_buffer(page, size); 412 return NULL; 413 } 414 415 *ret_page = page; 416 return ptr; 417 } 418 419 static void *__alloc_from_pool(size_t size, struct page **ret_page) 420 { 421 struct dma_pool *pool = &atomic_pool; 422 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 423 unsigned int pageno; 424 unsigned long flags; 425 void *ptr = NULL; 426 size_t align; 427 428 if (!pool->vaddr) { 429 WARN(1, "coherent pool not initialised!\n"); 430 return NULL; 431 } 432 433 /* 434 * Align the region allocation - allocations from pool are rather 435 * small, so align them to their order in pages, minimum is a page 436 * size. This helps reduce fragmentation of the DMA space. 437 */ 438 align = PAGE_SIZE << get_order(size); 439 440 spin_lock_irqsave(&pool->lock, flags); 441 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, 442 0, count, (1 << align) - 1); 443 if (pageno < pool->nr_pages) { 444 bitmap_set(pool->bitmap, pageno, count); 445 ptr = pool->vaddr + PAGE_SIZE * pageno; 446 *ret_page = pool->page + pageno; 447 } 448 spin_unlock_irqrestore(&pool->lock, flags); 449 450 return ptr; 451 } 452 453 static int __free_from_pool(void *start, size_t size) 454 { 455 struct dma_pool *pool = &atomic_pool; 456 unsigned long pageno, count; 457 unsigned long flags; 458 459 if (start < pool->vaddr || start > pool->vaddr + pool->size) 460 return 0; 461 462 if (start + size > pool->vaddr + pool->size) { 463 WARN(1, "freeing wrong coherent size from pool\n"); 464 return 0; 465 } 466 467 pageno = (start - pool->vaddr) >> PAGE_SHIFT; 468 count = size >> PAGE_SHIFT; 469 470 spin_lock_irqsave(&pool->lock, flags); 471 bitmap_clear(pool->bitmap, pageno, count); 472 spin_unlock_irqrestore(&pool->lock, flags); 473 474 return 1; 475 } 476 477 static void *__alloc_from_contiguous(struct device *dev, size_t size, 478 pgprot_t prot, struct page **ret_page) 479 { 480 unsigned long order = get_order(size); 481 size_t count = size >> PAGE_SHIFT; 482 struct page *page; 483 484 page = dma_alloc_from_contiguous(dev, count, order); 485 if (!page) 486 return NULL; 487 488 __dma_clear_buffer(page, size); 489 __dma_remap(page, size, prot); 490 491 *ret_page = page; 492 return page_address(page); 493 } 494 495 static void __free_from_contiguous(struct device *dev, struct page *page, 496 size_t size) 497 { 498 __dma_remap(page, size, pgprot_kernel); 499 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 500 } 501 502 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 503 { 504 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 505 pgprot_writecombine(prot) : 506 pgprot_dmacoherent(prot); 507 return prot; 508 } 509 510 #define nommu() 0 511 512 #else /* !CONFIG_MMU */ 513 514 #define nommu() 1 515 516 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 517 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL 518 #define __alloc_from_pool(size, ret_page) NULL 519 #define __alloc_from_contiguous(dev, size, prot, ret) NULL 520 #define __free_from_pool(cpu_addr, size) 0 521 #define __free_from_contiguous(dev, page, size) do { } while (0) 522 #define __dma_free_remap(cpu_addr, size) do { } while (0) 523 524 #endif /* CONFIG_MMU */ 525 526 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 527 struct page **ret_page) 528 { 529 struct page *page; 530 page = __dma_alloc_buffer(dev, size, gfp); 531 if (!page) 532 return NULL; 533 534 *ret_page = page; 535 return page_address(page); 536 } 537 538 539 540 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 541 gfp_t gfp, pgprot_t prot, const void *caller) 542 { 543 u64 mask = get_coherent_dma_mask(dev); 544 struct page *page; 545 void *addr; 546 547 #ifdef CONFIG_DMA_API_DEBUG 548 u64 limit = (mask + 1) & ~mask; 549 if (limit && size >= limit) { 550 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 551 size, mask); 552 return NULL; 553 } 554 #endif 555 556 if (!mask) 557 return NULL; 558 559 if (mask < 0xffffffffULL) 560 gfp |= GFP_DMA; 561 562 /* 563 * Following is a work-around (a.k.a. hack) to prevent pages 564 * with __GFP_COMP being passed to split_page() which cannot 565 * handle them. The real problem is that this flag probably 566 * should be 0 on ARM as it is not supported on this 567 * platform; see CONFIG_HUGETLBFS. 