xref: /linux/arch/arm/mm/dma-mapping.c (revision 24ce659dcc02c21f8d6c0a7589c3320a4dfa8152)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dma-noncoherent.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 #include <linux/cma.h>
29 
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 #include <xen/swiotlb-xen.h>
40 
41 #include "dma.h"
42 #include "mm.h"
43 
44 struct arm_dma_alloc_args {
45 	struct device *dev;
46 	size_t size;
47 	gfp_t gfp;
48 	pgprot_t prot;
49 	const void *caller;
50 	bool want_vaddr;
51 	int coherent_flag;
52 };
53 
54 struct arm_dma_free_args {
55 	struct device *dev;
56 	size_t size;
57 	void *cpu_addr;
58 	struct page *page;
59 	bool want_vaddr;
60 };
61 
62 #define NORMAL	    0
63 #define COHERENT    1
64 
65 struct arm_dma_allocator {
66 	void *(*alloc)(struct arm_dma_alloc_args *args,
67 		       struct page **ret_page);
68 	void (*free)(struct arm_dma_free_args *args);
69 };
70 
71 struct arm_dma_buffer {
72 	struct list_head list;
73 	void *virt;
74 	struct arm_dma_allocator *allocator;
75 };
76 
77 static LIST_HEAD(arm_dma_bufs);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79 
80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81 {
82 	struct arm_dma_buffer *buf, *found = NULL;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 	list_for_each_entry(buf, &arm_dma_bufs, list) {
87 		if (buf->virt == virt) {
88 			list_del(&buf->list);
89 			found = buf;
90 			break;
91 		}
92 	}
93 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 	return found;
95 }
96 
97 /*
98  * The DMA API is built upon the notion of "buffer ownership".  A buffer
99  * is either exclusively owned by the CPU (and therefore may be accessed
100  * by it) or exclusively owned by the DMA device.  These helper functions
101  * represent the transitions between these two ownership states.
102  *
103  * Note, however, that on later ARMs, this notion does not work due to
104  * speculative prefetches.  We model our approach on the assumption that
105  * the CPU does do speculative prefetches, which means we clean caches
106  * before transfers and delay cache invalidation until transfer completion.
107  *
108  */
109 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 		size_t, enum dma_data_direction);
111 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 		size_t, enum dma_data_direction);
113 
114 /**
115  * arm_dma_map_page - map a portion of a page for streaming DMA
116  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117  * @page: page that buffer resides in
118  * @offset: offset into page for start of buffer
119  * @size: size of buffer to map
120  * @dir: DMA transfer direction
121  *
122  * Ensure that any data held in the cache is appropriately discarded
123  * or written back.
124  *
125  * The device owns this memory once this call has completed.  The CPU
126  * can regain ownership by calling dma_unmap_page().
127  */
128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 	     unsigned long offset, size_t size, enum dma_data_direction dir,
130 	     unsigned long attrs)
131 {
132 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 		__dma_page_cpu_to_dev(page, offset, size, dir);
134 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135 }
136 
137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 	     unsigned long offset, size_t size, enum dma_data_direction dir,
139 	     unsigned long attrs)
140 {
141 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142 }
143 
144 /**
145  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147  * @handle: DMA address of buffer
148  * @size: size of buffer (same as passed to dma_map_page)
149  * @dir: DMA transfer direction (same as passed to dma_map_page)
150  *
151  * Unmap a page streaming mode DMA translation.  The handle and size
152  * must match what was provided in the previous dma_map_page() call.
153  * All other usages are undefined.
154  *
155  * After this call, reads by the CPU to the buffer are guaranteed to see
156  * whatever the device wrote there.
157  */
158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 		size_t size, enum dma_data_direction dir, unsigned long attrs)
160 {
161 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 				      handle & ~PAGE_MASK, size, dir);
164 }
165 
166 static void arm_dma_sync_single_for_cpu(struct device *dev,
167 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
168 {
169 	unsigned int offset = handle & (PAGE_SIZE - 1);
170 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 	__dma_page_dev_to_cpu(page, offset, size, dir);
172 }
173 
174 static void arm_dma_sync_single_for_device(struct device *dev,
175 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
176 {
177 	unsigned int offset = handle & (PAGE_SIZE - 1);
178 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 	__dma_page_cpu_to_dev(page, offset, size, dir);
180 }
181 
182 /*
183  * Return whether the given device DMA address mask can be supported
184  * properly.  For example, if your device can only drive the low 24-bits
185  * during bus mastering, then you would pass 0x00ffffff as the mask
186  * to this function.
187  */
188 static int arm_dma_supported(struct device *dev, u64 mask)
189 {
190 	unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
191 
192 	/*
193 	 * Translate the device's DMA mask to a PFN limit.  This
194 	 * PFN number includes the page which we can DMA to.
195 	 */
196 	return dma_to_pfn(dev, mask) >= max_dma_pfn;
197 }
198 
199 const struct dma_map_ops arm_dma_ops = {
200 	.alloc			= arm_dma_alloc,
201 	.free			= arm_dma_free,
202 	.mmap			= arm_dma_mmap,
203 	.get_sgtable		= arm_dma_get_sgtable,
204 	.map_page		= arm_dma_map_page,
205 	.unmap_page		= arm_dma_unmap_page,
206 	.map_sg			= arm_dma_map_sg,
207 	.unmap_sg		= arm_dma_unmap_sg,
208 	.map_resource		= dma_direct_map_resource,
209 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
210 	.sync_single_for_device	= arm_dma_sync_single_for_device,
211 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
212 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
213 	.dma_supported		= arm_dma_supported,
214 	.get_required_mask	= dma_direct_get_required_mask,
215 };
216 EXPORT_SYMBOL(arm_dma_ops);
217 
218 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
219 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
220 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
221 				  dma_addr_t handle, unsigned long attrs);
222 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
223 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
224 		 unsigned long attrs);
225 
226 const struct dma_map_ops arm_coherent_dma_ops = {
227 	.alloc			= arm_coherent_dma_alloc,
228 	.free			= arm_coherent_dma_free,
229 	.mmap			= arm_coherent_dma_mmap,
230 	.get_sgtable		= arm_dma_get_sgtable,
231 	.map_page		= arm_coherent_dma_map_page,
232 	.map_sg			= arm_dma_map_sg,
233 	.map_resource		= dma_direct_map_resource,
234 	.dma_supported		= arm_dma_supported,
235 	.get_required_mask	= dma_direct_get_required_mask,
236 };
237 EXPORT_SYMBOL(arm_coherent_dma_ops);
238 
239 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
240 {
241 	/*
242 	 * Ensure that the allocated pages are zeroed, and that any data
243 	 * lurking in the kernel direct-mapped region is invalidated.
244 	 */
245 	if (PageHighMem(page)) {
246 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
247 		phys_addr_t end = base + size;
248 		while (size > 0) {
249 			void *ptr = kmap_atomic(page);
250 			memset(ptr, 0, PAGE_SIZE);
251 			if (coherent_flag != COHERENT)
252 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
253 			kunmap_atomic(ptr);
254 			page++;
255 			size -= PAGE_SIZE;
256 		}
257 		if (coherent_flag != COHERENT)
258 			outer_flush_range(base, end);
259 	} else {
260 		void *ptr = page_address(page);
261 		memset(ptr, 0, size);
262 		if (coherent_flag != COHERENT) {
263 			dmac_flush_range(ptr, ptr + size);
264 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
265 		}
266 	}
267 }
268 
269 /*
270  * Allocate a DMA buffer for 'dev' of size 'size' using the
271  * specified gfp mask.  Note that 'size' must be page aligned.