568 */ 569 gfp &= ~(__GFP_COMP); 570 571 *handle = DMA_ERROR_CODE; 572 size = PAGE_ALIGN(size); 573 574 if (arch_is_coherent() || nommu()) 575 addr = __alloc_simple_buffer(dev, size, gfp, &page); 576 else if (gfp & GFP_ATOMIC) 577 addr = __alloc_from_pool(size, &page); 578 else if (!IS_ENABLED(CONFIG_CMA)) 579 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); 580 else 581 addr = __alloc_from_contiguous(dev, size, prot, &page); 582 583 if (addr) 584 *handle = pfn_to_dma(dev, page_to_pfn(page)); 585 586 return addr; 587 } 588 589 /* 590 * Allocate DMA-coherent memory space and return both the kernel remapped 591 * virtual and bus address for that space. 592 */ 593 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 594 gfp_t gfp, struct dma_attrs *attrs) 595 { 596 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 597 void *memory; 598 599 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 600 return memory; 601 602 return __dma_alloc(dev, size, handle, gfp, prot, 603 __builtin_return_address(0)); 604 } 605 606 /* 607 * Create userspace mapping for the DMA-coherent memory. 608 */ 609 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 610 void *cpu_addr, dma_addr_t dma_addr, size_t size, 611 struct dma_attrs *attrs) 612 { 613 int ret = -ENXIO; 614 #ifdef CONFIG_MMU 615 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 616 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 617 unsigned long pfn = dma_to_pfn(dev, dma_addr); 618 unsigned long off = vma->vm_pgoff; 619 620 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 621 622 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 623 return ret; 624 625 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 626 ret = remap_pfn_range(vma, vma->vm_start, 627 pfn + off, 628 vma->vm_end - vma->vm_start, 629 vma->vm_page_prot); 630 } 631 #endif /* CONFIG_MMU */ 632 633 return ret; 634 } 635 636 /* 637 * Free a buffer as defined by the above mapping. 638 */ 639 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 640 dma_addr_t handle, struct dma_attrs *attrs) 641 { 642 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 643 644 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 645 return; 646 647 size = PAGE_ALIGN(size); 648 649 if (arch_is_coherent() || nommu()) { 650 __dma_free_buffer(page, size); 651 } else if (!IS_ENABLED(CONFIG_CMA)) { 652 __dma_free_remap(cpu_addr, size); 653 __dma_free_buffer(page, size); 654 } else { 655 if (__free_from_pool(cpu_addr, size)) 656 return; 657 /* 658 * Non-atomic allocations cannot be freed with IRQs disabled 659 */ 660 WARN_ON(irqs_disabled()); 661 __free_from_contiguous(dev, page, size); 662 } 663 } 664 665 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 666 void *cpu_addr, dma_addr_t handle, size_t size, 667 struct dma_attrs *attrs) 668 { 669 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 670 int ret; 671 672 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 673 if (unlikely(ret)) 674 return ret; 675 676 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 677 return 0; 678 } 679 680 static void dma_cache_maint_page(struct page *page, unsigned long offset, 681 size_t size, enum dma_data_direction dir, 682 void (*op)(const void *, size_t, int)) 683 { 684 /* 685 * A single sg entry may refer to multiple physically contiguous 686 * pages. But we still need to process highmem pages individually. 687 * If highmem is not configured then the bulk of this loop gets 688 * optimized out. 689 */ 690 size_t left = size; 691 do { 692 size_t len = left; 693 void *vaddr; 694 695 if (PageHighMem(page)) { 696 if (len + offset > PAGE_SIZE) { 697 if (offset >= PAGE_SIZE) { 698 page += offset / PAGE_SIZE; 699 offset %= PAGE_SIZE; 700 } 701 len = PAGE_SIZE - offset; 702 } 703 vaddr = kmap_high_get(page); 704 if (vaddr) { 705 vaddr += offset; 706 op(vaddr, len, dir); 707 kunmap_high(page); 708 } else if (cache_is_vipt()) { 709 /* unmapped pages might still be cached */ 710 vaddr = kmap_atomic(page); 711 op(vaddr + offset, len, dir); 712 kunmap_atomic(vaddr); 713 } 714 } else { 715 vaddr = page_address(page) + offset; 716 op(vaddr, len, dir); 717 } 718 offset = 0; 719 page++; 720 left -= len; 721 } while (left); 722 } 723 724 /* 725 * Make an area consistent for devices. 