272  */
273 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
274 				       gfp_t gfp, int coherent_flag)
275 {
276 	unsigned long order = get_order(size);
277 	struct page *page, *p, *e;
278 
279 	page = alloc_pages(gfp, order);
280 	if (!page)
281 		return NULL;
282 
283 	/*
284 	 * Now split the huge page and free the excess pages
285 	 */
286 	split_page(page, order);
287 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
288 		__free_page(p);
289 
290 	__dma_clear_buffer(page, size, coherent_flag);
291 
292 	return page;
293 }
294 
295 /*
296  * Free a DMA buffer.  'size' must be page aligned.
297  */
298 static void __dma_free_buffer(struct page *page, size_t size)
299 {
300 	struct page *e = page + (size >> PAGE_SHIFT);
301 
302 	while (page < e) {
303 		__free_page(page);
304 		page++;
305 	}
306 }
307 
308 static void *__alloc_from_contiguous(struct device *dev, size_t size,
309 				     pgprot_t prot, struct page **ret_page,
310 				     const void *caller, bool want_vaddr,
311 				     int coherent_flag, gfp_t gfp);
312 
313 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
314 				 pgprot_t prot, struct page **ret_page,
315 				 const void *caller, bool want_vaddr);
316 
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
318 static struct gen_pool *atomic_pool __ro_after_init;
319 
320 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
321 
322 static int __init early_coherent_pool(char *p)
323 {
324 	atomic_pool_size = memparse(p, &p);
325 	return 0;
326 }
327 early_param("coherent_pool", early_coherent_pool);
328 
329 /*
330  * Initialise the coherent pool for atomic allocations.
331  */
332 static int __init atomic_pool_init(void)
333 {
334 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
335 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
336 	struct page *page;
337 	void *ptr;
338 
339 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
340 	if (!atomic_pool)
341 		goto out;
342 	/*
343 	 * The atomic pool is only used for non-coherent allocations
344 	 * so we must pass NORMAL for coherent_flag.
345 	 */
346 	if (dev_get_cma_area(NULL))
347 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
348 				      &page, atomic_pool_init, true, NORMAL,
349 				      GFP_KERNEL);
350 	else
351 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
352 					   &page, atomic_pool_init, true);
353 	if (ptr) {
354 		int ret;
355 
356 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
357 					page_to_phys(page),
358 					atomic_pool_size, -1);
359 		if (ret)
360 			goto destroy_genpool;
361 
362 		gen_pool_set_algo(atomic_pool,
363 				gen_pool_first_fit_order_align,
364 				NULL);
365 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
366 		       atomic_pool_size / 1024);
367 		return 0;
368 	}
369 
370 destroy_genpool:
371 	gen_pool_destroy(atomic_pool);
372 	atomic_pool = NULL;
373 out:
374 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
375 	       atomic_pool_size / 1024);
376 	return -ENOMEM;
377 }
378 /*
379  * CMA is activated by core_initcall, so we must be called after it.
380  */
381 postcore_initcall(atomic_pool_init);
382 
383 struct dma_contig_early_reserve {
384 	phys_addr_t base;
385 	unsigned long size;
386 };
387 
388 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
389 
390 static int dma_mmu_remap_num __initdata;
391 
392 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
393 {
394 	dma_mmu_remap[dma_mmu_remap_num].base = base;
395 	dma_mmu_remap[dma_mmu_remap_num].size = size;
396 	dma_mmu_remap_num++;
397 }
398 
399 void __init dma_contiguous_remap(void)
400 {
401 	int i;
402 	for (i = 0; i < dma_mmu_remap_num; i++) {
403 		phys_addr_t start = dma_mmu_remap[i].base;
404 		phys_addr_t end = start + dma_mmu_remap[i].size;
405 		struct map_desc map;
406 		unsigned long addr;
407 
408 		if (end > arm_lowmem_limit)
409 			end = arm_lowmem_limit;
410 		if (start >= end)
411 			continue;
412 
413 		map.pfn = __phys_to_pfn(start);
414 		map.virtual = __phys_to_virt(start);
415 		map.length = end - start;
416 		map.type = MT_MEMORY_DMA_READY;
417 
418 		/*
419 		 * Clear previous low-memory mapping to ensure that the
420 		 * TLB does not see any conflicting entries, then flush
421 		 * the TLB of the old entries before creating new mappings.
422 		 *
423 		 * This ensures that any speculatively loaded TLB entries
424 		 * (even though they may be rare) can not cause any problems,
425 		 * and ensures that this code is architecturally compliant.
426 		 */
427 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
428 		     addr += PMD_SIZE)
429 			pmd_clear(pmd_off_k(addr));
430 
431 		flush_tlb_kernel_range(__phys_to_virt(start),
432 				       __phys_to_virt(end));
433 
434 		iotable_init(&map, 1);
435 	}
436 }
437 
438 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
439 {
440 	struct page *page = virt_to_page(addr);
441 	pgprot_t prot = *(pgprot_t *)data;
442 
443 	set_pte_ext(pte, mk_pte(page, prot), 0);
444 	return 0;
445 }
446 
447 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
448 {
449 	unsigned long start = (unsigned long) page_address(page);
450 	unsigned end = start + size;
451 
452 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
453 	flush_tlb_kernel_range(start, end);
454 }
455 
456 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
457 				 pgprot_t prot, struct page **ret_page,
458 				 const void *caller, bool want_vaddr)
459 {
460 	struct page *page;
461 	void *ptr = NULL;
462 	/*
463 	 * __alloc_remap_buffer is only called when the device is
464 	 * non-coherent
465 	 */
466 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
467 	if (!page)
468 		return NULL;
469 	if (!want_vaddr)
470 		goto out;
471 
472 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
473 	if (!ptr) {
474 		__dma_free_buffer(page, size);
475 		return NULL;
476 	}
477 
478  out:
479 	*ret_page = page;
480 	return ptr;
481 }
482 
483 static void *__alloc_from_pool(size_t size, struct page **ret_page)
484 {
485 	unsigned long val;
486 	void *ptr = NULL;
487 
488 	if (!atomic_pool) {
489 		WARN(1, "coherent pool not initialised!\n");
490 		return NULL;
491 	}
492 
493 	val = gen_pool_alloc(atomic_pool, size);
494 	if (val) {
495 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
496 
497 		*ret_page = phys_to_page(phys);
498 		ptr = (void *)val;
499 	}
500 
501 	return ptr;
502 }
503 
504 static bool __in_atomic_pool(void *start, size_t size)
505 {
506 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
507 }
508 
509 static int __free_from_pool(void *start, size_t size)
510 {
511 	if (!__in_atomic_pool(start, size))
512 		return 0;
513 
514 	gen_pool_free(atomic_pool, (unsigned long)start, size);
515 
516 	return 1;
517 }
518 
519 static void *__alloc_from_contiguous(struct device *dev, size_t size,
520 				     pgprot_t prot, struct page **ret_page,
521 				     const void *caller, bool want_vaddr,
522 				     int coherent_flag, gfp_t gfp)
523 {
524 	unsigned long order = get_order(size);
525 	size_t count = size >> PAGE_SHIFT;
526 	struct page *page;
527 	void *ptr = NULL;
528 
529 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
530 	if (!page)
531 		return NULL;
532 
533 	__dma_clear_buffer(page, size, coherent_flag);
534 
535 	if (!want_vaddr)
536 		goto out;
537 
538 	if (PageHighMem(page)) {
539 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
540 		if (!ptr) {
541 			dma_release_from_contiguous(dev, page, count);
542 			return NULL;
543 		}