726 * Note: Drivers should NOT use this function directly, as it will break 727 * platforms with CONFIG_DMABOUNCE. 728 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 729 */ 730 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 731 size_t size, enum dma_data_direction dir) 732 { 733 unsigned long paddr; 734 735 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 736 737 paddr = page_to_phys(page) + off; 738 if (dir == DMA_FROM_DEVICE) { 739 outer_inv_range(paddr, paddr + size); 740 } else { 741 outer_clean_range(paddr, paddr + size); 742 } 743 /* FIXME: non-speculating: flush on bidirectional mappings? */ 744 } 745 746 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 747 size_t size, enum dma_data_direction dir) 748 { 749 unsigned long paddr = page_to_phys(page) + off; 750 751 /* FIXME: non-speculating: not required */ 752 /* don't bother invalidating if DMA to device */ 753 if (dir != DMA_TO_DEVICE) 754 outer_inv_range(paddr, paddr + size); 755 756 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 757 758 /* 759 * Mark the D-cache clean for this page to avoid extra flushing. 760 */ 761 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) 762 set_bit(PG_dcache_clean, &page->flags); 763 } 764 765 /** 766 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 767 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 768 * @sg: list of buffers 769 * @nents: number of buffers to map 770 * @dir: DMA transfer direction 771 * 772 * Map a set of buffers described by scatterlist in streaming mode for DMA. 773 * This is the scatter-gather version of the dma_map_single interface. 774 * Here the scatter gather list elements are each tagged with the 775 * appropriate dma address and length. They are obtained via 776 * sg_dma_{address,length}. 777 * 778 * Device ownership issues as mentioned for dma_map_single are the same 779 * here. 780 */ 781 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 782 enum dma_data_direction dir, struct dma_attrs *attrs) 783 { 784 struct dma_map_ops *ops = get_dma_ops(dev); 785 struct scatterlist *s; 786 int i, j; 787 788 for_each_sg(sg, s, nents, i) { 789 #ifdef CONFIG_NEED_SG_DMA_LENGTH 790 s->dma_length = s->length; 791 #endif 792 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 793 s->length, dir, attrs); 794 if (dma_mapping_error(dev, s->dma_address)) 795 goto bad_mapping; 796 } 797 return nents; 798 799 bad_mapping: 800 for_each_sg(sg, s, i, j) 801 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 802 return 0; 803 } 804 805 /** 806 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 807 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 808 * @sg: list of buffers 809 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 810 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 811 * 812 * Unmap a set of streaming mode DMA translations. Again, CPU access 813 * rules concerning calls here are the same as for dma_unmap_single(). 814 */ 815 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 816 enum dma_data_direction dir, struct dma_attrs *attrs) 817 { 818 struct dma_map_ops *ops = get_dma_ops(dev); 819 struct scatterlist *s; 820 821 int i; 822 823 for_each_sg(sg, s, nents, i) 824 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 825 } 826 827 /** 828 * arm_dma_sync_sg_for_cpu 829 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 830 * @sg: list of buffers 831 * @nents: number of buffers to map (returned from dma_map_sg) 832 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 833 */ 834 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 835 int nents, enum dma_data_direction dir) 836 { 837 struct dma_map_ops *ops = get_dma_ops(dev); 838 struct scatterlist *s; 839 int i; 840 841 for_each_sg(sg, s, nents, i) 842 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 843 dir); 844 } 845 846 /** 847 * arm_dma_sync_sg_for_device 848 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 849 * @sg: list of buffers 