544 	} else {
545 		__dma_remap(page, size, prot);
546 		ptr = page_address(page);
547 	}
548 
549  out:
550 	*ret_page = page;
551 	return ptr;
552 }
553 
554 static void __free_from_contiguous(struct device *dev, struct page *page,
555 				   void *cpu_addr, size_t size, bool want_vaddr)
556 {
557 	if (want_vaddr) {
558 		if (PageHighMem(page))
559 			dma_common_free_remap(cpu_addr, size);
560 		else
561 			__dma_remap(page, size, PAGE_KERNEL);
562 	}
563 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
564 }
565 
566 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
567 {
568 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
569 			pgprot_writecombine(prot) :
570 			pgprot_dmacoherent(prot);
571 	return prot;
572 }
573 
574 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
575 				   struct page **ret_page)
576 {
577 	struct page *page;
578 	/* __alloc_simple_buffer is only called when the device is coherent */
579 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
580 	if (!page)
581 		return NULL;
582 
583 	*ret_page = page;
584 	return page_address(page);
585 }
586 
587 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
588 				    struct page **ret_page)
589 {
590 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
591 				     ret_page);
592 }
593 
594 static void simple_allocator_free(struct arm_dma_free_args *args)
595 {
596 	__dma_free_buffer(args->page, args->size);
597 }
598 
599 static struct arm_dma_allocator simple_allocator = {
600 	.alloc = simple_allocator_alloc,
601 	.free = simple_allocator_free,
602 };
603 
604 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
605 				 struct page **ret_page)
606 {
607 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
608 				       ret_page, args->caller,
609 				       args->want_vaddr, args->coherent_flag,
610 				       args->gfp);
611 }
612 
613 static void cma_allocator_free(struct arm_dma_free_args *args)
614 {
615 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
616 			       args->size, args->want_vaddr);
617 }
618 
619 static struct arm_dma_allocator cma_allocator = {
620 	.alloc = cma_allocator_alloc,
621 	.free = cma_allocator_free,
622 };
623 
624 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
625 				  struct page **ret_page)
626 {
627 	return __alloc_from_pool(args->size, ret_page);
628 }
629 
630 static void pool_allocator_free(struct arm_dma_free_args *args)
631 {
632 	__free_from_pool(args->cpu_addr, args->size);
633 }
634 
635 static struct arm_dma_allocator pool_allocator = {
636 	.alloc = pool_allocator_alloc,
637 	.free = pool_allocator_free,
638 };
639 
640 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
641 				   struct page **ret_page)
642 {
643 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
644 				    args->prot, ret_page, args->caller,
645 				    args->want_vaddr);
646 }
647 
648 static void remap_allocator_free(struct arm_dma_free_args *args)
649 {
650 	if (args->want_vaddr)
651 		dma_common_free_remap(args->cpu_addr, args->size);
652 
653 	__dma_free_buffer(args->page, args->size);
654 }
655 
656 static struct arm_dma_allocator remap_allocator = {
657 	.alloc = remap_allocator_alloc,
658 	.free = remap_allocator_free,
659 };
660 
661 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
662 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
663 			 unsigned long attrs, const void *caller)
664 {
665 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
666 	struct page *page = NULL;
667 	void *addr;
668 	bool allowblock, cma;
669 	struct arm_dma_buffer *buf;
670 	struct arm_dma_alloc_args args = {
671 		.dev = dev,
672 		.size = PAGE_ALIGN(size),
673 		.gfp = gfp,
674 		.prot = prot,
675 		.caller = caller,
676 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
677 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
678 	};
679 
680 #ifdef CONFIG_DMA_API_DEBUG
681 	u64 limit = (mask + 1) & ~mask;
682 	if (limit && size >= limit) {
683 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
684 			size, mask);
685 		return NULL;
686 	}
687 #endif
688 
689 	buf = kzalloc(sizeof(*buf),
690 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
691 	if (!buf)
692 		return NULL;
693 
694 	if (mask < 0xffffffffULL)
695 		gfp |= GFP_DMA;
696 
697 	/*
698 	 * Following is a work-around (a.k.a. hack) to prevent pages
699 	 * with __GFP_COMP being passed to split_page() which cannot
700 	 * handle them.  The real problem is that this flag probably
701 	 * should be 0 on ARM as it is not supported on this
702 	 * platform; see CONFIG_HUGETLBFS.
703 	 */
704 	gfp &= ~(__GFP_COMP);
705 	args.gfp = gfp;
706 
707 	*handle = DMA_MAPPING_ERROR;
708 	allowblock = gfpflags_allow_blocking(gfp);
709 	cma = allowblock ? dev_get_cma_area(dev) : false;
710 
711 	if (cma)
712 		buf->allocator = &cma_allocator;
713 	else if (is_coherent)
714 		buf->allocator = &simple_allocator;
715 	else if (allowblock)
716 		buf->allocator = &remap_allocator;
717 	else
718 		buf->allocator = &pool_allocator;
719 
720 	addr = buf->allocator->alloc(&args, &page);
721 
722 	if (page) {
723 		unsigned long flags;
724 
725 		*handle = pfn_to_dma(dev, page_to_pfn(page));
726 		buf->virt = args.want_vaddr ? addr : page;
727 
728 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
729 		list_add(&buf->list, &arm_dma_bufs);
730 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
731 	} else {
732 		kfree(buf);
733 	}
734 
735 	return args.want_vaddr ? addr : page;
736 }
737 
738 /*
739  * Allocate DMA-coherent memory space and return both the kernel remapped
740  * virtual and bus address for that space.
741  */
742 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
743 		    gfp_t gfp, unsigned long attrs)
744 {
745 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
746 
747 	return __dma_alloc(dev, size, handle, gfp, prot, false,
748 			   attrs, __builtin_return_address(0));
749 }
750 
751 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
752 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
753 {
754 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
755 			   attrs, __builtin_return_address(0));
756 }
757 
758 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
759 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
760 		 unsigned long attrs)
761 {
762 	int ret = -ENXIO;
763 	unsigned long nr_vma_pages = vma_pages(vma);
764 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
765 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
766 	unsigned long off = vma->vm_pgoff;
767 
768 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
769 		return ret;
770 
771 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
772 		ret = remap_pfn_range(vma, vma->vm_start,
773 				      pfn + off,
774 				      vma->vm_end - vma->vm_start,
775 				      vma->vm_page_prot);
776 	}
777 
778 	return ret;
779 }
780 
781 /*
782  * Create userspace mapping for the DMA-coherent memory.
783  */
784 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
785 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
786 		 unsigned long attrs)
787 {
788 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
789 }
790 
791 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
792 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
793 		 unsigned long attrs)
794 {
795 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
796 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
797 }
798 
799 /*
800  * Free a buffer as defined by the above mapping.