850 * @nents: number of buffers to map (returned from dma_map_sg) 851 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 852 */ 853 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 854 int nents, enum dma_data_direction dir) 855 { 856 struct dma_map_ops *ops = get_dma_ops(dev); 857 struct scatterlist *s; 858 int i; 859 860 for_each_sg(sg, s, nents, i) 861 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 862 dir); 863 } 864 865 /* 866 * Return whether the given device DMA address mask can be supported 867 * properly. For example, if your device can only drive the low 24-bits 868 * during bus mastering, then you would pass 0x00ffffff as the mask 869 * to this function. 870 */ 871 int dma_supported(struct device *dev, u64 mask) 872 { 873 if (mask < (u64)arm_dma_limit) 874 return 0; 875 return 1; 876 } 877 EXPORT_SYMBOL(dma_supported); 878 879 static int arm_dma_set_mask(struct device *dev, u64 dma_mask) 880 { 881 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 882 return -EIO; 883 884 *dev->dma_mask = dma_mask; 885 886 return 0; 887 } 888 889 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 890 891 static int __init dma_debug_do_init(void) 892 { 893 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 894 return 0; 895 } 896 fs_initcall(dma_debug_do_init); 897 898 #ifdef CONFIG_ARM_DMA_USE_IOMMU 899 900 /* IOMMU */ 901 902 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 903 size_t size) 904 { 905 unsigned int order = get_order(size); 906 unsigned int align = 0; 907 unsigned int count, start; 908 unsigned long flags; 909 910 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + 911 (1 << mapping->order) - 1) >> mapping->order; 912 913 if (order > mapping->order) 914 align = (1 << (order - mapping->order)) - 1; 915 916 spin_lock_irqsave(&mapping->lock, flags); 917 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, 918 count, align); 919 if (start > mapping->bits) { 920 spin_unlock_irqrestore(&mapping->lock, flags); 921 return DMA_ERROR_CODE; 922 } 923 924 bitmap_set(mapping->bitmap, start, count); 925 spin_unlock_irqrestore(&mapping->lock, flags); 926 927 return mapping->base + (start << (mapping->order + PAGE_SHIFT)); 928 } 929 930 static inline void __free_iova(struct dma_iommu_mapping *mapping, 931 dma_addr_t addr, size_t size) 932 { 933 unsigned int start = (addr - mapping->base) >> 934 (mapping->order + PAGE_SHIFT); 935 unsigned int count = ((size >> PAGE_SHIFT) + 936 (1 << mapping->order) - 1) >> mapping->order; 937 unsigned long flags; 938 939 spin_lock_irqsave(&mapping->lock, flags); 940 bitmap_clear(mapping->bitmap, start, count); 941 spin_unlock_irqrestore(&mapping->lock, flags); 942 } 943 944 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 945 { 946 struct page **pages; 947 int count = size >> PAGE_SHIFT; 948 int array_size = count * sizeof(struct page *); 949 int i = 0; 950 951 if (array_size <= PAGE_SIZE) 952 pages = kzalloc(array_size, gfp); 953 else 954 pages = vzalloc(array_size); 955 if (!pages) 956 return NULL; 957 958 while (count) { 959 int j, order = __fls(count); 960 961 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order); 962 while (!pages[i] && order) 963 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order); 964 if (!pages[i]) 965 goto error; 966 967 if (order) 968 split_page(pages[i], order); 969 j = 1 << order; 970 while (--j) 971 pages[i + j] = pages[i] + j; 972 973 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 974 i += 1 << order; 975 count -= 1 << order; 976 } 977 978 return pages; 979 error: 980 while (i--) 981 if (pages[i]) 982 __free_pages(pages[i], 0); 983 if (array_size <= PAGE_SIZE) 984 kfree(pages); 985 else 986 vfree(pages); 987 return NULL; 988 } 989 990 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size) 991 { 992 int count = size >> PAGE_SHIFT; 993 int array_size = count * sizeof(struct page *); 994 int i; 995 for (i = 0; i < count; i++) 996 if (pages[i]) 997 __free_pages(pages[i], 0); 998 if (array_size <= PAGE_SIZE) 999 kfree(pages); 1000 else 1001 vfree(pages); 1002 return 0; 1003 } 1004 1005 /* 1006 * Create a CPU mapping for a specified pages 1007 */ 1008 