801  */
802 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
803 			   dma_addr_t handle, unsigned long attrs,
804 			   bool is_coherent)
805 {
806 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
807 	struct arm_dma_buffer *buf;
808 	struct arm_dma_free_args args = {
809 		.dev = dev,
810 		.size = PAGE_ALIGN(size),
811 		.cpu_addr = cpu_addr,
812 		.page = page,
813 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
814 	};
815 
816 	buf = arm_dma_buffer_find(cpu_addr);
817 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
818 		return;
819 
820 	buf->allocator->free(&args);
821 	kfree(buf);
822 }
823 
824 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
825 		  dma_addr_t handle, unsigned long attrs)
826 {
827 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
828 }
829 
830 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
831 				  dma_addr_t handle, unsigned long attrs)
832 {
833 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
834 }
835 
836 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
837 		 void *cpu_addr, dma_addr_t handle, size_t size,
838 		 unsigned long attrs)
839 {
840 	unsigned long pfn = dma_to_pfn(dev, handle);
841 	struct page *page;
842 	int ret;
843 
844 	/* If the PFN is not valid, we do not have a struct page */
845 	if (!pfn_valid(pfn))
846 		return -ENXIO;
847 
848 	page = pfn_to_page(pfn);
849 
850 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
851 	if (unlikely(ret))
852 		return ret;
853 
854 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
855 	return 0;
856 }
857 
858 static void dma_cache_maint_page(struct page *page, unsigned long offset,
859 	size_t size, enum dma_data_direction dir,
860 	void (*op)(const void *, size_t, int))
861 {
862 	unsigned long pfn;
863 	size_t left = size;
864 
865 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
866 	offset %= PAGE_SIZE;
867 
868 	/*
869 	 * A single sg entry may refer to multiple physically contiguous
870 	 * pages.  But we still need to process highmem pages individually.
871 	 * If highmem is not configured then the bulk of this loop gets
872 	 * optimized out.
873 	 */
874 	do {
875 		size_t len = left;
876 		void *vaddr;
877 
878 		page = pfn_to_page(pfn);
879 
880 		if (PageHighMem(page)) {
881 			if (len + offset > PAGE_SIZE)
882 				len = PAGE_SIZE - offset;
883 
884 			if (cache_is_vipt_nonaliasing()) {
885 				vaddr = kmap_atomic(page);
886 				op(vaddr + offset, len, dir);
887 				kunmap_atomic(vaddr);
888 			} else {
889 				vaddr = kmap_high_get(page);
890 				if (vaddr) {
891 					op(vaddr + offset, len, dir);
892 					kunmap_high(page);
893 				}
894 			}
895 		} else {
896 			vaddr = page_address(page) + offset;
897 			op(vaddr, len, dir);
898 		}
899 		offset = 0;
900 		pfn++;
901 		left -= len;
902 	} while (left);
903 }
904 
905 /*
906  * Make an area consistent for devices.
907  * Note: Drivers should NOT use this function directly, as it will break
908  * platforms with CONFIG_DMABOUNCE.
909  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
910  */
911 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
912 	size_t size, enum dma_data_direction dir)
913 {
914 	phys_addr_t paddr;
915 
916 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
917 
918 	paddr = page_to_phys(page) + off;
919 	if (dir == DMA_FROM_DEVICE) {
920 		outer_inv_range(paddr, paddr + size);
921 	} else {
922 		outer_clean_range(paddr, paddr + size);
923 	}
924 	/* FIXME: non-speculating: flush on bidirectional mappings? */
925 }
926 
927 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
928 	size_t size, enum dma_data_direction dir)
929 {
930 	phys_addr_t paddr = page_to_phys(page) + off;
931 
932 	/* FIXME: non-speculating: not required */
933 	/* in any case, don't bother invalidating if DMA to device */
934 	if (dir != DMA_TO_DEVICE) {
935 		outer_inv_range(paddr, paddr + size);
936 
937 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
938 	}
939 
940 	/*
941 	 * Mark the D-cache clean for these pages to avoid extra flushing.
942 	 */
943 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
944 		unsigned long pfn;
945 		size_t left = size;
946 
947 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
948 		off %= PAGE_SIZE;
949 		if (off) {
950 			pfn++;
951 			left -= PAGE_SIZE - off;
952 		}
953 		while (left >= PAGE_SIZE) {
954 			page = pfn_to_page(pfn++);
955 			set_bit(PG_dcache_clean, &page->flags);
956 			left -= PAGE_SIZE;
957 		}
958 	}
959 }
960 
961 /**
962  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
963  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
964  * @sg: list of buffers
965  * @nents: number of buffers to map
966  * @dir: DMA transfer direction
967  *
968  * Map a set of buffers described by scatterlist in streaming mode for DMA.
969  * This is the scatter-gather version of the dma_map_single interface.
970  * Here the scatter gather list elements are each tagged with the
971  * appropriate dma address and length.  They are obtained via
972  * sg_dma_{address,length}.
973  *
974  * Device ownership issues as mentioned for dma_map_single are the same
975  * here.
976  */
977 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
978 		enum dma_data_direction dir, unsigned long attrs)
979 {
980 	const struct dma_map_ops *ops = get_dma_ops(dev);
981 	struct scatterlist *s;
982 	int i, j;
983 
984 	for_each_sg(sg, s, nents, i) {
985 #ifdef CONFIG_NEED_SG_DMA_LENGTH
986 		s->dma_length = s->length;
987 #endif
988 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
989 						s->length, dir, attrs);
990 		if (dma_mapping_error(dev, s->dma_address))
991 			goto bad_mapping;
992 	}
993 	return nents;
994 
995  bad_mapping:
996 	for_each_sg(sg, s, i, j)
997 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
998 	return 0;
999 }
1000 
1001 /**
1002  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1003  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1004  * @sg: list of buffers
1005  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1006  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1007  *
1008  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1009  * rules concerning calls here are the same as for dma_unmap_single().
1010  */
1011 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1012 		enum dma_data_direction dir, unsigned long attrs)
1013 {
1014 	const struct dma_map_ops *ops = get_dma_ops(dev);
1015 	struct scatterlist *s;
1016 
1017 	int i;
1018 
1019 	for_each_sg(sg, s, nents, i)
1020 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1021 }
1022 
1023 /**
1024  * arm_dma_sync_sg_for_cpu
1025  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1026  * @sg: list of buffers
1027  * @nents: number of buffers to map (returned from dma_map_sg)
1028  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1029  */
1030 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1031 			int nents, enum dma_data_direction dir)
1032 {
1033 	const struct dma_map_ops *ops = get_dma_ops(dev);
1034 	struct scatterlist *s;
1035 	int i;
1036 
1037 	for_each_sg(sg, s, nents, i)
1038 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1039 					 dir);
1040 }
1041 
1042 /**
1043  * arm_dma_sync_sg_for_device
1044  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1045  * @sg: list of buffers
1046  * @nents: number of buffers to map (returned from dma_map_sg)
1047  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1048  */
1049 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1050 			int nents, enum dma_data_direction dir)
1051 {
1052 	const struct dma_map_ops *ops = get_dma_ops(dev);
1053 	struct scatterlist *s;
1054 	int i;
1055 
1056 	for_each_sg(sg, s, nents, i)
1057 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1058 					    dir);
1059 }
1060 
1061 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1062 {
1063 	/*
1064 	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1065 	 * 32-bits, which then can't be addressed by devices that only support
1066 	 * 32-bit DMA.
1067 	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1068 	 * handles bounce buffering for us.
1069 	 */
1070 	if (IS_ENABLED(CONFIG_ARM_LPAE))
1071 		return NULL;
1072 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1073 }
1074 
1075 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1076 
1077 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1078 {
1079 	int prot = 0;
1080 
1081 	if (attrs & DMA_ATTR_PRIVILEGED)
1082 		prot |= IOMMU_PRIV;
1083 
1084 	switch (dir) {
1085 	case DMA_BIDIRECTIONAL:
1086 		return prot | IOMMU_READ | IOMMU_WRITE;
1087 	case DMA_TO_DEVICE:
1088 		return prot | IOMMU_READ;
1089 	case DMA_FROM_DEVICE:
1090 		return prot | IOMMU_WRITE;
1091 	default:
1092 		return prot;
1093 	}
1094 }
1095 
1096 /* IOMMU */
1097 
1098 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1099 
1100 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1101 				      size_t size)
1102 {
1103 	unsigned int order = get_order(size);
1104 	unsigned int align = 0;
1105 	unsigned int count, start;
1106 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1107 	unsigned long flags;
1108 	dma_addr_t iova;
1109 	int i;
1110 
1111 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1112 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1113 
1114 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1115 	align = (1 << order) - 1;
1116 
1117 	spin_lock_irqsave(&mapping->lock, flags);
1118 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1119 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1120 				mapping->bits, 0, count, align);
1121 
1122 		if (start > mapping->bits)
1123 			continue;
1124 
1125 		bitmap_set(mapping->bitmaps[i], start, count);
1126 		break;
1127 	}
1128 
1129 	/*
1130 	 * No unused range found. Try to extend the existing mapping
1131 	 * and perform a second attempt to reserve an IO virtual
1132 	 * address range of size bytes.
1133 	 */
1134 	if (i == mapping->nr_bitmaps) {
1135 		if (extend_iommu_mapping(mapping)) {
1136 			spin_unlock_irqrestore(&mapping->lock, flags);
1137 			return DMA_MAPPING_ERROR;
1138 		}
1139 
1140 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1141 				mapping->bits, 0, count, align);
1142 
1143 		if (start > mapping->bits) {
1144 			spin_unlock_irqrestore(&mapping->lock, flags);
1145 			return DMA_MAPPING_ERROR;
1146 		}
1147 
1148 		bitmap_set(mapping->bitmaps[i], start, count);
1149 	}
1150 	spin_unlock_irqrestore(&mapping->lock, flags);
1151 
1152 	iova = mapping->base + (mapping_size * i);
1153 	iova += start << PAGE_SHIFT;
1154 
1155 	return iova;
1156 }
1157 
1158 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1159 			       dma_addr_t addr, size_t size)
1160 {
1161 	unsigned int start, count;
1162 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1163 	unsigned long flags;
1164 	dma_addr_t bitmap_base;
1165 	u32 bitmap_index;
1166 
1167 	if (!size)
1168 		return;
1169 
1170 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1171 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1172 
1173 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1174 
1175 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1176 
1177 	if (addr + size > bitmap_base + mapping_size) {
1178 		/*
1179 		 * The address range to be freed reaches into the iova
1180 		 * range of the next bitmap. This should not happen as
1181 		 * we don't allow this in __alloc_iova (at the
1182 		 * moment).
1183 		 */
1184 		BUG();
1185 	} else
1186 		count = size >> PAGE_SHIFT;
1187 
1188 	spin_lock_irqsave(&mapping->lock, flags);
1189 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1190 	spin_unlock_irqrestore(&mapping->lock, flags);
1191 }
1192 
1193 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1194 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1195 
1196 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1197 					  gfp_t gfp, unsigned long attrs,
1198 					  int coherent_flag)
1199 {
1200 	struct page **pages;
1201 	int count = size >> PAGE_SHIFT;
1202 	int array_size = count * sizeof(struct page *);
1203 	int i = 0;
1204 	int order_idx = 0;
1205 
1206 	if (array_size <= PAGE_SIZE)
1207 		pages = kzalloc(array_size, GFP_KERNEL);
1208 	else
1209 		pages = vzalloc(array_size);
1210 	if (!pages)
1211 		return NULL;
1212 
1213 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1214 	{
1215 		unsigned long order = get_order(size);
1216 		struct page *page;
1217 
1218 		page = dma_alloc_from_contiguous(dev, count, order,
1219 						 gfp & __GFP_NOWARN);
1220 		if (!page)
1221 			goto error;
1222 
1223 		__dma_clear_buffer(page, size, coherent_flag);
1224 
1225 		for (i = 0; i < count; i++)
1226 			pages[i] = page + i;
1227 
1228 		return pages;
1229 	}
1230 
1231 	/* Go straight to 4K chunks if caller says it's OK. */
1232 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1233 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1234 
1235 	/*
1236 	 * IOMMU can map any pages, so himem can also be used here
1237 	 */
1238 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1239 
1240 	while (count) {
1241 		int j, order;
1242 
1243 		order = iommu_order_array[order_idx];
1244 
1245 		/* Drop down when we get small */
1246 		if (__fls(count) < order) {
1247 			order_idx++;
1248 			continue;
1249 		}
1250 
1251 		if (order) {
1252 			/* See if it's easy to allocate a high-order chunk */
1253 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1254 
1255 			/* Go down a notch at first sign of pressure */
1256 			if (!pages[i]) {
1257 				order_idx++;
1258 				continue;
1259 			}
1260 		} else {
1261 			pages[i] = alloc_pages(gfp, 0);
1262 			if (!pages[i])
1263 				goto error;
1264 		}
1265 
1266 		if (order) {
1267 			split_page(pages[i], order);
1268 			j = 1 << order;
1269 			while (--j)
1270 				pages[i + j] = pages[i] + j;
1271 		}
1272 
1273 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1274 		i += 1 << order;
1275 		count -= 1 << order;
1276 	}
1277 
1278 	return pages;
1279 error:
1280 	while (i--)
1281 		if (pages[i])
1282 			__free_pages(pages[i], 0);
1283 	kvfree(pages);
1284 	return NULL;
1285 }
1286 
1287 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1288 			       size_t size, unsigned long attrs)
1289 {
1290 	int count = size >> PAGE_SHIFT;
1291 	int i;
1292 
1293 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1294 		dma_release_from_contiguous(dev, pages[0], count);
1295 	} else {
1296 		for (i = 0; i < count; i++)
1297 			if (pages[i])
1298 				__free_pages(pages[i], 0);
1299 	}
1300 
1301 	kvfree(pages);
1302 	return 0;
1303 }
1304 
1305 /*
1306  * Create a mapping in device IO address space for specified pages
1307  */
1308 static dma_addr_t
1309 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1310 		       unsigned long attrs)
1311 {
1312 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1313 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1314 	dma_addr_t dma_addr, iova;
1315 	int i;
1316 
1317 	dma_addr = __alloc_iova(mapping, size);
1318 	if (dma_addr == DMA_MAPPING_ERROR)
1319 		return dma_addr;
1320 
1321 	iova = dma_addr;
1322 	for (i = 0; i < count; ) {
1323 		int ret;
1324 
1325 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1326 		phys_addr_t phys = page_to_phys(pages[i]);
1327 		unsigned int len, j;
1328 
1329 		for (j = i + 1; j < count; j++, next_pfn++)
1330 			if (page_to_pfn(pages[j]) != next_pfn)
1331 				break;
1332 
1333 		len = (j - i) << PAGE_SHIFT;
1334 		ret = iommu_map(mapping->domain, iova, phys, len,
1335 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1336 		if (ret < 0)
1337 			goto fail;
1338 		iova += len;
1339 		i = j;
1340 	}
1341 	return dma_addr;
1342 fail:
1343 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1344 	__free_iova(mapping, dma_addr, size);
1345 	return DMA_MAPPING_ERROR;
1346 }
1347 
1348 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1349 {
1350 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1351 
1352 	/*
1353 	 * add optional in-page offset from iova to size and align
1354 	 * result to page size
1355 	 */
1356 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1357 	iova &= PAGE_MASK;
1358 
1359 	iommu_unmap(mapping->domain, iova, size);
1360 	__free_iova(mapping, iova, size);
1361 	return 0;
1362 }
1363 
1364 static struct page **__atomic_get_pages(void *addr)
1365 {
1366 	struct page *page;
1367 	phys_addr_t phys;
1368 
1369 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1370 	page = phys_to_page(phys);
1371 
1372 	return (struct page **)page;
1373 }
1374 
1375 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1376 {
1377 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1378 		return __atomic_get_pages(cpu_addr);
1379 
1380 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1381 		return cpu_addr;
1382 
1383 	return dma_common_find_pages(cpu_addr);
1384 }
1385 