static void * 1009 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1010 const void *caller) 1011 { 1012 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1013 struct vm_struct *area; 1014 unsigned long p; 1015 1016 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 1017 caller); 1018 if (!area) 1019 return NULL; 1020 1021 area->pages = pages; 1022 area->nr_pages = nr_pages; 1023 p = (unsigned long)area->addr; 1024 1025 for (i = 0; i < nr_pages; i++) { 1026 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); 1027 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) 1028 goto err; 1029 p += PAGE_SIZE; 1030 } 1031 return area->addr; 1032 err: 1033 unmap_kernel_range((unsigned long)area->addr, size); 1034 vunmap(area->addr); 1035 return NULL; 1036 } 1037 1038 /* 1039 * Create a mapping in device IO address space for specified pages 1040 */ 1041 static dma_addr_t 1042 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1043 { 1044 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1045 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1046 dma_addr_t dma_addr, iova; 1047 int i, ret = DMA_ERROR_CODE; 1048 1049 dma_addr = __alloc_iova(mapping, size); 1050 if (dma_addr == DMA_ERROR_CODE) 1051 return dma_addr; 1052 1053 iova = dma_addr; 1054 for (i = 0; i < count; ) { 1055 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1056 phys_addr_t phys = page_to_phys(pages[i]); 1057 unsigned int len, j; 1058 1059 for (j = i + 1; j < count; j++, next_pfn++) 1060 if (page_to_pfn(pages[j]) != next_pfn) 1061 break; 1062 1063 len = (j - i) << PAGE_SHIFT; 1064 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1065 if (ret < 0) 1066 goto fail; 1067 iova += len; 1068 i = j; 1069 } 1070 return dma_addr; 1071 fail: 1072 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1073 __free_iova(mapping, dma_addr, size); 1074 return DMA_ERROR_CODE; 1075 } 1076 1077 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1078 { 1079 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1080 1081 /* 1082 * add optional in-page offset from iova to size and align 1083 * result to page size 1084 */ 1085 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1086 iova &= PAGE_MASK; 1087 1088 iommu_unmap(mapping->domain, iova, size); 1089 __free_iova(mapping, iova, size); 1090 return 0; 1091 } 1092 1093 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1094 { 1095 struct vm_struct *area; 1096 1097 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1098 return cpu_addr; 1099 1100 area = find_vm_area(cpu_addr); 1101 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1102 return area->pages; 1103 return NULL; 1104 } 1105 1106 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1107 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1108 { 1109 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 1110 struct page **pages; 1111 void *addr = NULL; 1112 1113 *handle = DMA_ERROR_CODE; 1114 size = PAGE_ALIGN(size); 1115 1116 pages = __iommu_alloc_buffer(dev, size, gfp); 1117 if (!pages) 1118 return NULL; 1119 1120 *handle = __iommu_create_mapping(dev, pages, size); 1121 if (*handle == DMA_ERROR_CODE) 1122 goto err_buffer; 1123 1124 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1125 return pages; 1126 1127 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1128 __builtin_return_address(0)); 1129 if (!addr) 1130 goto err_mapping; 1131 1132 return addr; 1133 1134 err_mapping: 1135 __iommu_remove_mapping(dev, *handle, size); 1136 err_buffer: 1137 __iommu_free_buffer(dev, pages, size); 1138 return NULL; 1139 } 1140 1141 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1142 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1143 struct dma_attrs *attrs) 1144 { 1145 unsigned long uaddr = vma->vm_start; 1146 unsigned long usize = vma->vm_end - vma->vm_start; 1147 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1148 1149 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1150 1151 if (!pages) 1152 return -ENXIO; 1153 1154 do { 1155 int ret = vm_insert_page(vma, uaddr, *pages++); 1156 if (ret) { 1157 pr_err("Remapping memory failed: %d\n", ret); 1158 return ret; 1159 } 1160 uaddr += PAGE_SIZE; 1161 usize -= PAGE_SIZE; 1162 } while (usize > 0); 1163 1164 return 0; 1165 } 1166 1167 /* 1168 * free a page as defined by the above mapping. 1169 * Must not be called with IRQs disabled. 1170 */ 1171 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1172 dma_addr_t handle, struct dma_attrs *attrs) 1173 { 1174 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1175 size = PAGE_ALIGN(size); 1176 1177 if (!pages) { 1178 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1179 return; 1180 } 1181 1182 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1183 unmap_kernel_range((unsigned long)cpu_addr, size); 1184 vunmap(cpu_addr); 1185 } 1186 1187 __iommu_remove_mapping(dev, handle, size); 1188 __iommu_free_buffer(dev, pages, size); 1189 } 1190 1191 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1192 void *cpu_addr, dma_addr_t dma_addr, 1193 size_t size, struct dma_attrs *attrs) 1194 { 1195 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1196 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1197 1198 if (!pages) 1199 return -ENXIO; 1200 1201 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1202 GFP_KERNEL); 1203 } 1204 1205 /* 1206 * Map a part of the scatter-gather list into contiguous io address space 1207 */ 1208 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1209 size_t size, dma_addr_t *handle, 1210 enum dma_data_direction dir, struct dma_attrs *attrs) 1211 { 1212 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1213 dma_addr_t iova, iova_base; 1214 int ret = 0; 1215 unsigned int count; 1216 struct scatterlist *s; 1217 1218 size = PAGE_ALIGN(size); 1219 *handle = DMA_ERROR_CODE; 1220 1221 iova_base = iova = __alloc_iova(mapping, size); 1222 if (iova == DMA_ERROR_CODE) 1223 return -ENOMEM; 1224 1225 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1226 phys_addr_t phys = page_to_phys(sg_page(s)); 1227 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1228 1229 if (!arch_is_coherent() && 1230 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1231 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1232 1233 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1234 if (ret < 0) 1235 goto fail; 1236 count += len >> PAGE_SHIFT; 1237 iova += len; 1238 } 1239 *handle = iova_base; 1240 1241 return 0; 1242 fail: 1243 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1244 __free_iova(mapping, iova_base, size); 1245 return ret; 1246 } 1247 1248 /** 1249 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1250 * @dev: valid struct device pointer 1251 * @sg: list of buffers 1252 * @nents: number of buffers to map 1253 * @dir: DMA transfer direction 1254 * 1255 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1256 * The scatter gather list elements are merged together (if possible) and 1257 * tagged with the appropriate dma address and length. They are obtained via 1258 * sg_dma_{address,length}. 1259 */ 1260 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1261 enum dma_data_direction dir, struct dma_attrs *attrs) 1262 { 1263 struct scatterlist *s = sg, *dma = sg, *start = sg; 1264 int i, count = 0; 1265 unsigned int offset = s->offset; 1266 unsigned int size = s->offset + s->length; 1267 unsigned int max = dma_get_max_seg_size(dev); 1268 1269 for (i = 1; i < nents; i++) { 1270 s = sg_next(s); 1271 1272 s->dma_address = DMA_ERROR_CODE; 1273 s->dma_length = 0; 1274 1275 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1276 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1277 dir, attrs) < 0) 1278 goto bad_mapping; 1279 1280 dma->dma_address += offset; 1281 dma->dma_length = size - offset; 1282 1283 size = offset = s->offset; 1284 start = s; 1285 dma = sg_next(dma); 1286 count += 1; 1287 } 1288 size += s->length; 1289 } 1290 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0) 1291 goto bad_mapping; 1292 1293 dma->dma_address += offset; 1294 dma->dma_length = size - offset; 1295 1296 return count+1; 1297 1298 bad_mapping: 1299 for_each_sg(sg, s, count, i) 1300 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1301 return 0; 1302 } 1303 1304 /** 1305 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1306 * @dev: valid struct device pointer 1307 * @sg: list of buffers 1308 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1309 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1310 * 1311 * Unmap a set of streaming mode DMA translations. Again, CPU access 1312 * rules concerning calls here are the same as for dma_unmap_single(). 