1386 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1387 				  dma_addr_t *handle, int coherent_flag,
1388 				  unsigned long attrs)
1389 {
1390 	struct page *page;
1391 	void *addr;
1392 
1393 	if (coherent_flag  == COHERENT)
1394 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1395 	else
1396 		addr = __alloc_from_pool(size, &page);
1397 	if (!addr)
1398 		return NULL;
1399 
1400 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1401 	if (*handle == DMA_MAPPING_ERROR)
1402 		goto err_mapping;
1403 
1404 	return addr;
1405 
1406 err_mapping:
1407 	__free_from_pool(addr, size);
1408 	return NULL;
1409 }
1410 
1411 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1412 			dma_addr_t handle, size_t size, int coherent_flag)
1413 {
1414 	__iommu_remove_mapping(dev, handle, size);
1415 	if (coherent_flag == COHERENT)
1416 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1417 	else
1418 		__free_from_pool(cpu_addr, size);
1419 }
1420 
1421 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1422 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1423 	    int coherent_flag)
1424 {
1425 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1426 	struct page **pages;
1427 	void *addr = NULL;
1428 
1429 	*handle = DMA_MAPPING_ERROR;
1430 	size = PAGE_ALIGN(size);
1431 
1432 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1433 		return __iommu_alloc_simple(dev, size, gfp, handle,
1434 					    coherent_flag, attrs);
1435 
1436 	/*
1437 	 * Following is a work-around (a.k.a. hack) to prevent pages
1438 	 * with __GFP_COMP being passed to split_page() which cannot
1439 	 * handle them.  The real problem is that this flag probably
1440 	 * should be 0 on ARM as it is not supported on this
1441 	 * platform; see CONFIG_HUGETLBFS.
1442 	 */
1443 	gfp &= ~(__GFP_COMP);
1444 
1445 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1446 	if (!pages)
1447 		return NULL;
1448 
1449 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1450 	if (*handle == DMA_MAPPING_ERROR)
1451 		goto err_buffer;
1452 
1453 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1454 		return pages;
1455 
1456 	addr = dma_common_pages_remap(pages, size, prot,
1457 				   __builtin_return_address(0));
1458 	if (!addr)
1459 		goto err_mapping;
1460 
1461 	return addr;
1462 
1463 err_mapping:
1464 	__iommu_remove_mapping(dev, *handle, size);
1465 err_buffer:
1466 	__iommu_free_buffer(dev, pages, size, attrs);
1467 	return NULL;
1468 }
1469 
1470 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1471 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1472 {
1473 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1474 }
1475 
1476 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1477 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1478 {
1479 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1480 }
1481 
1482 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1483 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1484 		    unsigned long attrs)
1485 {
1486 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1487 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1488 	int err;
1489 
1490 	if (!pages)
1491 		return -ENXIO;
1492 
1493 	if (vma->vm_pgoff >= nr_pages)
1494 		return -ENXIO;
1495 
1496 	err = vm_map_pages(vma, pages, nr_pages);
1497 	if (err)
1498 		pr_err("Remapping memory failed: %d\n", err);
1499 
1500 	return err;
1501 }
1502 static int arm_iommu_mmap_attrs(struct device *dev,
1503 		struct vm_area_struct *vma, void *cpu_addr,
1504 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1505 {
1506 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1507 
1508 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1509 }
1510 
1511 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1512 		struct vm_area_struct *vma, void *cpu_addr,
1513 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1514 {
1515 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1516 }
1517 
1518 /*
1519  * free a page as defined by the above mapping.
1520  * Must not be called with IRQs disabled.
1521  */
1522 static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1523 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1524 {
1525 	struct page **pages;
1526 	size = PAGE_ALIGN(size);
1527 
1528 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1529 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1530 		return;
1531 	}
1532 
1533 	pages = __iommu_get_pages(cpu_addr, attrs);
1534 	if (!pages) {
1535 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1536 		return;
1537 	}
1538 
1539 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1540 		dma_common_free_remap(cpu_addr, size);
1541 
1542 	__iommu_remove_mapping(dev, handle, size);
1543 	__iommu_free_buffer(dev, pages, size, attrs);
1544 }
1545 
1546 static void arm_iommu_free_attrs(struct device *dev, size_t size,
1547 				 void *cpu_addr, dma_addr_t handle,
1548 				 unsigned long attrs)
1549 {
1550 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1551 }
1552 
1553 static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1554 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1555 {
1556 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1557 }
1558 
1559 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1560 				 void *cpu_addr, dma_addr_t dma_addr,
1561 				 size_t size, unsigned long attrs)
1562 {
1563 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1564 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1565 
1566 	if (!pages)
1567 		return -ENXIO;
1568 
1569 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1570 					 GFP_KERNEL);
1571 }
1572 
1573 /*
1574  * Map a part of the scatter-gather list into contiguous io address space
1575  */
1576 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1577 			  size_t size, dma_addr_t *handle,
1578 			  enum dma_data_direction dir, unsigned long attrs,
1579 			  bool is_coherent)
1580 {
1581 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1582 	dma_addr_t iova, iova_base;
1583 	int ret = 0;
1584 	unsigned int count;
1585 	struct scatterlist *s;
1586 	int prot;
1587 
1588 	size = PAGE_ALIGN(size);
1589 	*handle = DMA_MAPPING_ERROR;
1590 
1591 	iova_base = iova = __alloc_iova(mapping, size);
1592 	if (iova == DMA_MAPPING_ERROR)
1593 		return -ENOMEM;
1594 
1595 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1596 		phys_addr_t phys = page_to_phys(sg_page(s));
1597 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1598 
1599 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1600 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1601 
1602 		prot = __dma_info_to_prot(dir, attrs);
1603 
1604 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1605 		if (ret < 0)
1606 			goto fail;
1607 		count += len >> PAGE_SHIFT;
1608 		iova += len;
1609 	}
1610 	*handle = iova_base;
1611 
1612 	return 0;
1613 fail:
1614 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1615 	__free_iova(mapping, iova_base, size);
1616 	return ret;
1617 }
1618 
1619 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1620 		     enum dma_data_direction dir, unsigned long attrs,
1621 		     bool is_coherent)
1622 {
1623 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1624 	int i, count = 0;
1625 	unsigned int offset = s->offset;
1626 	unsigned int size = s->offset + s->length;
1627 	unsigned int max = dma_get_max_seg_size(dev);
1628 
1629 	for (i = 1; i < nents; i++) {
1630 		s = sg_next(s);
1631 
1632 		s->dma_address = DMA_MAPPING_ERROR;
1633 		s->dma_length = 0;
1634 
1635 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1636 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1637 			    dir, attrs, is_coherent) < 0)
1638 				goto bad_mapping;
1639 
1640 			dma->dma_address += offset;
1641 			dma->dma_length = size - offset;
1642 
1643 			size = offset = s->offset;
1644 			start = s;
1645 			dma = sg_next(dma);
1646 			count += 1;
1647 		}
1648 		size += s->length;
1649 	}
1650 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1651 		is_coherent) < 0)
1652 		goto bad_mapping;
1653 
1654 	dma->dma_address += offset;
1655 	dma->dma_length = size - offset;
1656 
1657 	return count+1;
1658 
1659 bad_mapping:
1660 	for_each_sg(sg, s, count, i)
1661 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1662 	return 0;
1663 }
1664 
1665 /**
1666  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1667  * @dev: valid struct device pointer
1668  * @sg: list of buffers
1669  * @nents: number of buffers to map
1670  * @dir: DMA transfer direction
1671  *
1672  * Map a set of i/o coherent buffers described by scatterlist in streaming
1673  * mode for DMA. The scatter gather list elements are merged together (if
1674  * possible) and tagged with the appropriate dma address and length. They are
1675  * obtained via sg_dma_{address,length}.
1676  */
1677 static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1678 		int nents, enum dma_data_direction dir, unsigned long attrs)
1679 {
1680 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1681 }
1682 
1683 /**
1684  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1685  * @dev: valid struct device pointer
1686  * @sg: list of buffers
1687  * @nents: number of buffers to map
1688  * @dir: DMA transfer direction
1689  *
1690  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1691  * The scatter gather list elements are merged together (if possible) and
1692  * tagged with the appropriate dma address and length. They are obtained via
1693  * sg_dma_{address,length}.
1694  */
1695 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1696 		int nents, enum dma_data_direction dir, unsigned long attrs)
1697 {
1698 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1699 }
1700 
1701 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1702 		int nents, enum dma_data_direction dir,
1703 		unsigned long attrs, bool is_coherent)
1704 {
1705 	struct scatterlist *s;
1706 	int i;
1707 
1708 	for_each_sg(sg, s, nents, i) {
1709 		if (sg_dma_len(s))
1710 			__iommu_remove_mapping(dev, sg_dma_address(s),
1711 					       sg_dma_len(s));
1712 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1713 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1714 					      s->length, dir);
1715 	}
1716 }
1717 
1718 /**
1719  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1720  * @dev: valid struct device pointer
1721  * @sg: list of buffers
1722  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1723  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1724  *
1725  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1726  * rules concerning calls here are the same as for dma_unmap_single().
1727  */
1728 static void arm_coherent_iommu_unmap_sg(struct device *dev,
1729 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
1730 		unsigned long attrs)
1731 {
1732 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1733 }
1734 
1735 /**
1736  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1737  * @dev: valid struct device pointer
1738  * @sg: list of buffers
1739  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1740  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1741  *
1742  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1743  * rules concerning calls here are the same as for dma_unmap_single().
1744  */
1745 static void arm_iommu_unmap_sg(struct device *dev,
1746 			       struct scatterlist *sg, int nents,
1747 			       enum dma_data_direction dir,
1748 			       unsigned long attrs)
1749 {
1750 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1751 }
1752 
1753 /**
1754  * arm_iommu_sync_sg_for_cpu
1755  * @dev: valid struct device pointer
1756  * @sg: list of buffers
1757  * @nents: number of buffers to map (returned from dma_map_sg)
1758  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1759  */
1760 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1761 			struct scatterlist *sg,
1762 			int nents, enum dma_data_direction dir)
1763 {
1764 	struct scatterlist *s;
1765 	int i;
1766 
1767 	for_each_sg(sg, s, nents, i)
1768 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1769 
1770 }
1771 
1772 /**
1773  * arm_iommu_sync_sg_for_device
1774  * @dev: valid struct device pointer
1775  * @sg: list of buffers
1776  * @nents: number of buffers to map (returned from dma_map_sg)
1777  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1778  */
1779 static void arm_iommu_sync_sg_for_device(struct device *dev,
1780 			struct scatterlist *sg,
1781 			int nents, enum dma_data_direction dir)
1782 {
1783 	struct scatterlist *s;
1784 	int i;
1785 
1786 	for_each_sg(sg, s, nents, i)
1787 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1788 }
1789 
1790 
1791 /**
1792  * arm_coherent_iommu_map_page
1793  * @dev: valid struct device pointer
1794  * @page: page that buffer resides in
1795  * @offset: offset into page for start of buffer
1796  * @size: size of buffer to map
1797  * @dir: DMA transfer direction
1798  *
1799  * Coherent IOMMU aware version of arm_dma_map_page()
1800  */
1801 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1802 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1803 	     unsigned long attrs)
1804 {
1805 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1806 	dma_addr_t dma_addr;
1807 	int ret, prot, len = PAGE_ALIGN(size + offset);
1808 
1809 	dma_addr = __alloc_iova(mapping, len);
1810 	if (dma_addr == DMA_MAPPING_ERROR)
1811 		return dma_addr;
1812 
1813 	prot = __dma_info_to_prot(dir, attrs);
1814 
1815 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1816 	if (ret < 0)
1817 		goto fail;
1818 
1819 	return dma_addr + offset;
1820 fail:
1821 	__free_iova(mapping, dma_addr, len);
1822 	return DMA_MAPPING_ERROR;
1823 }
1824 
1825 /**
1826  * arm_iommu_map_page
1827  * @dev: valid struct device pointer
1828  * @page: page that buffer resides in
1829  * @offset: offset into page for start of buffer
1830  * @size: size of buffer to map
1831  * @dir: DMA transfer direction
1832  *
1833  * IOMMU aware version of arm_dma_map_page()
1834  */
1835 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1836 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1837 	     unsigned long attrs)
1838 {
1839 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1840 		__dma_page_cpu_to_dev(page, offset, size, dir);
1841 
1842 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1843 }
1844 
1845 /**
1846  * arm_coherent_iommu_unmap_page
1847  * @dev: valid struct device pointer
1848  * @handle: DMA address of buffer
1849  * @size: size of buffer (same as passed to dma_map_page)
1850  * @dir: DMA transfer direction (same as passed to dma_map_page)
1851  *
1852  * Coherent IOMMU aware version of arm_dma_unmap_page()
1853  */
1854 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1855 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1856 {
1857 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1858 	dma_addr_t iova = handle & PAGE_MASK;
1859 	int offset = handle & ~PAGE_MASK;
1860 	int len = PAGE_ALIGN(size + offset);
1861 
1862 	if (!iova)
1863 		return;
1864 
1865 	iommu_unmap(mapping->domain, iova, len);
1866 	__free_iova(mapping, iova, len);
1867 }
1868 
1869 /**
1870  * arm_iommu_unmap_page
1871  * @dev: valid struct device pointer
1872  * @handle: DMA address of buffer
1873  * @size: size of buffer (same as passed to dma_map_page)
1874  * @dir: DMA transfer direction (same as passed to dma_map_page)
1875  *
1876  * IOMMU aware version of arm_dma_unmap_page()
1877  */
1878 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1879 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1880 {
1881 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1882 	dma_addr_t iova = handle & PAGE_MASK;