1313 */ 1314 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1315 enum dma_data_direction dir, struct dma_attrs *attrs) 1316 { 1317 struct scatterlist *s; 1318 int i; 1319 1320 for_each_sg(sg, s, nents, i) { 1321 if (sg_dma_len(s)) 1322 __iommu_remove_mapping(dev, sg_dma_address(s), 1323 sg_dma_len(s)); 1324 if (!arch_is_coherent() && 1325 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1326 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1327 s->length, dir); 1328 } 1329 } 1330 1331 /** 1332 * arm_iommu_sync_sg_for_cpu 1333 * @dev: valid struct device pointer 1334 * @sg: list of buffers 1335 * @nents: number of buffers to map (returned from dma_map_sg) 1336 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1337 */ 1338 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1339 int nents, enum dma_data_direction dir) 1340 { 1341 struct scatterlist *s; 1342 int i; 1343 1344 for_each_sg(sg, s, nents, i) 1345 if (!arch_is_coherent()) 1346 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1347 1348 } 1349 1350 /** 1351 * arm_iommu_sync_sg_for_device 1352 * @dev: valid struct device pointer 1353 * @sg: list of buffers 1354 * @nents: number of buffers to map (returned from dma_map_sg) 1355 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1356 */ 1357 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1358 int nents, enum dma_data_direction dir) 1359 { 1360 struct scatterlist *s; 1361 int i; 1362 1363 for_each_sg(sg, s, nents, i) 1364 if (!arch_is_coherent()) 1365 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1366 } 1367 1368 1369 /** 1370 * arm_iommu_map_page 1371 * @dev: valid struct device pointer 1372 * @page: page that buffer resides in 1373 * @offset: offset into page for start of buffer 1374 * @size: size of buffer to map 1375 * @dir: DMA transfer direction 1376 * 1377 * IOMMU aware version of arm_dma_map_page() 1378 */ 1379 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1380 unsigned long offset, size_t size, enum dma_data_direction dir, 1381 struct dma_attrs *attrs) 1382 { 1383 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1384 dma_addr_t dma_addr; 1385 int ret, len = PAGE_ALIGN(size + offset); 1386 1387 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1388 __dma_page_cpu_to_dev(page, offset, size, dir); 1389 1390 dma_addr = __alloc_iova(mapping, len); 1391 if (dma_addr == DMA_ERROR_CODE) 1392 return dma_addr; 1393 1394 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0); 1395 if (ret < 0) 1396 goto fail; 1397 1398 return dma_addr + offset; 1399 fail: 1400 __free_iova(mapping, dma_addr, len); 1401 return DMA_ERROR_CODE; 1402 } 1403 1404 /** 1405 * arm_iommu_unmap_page 1406 * @dev: valid struct device pointer 1407 * @handle: DMA address of buffer 1408 * @size: size of buffer (same as passed to dma_map_page) 1409 * @dir: DMA transfer direction (same as passed to dma_map_page) 1410 * 1411 * IOMMU aware version of arm_dma_unmap_page() 1412 */ 1413 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1414 size_t size, enum dma_data_direction dir, 1415 struct dma_attrs *attrs) 1416 { 1417 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1418 dma_addr_t iova = handle & PAGE_MASK; 1419 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1420 int offset = handle & ~PAGE_MASK; 1421 int len = PAGE_ALIGN(size + offset); 1422 1423 if (!iova) 1424 return; 1425 1426 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1427 __dma_page_dev_to_cpu(page, offset, size, dir); 1428 1429 iommu_unmap(mapping->domain, iova, len); 1430 __free_iova(mapping, iova, len); 1431 } 1432 1433 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1434 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1435 { 1436 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1437 dma_addr_t iova = handle & PAGE_MASK; 1438 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1439 unsigned int offset = handle & ~PAGE_MASK; 1440 1441 if (!iova) 1442 return; 1443 1444 if (!arch_is_coherent()) 1445 __dma_page_dev_to_cpu(page, offset, size, dir); 1446 } 1447 1448 static void arm_iommu_sync_single_for_device(struct device *dev, 1449 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1450 { 1451 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1452 dma_addr_t iova = handle & PAGE_MASK; 1453 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1454 unsigned int offset = handle & ~PAGE_MASK; 1455 1456 if (!iova) 1457 return; 1458 1459 __dma_page_cpu_to_dev(page, offset, size, dir); 1460 } 1461 1462 struct dma_map_ops iommu_ops = { 1463 .alloc = arm_iommu_alloc_attrs, 1464 .free = arm_iommu_free_attrs, 1465 .mmap = arm_iommu_mmap_attrs, 1466 .get_sgtable = arm_iommu_get_sgtable, 1467 1468 .map_page = arm_iommu_map_page, 1469 .unmap_page = arm_iommu_unmap_page, 1470 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1471 .sync_single_for_device = arm_iommu_sync_single_for_device, 1472 1473 .map_sg = arm_iommu_map_sg, 1474 .unmap_sg = arm_iommu_unmap_sg, 1475 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1476 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1477 }; 1478 1479 /** 1480 * arm_iommu_create_mapping 1481 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1482 * @base: start address of the valid IO address space 1483 * @size: size of the valid IO address space 1484 * @order: accuracy of the IO addresses allocations 1485 * 1486 * Creates a mapping structure which holds information about used/unused 1487 * IO address ranges, which is required to perform memory allocation and 1488 * mapping with IOMMU aware functions. 1489 * 1490 * The client device need to be attached to the mapping with 1491 * arm_iommu_attach_device function. 1492 */ 1493 struct dma_iommu_mapping * 1494 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, 1495 int order) 1496 { 1497 unsigned int count = size >> (PAGE_SHIFT + order); 1498 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); 1499 struct dma_iommu_mapping *mapping; 1500 int err = -ENOMEM; 1501 1502 if (!count) 1503 return ERR_PTR(-EINVAL); 1504 1505 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1506 if (!mapping) 1507 goto err; 1508 1509 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1510 if (!mapping->bitmap) 1511 goto err2; 1512 1513 mapping->base = base; 1514 mapping->bits = BITS_PER_BYTE * bitmap_size; 1515 mapping->order = order; 1516 spin_lock_init(&mapping->lock); 1517 1518 mapping->domain = iommu_domain_alloc(bus); 1519 if (!mapping->domain) 1520 goto err3; 1521 1522 kref_init(&mapping->kref); 1523 return mapping; 1524 err3: 1525 kfree(mapping->bitmap); 1526 err2: 1527 kfree(mapping); 1528 err: 1529 return ERR_PTR(err); 1530 } 1531 1532 static void release_iommu_mapping(struct kref *kref) 1533 { 1534 struct dma_iommu_mapping *mapping = 1535 container_of(kref, struct dma_iommu_mapping, kref); 1536 1537 iommu_domain_free(mapping->domain); 1538 kfree(mapping->bitmap); 1539 kfree(mapping); 1540 } 1541 1542 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1543 { 1544 if (mapping) 1545 kref_put(&mapping->kref, release_iommu_mapping); 1546 } 1547 1548 /** 1549 * arm_iommu_attach_device 1550 * @dev: valid struct device pointer 1551 * @mapping: io address space mapping structure (returned from 1552 * arm_iommu_create_mapping) 1553 * 1554 * Attaches specified io address space mapping to the provided device, 1555 * this replaces the dma operations (dma_map_ops pointer) with the 1556 * IOMMU aware version. More than one client might be attached to 1557 * the same io address space mapping. 1558 */ 1559 int arm_iommu_attach_device(struct device *dev, 1560 struct dma_iommu_mapping *mapping) 1561 { 1562 int err; 1563 1564 err = iommu_attach_device(mapping->domain, dev); 1565 if (err) 1566 return err; 1567 1568 kref_get(&mapping->kref); 1569 dev->archdata.mapping = mapping; 1570 set_dma_ops(dev, &iommu_ops); 1571 1572 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1573 return 0; 1574 } 1575 1576 #endif 1577