1883 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1884 	int offset = handle & ~PAGE_MASK;
1885 	int len = PAGE_ALIGN(size + offset);
1886 
1887 	if (!iova)
1888 		return;
1889 
1890 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1891 		__dma_page_dev_to_cpu(page, offset, size, dir);
1892 
1893 	iommu_unmap(mapping->domain, iova, len);
1894 	__free_iova(mapping, iova, len);
1895 }
1896 
1897 /**
1898  * arm_iommu_map_resource - map a device resource for DMA
1899  * @dev: valid struct device pointer
1900  * @phys_addr: physical address of resource
1901  * @size: size of resource to map
1902  * @dir: DMA transfer direction
1903  */
1904 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1905 		phys_addr_t phys_addr, size_t size,
1906 		enum dma_data_direction dir, unsigned long attrs)
1907 {
1908 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1909 	dma_addr_t dma_addr;
1910 	int ret, prot;
1911 	phys_addr_t addr = phys_addr & PAGE_MASK;
1912 	unsigned int offset = phys_addr & ~PAGE_MASK;
1913 	size_t len = PAGE_ALIGN(size + offset);
1914 
1915 	dma_addr = __alloc_iova(mapping, len);
1916 	if (dma_addr == DMA_MAPPING_ERROR)
1917 		return dma_addr;
1918 
1919 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1920 
1921 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1922 	if (ret < 0)
1923 		goto fail;
1924 
1925 	return dma_addr + offset;
1926 fail:
1927 	__free_iova(mapping, dma_addr, len);
1928 	return DMA_MAPPING_ERROR;
1929 }
1930 
1931 /**
1932  * arm_iommu_unmap_resource - unmap a device DMA resource
1933  * @dev: valid struct device pointer
1934  * @dma_handle: DMA address to resource
1935  * @size: size of resource to map
1936  * @dir: DMA transfer direction
1937  */
1938 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1939 		size_t size, enum dma_data_direction dir,
1940 		unsigned long attrs)
1941 {
1942 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1943 	dma_addr_t iova = dma_handle & PAGE_MASK;
1944 	unsigned int offset = dma_handle & ~PAGE_MASK;
1945 	size_t len = PAGE_ALIGN(size + offset);
1946 
1947 	if (!iova)
1948 		return;
1949 
1950 	iommu_unmap(mapping->domain, iova, len);
1951 	__free_iova(mapping, iova, len);
1952 }
1953 
1954 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956 {
1957 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958 	dma_addr_t iova = handle & PAGE_MASK;
1959 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960 	unsigned int offset = handle & ~PAGE_MASK;
1961 
1962 	if (!iova)
1963 		return;
1964 
1965 	__dma_page_dev_to_cpu(page, offset, size, dir);
1966 }
1967 
1968 static void arm_iommu_sync_single_for_device(struct device *dev,
1969 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970 {
1971 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972 	dma_addr_t iova = handle & PAGE_MASK;
1973 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974 	unsigned int offset = handle & ~PAGE_MASK;
1975 
1976 	if (!iova)
1977 		return;
1978 
1979 	__dma_page_cpu_to_dev(page, offset, size, dir);
1980 }
1981 
1982 static const struct dma_map_ops iommu_ops = {
1983 	.alloc		= arm_iommu_alloc_attrs,
1984 	.free		= arm_iommu_free_attrs,
1985 	.mmap		= arm_iommu_mmap_attrs,
1986 	.get_sgtable	= arm_iommu_get_sgtable,
1987 
1988 	.map_page		= arm_iommu_map_page,
1989 	.unmap_page		= arm_iommu_unmap_page,
1990 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1991 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1992 
1993 	.map_sg			= arm_iommu_map_sg,
1994 	.unmap_sg		= arm_iommu_unmap_sg,
1995 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1996 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1997 
1998 	.map_resource		= arm_iommu_map_resource,
1999 	.unmap_resource		= arm_iommu_unmap_resource,
2000 
2001 	.dma_supported		= arm_dma_supported,
2002 };
2003 
2004 static const struct dma_map_ops iommu_coherent_ops = {
2005 	.alloc		= arm_coherent_iommu_alloc_attrs,
2006 	.free		= arm_coherent_iommu_free_attrs,
2007 	.mmap		= arm_coherent_iommu_mmap_attrs,
2008 	.get_sgtable	= arm_iommu_get_sgtable,
2009 
2010 	.map_page	= arm_coherent_iommu_map_page,
2011 	.unmap_page	= arm_coherent_iommu_unmap_page,
2012 
2013 	.map_sg		= arm_coherent_iommu_map_sg,
2014 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2015 
2016 	.map_resource	= arm_iommu_map_resource,
2017 	.unmap_resource	= arm_iommu_unmap_resource,
2018 
2019 	.dma_supported		= arm_dma_supported,
2020 };
2021 
2022 /**
2023  * arm_iommu_create_mapping
2024  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2025  * @base: start address of the valid IO address space
2026  * @size: maximum size of the valid IO address space
2027  *
2028  * Creates a mapping structure which holds information about used/unused
2029  * IO address ranges, which is required to perform memory allocation and
2030  * mapping with IOMMU aware functions.
2031  *
2032  * The client device need to be attached to the mapping with
2033  * arm_iommu_attach_device function.
2034  */
2035 struct dma_iommu_mapping *
2036 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2037 {
2038 	unsigned int bits = size >> PAGE_SHIFT;
2039 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2040 	struct dma_iommu_mapping *mapping;
2041 	int extensions = 1;
2042 	int err = -ENOMEM;
2043 
2044 	/* currently only 32-bit DMA address space is supported */
2045 	if (size > DMA_BIT_MASK(32) + 1)
2046 		return ERR_PTR(-ERANGE);
2047 
2048 	if (!bitmap_size)
2049 		return ERR_PTR(-EINVAL);
2050 
2051 	if (bitmap_size > PAGE_SIZE) {
2052 		extensions = bitmap_size / PAGE_SIZE;
2053 		bitmap_size = PAGE_SIZE;
2054 	}
2055 
2056 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2057 	if (!mapping)
2058 		goto err;
2059 
2060 	mapping->bitmap_size = bitmap_size;
2061 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2062 				   GFP_KERNEL);
2063 	if (!mapping->bitmaps)
2064 		goto err2;
2065 
2066 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2067 	if (!mapping->bitmaps[0])
2068 		goto err3;
2069 
2070 	mapping->nr_bitmaps = 1;
2071 	mapping->extensions = extensions;
2072 	mapping->base = base;
2073 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2074 
2075 	spin_lock_init(&mapping->lock);
2076 
2077 	mapping->domain = iommu_domain_alloc(bus);
2078 	if (!mapping->domain)
2079 		goto err4;
2080 
2081 	kref_init(&mapping->kref);
2082 	return mapping;
2083 err4:
2084 	kfree(mapping->bitmaps[0]);
2085 err3:
2086 	kfree(mapping->bitmaps);
2087 err2:
2088 	kfree(mapping);
2089 err:
2090 	return ERR_PTR(err);
2091 }
2092 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2093 
2094 static void release_iommu_mapping(struct kref *kref)
2095 {
2096 	int i;
2097 	struct dma_iommu_mapping *mapping =
2098 		container_of(kref, struct dma_iommu_mapping, kref);
2099 
2100 	iommu_domain_free(mapping->domain);
2101 	for (i = 0; i < mapping->nr_bitmaps; i++)
2102 		kfree(mapping->bitmaps[i]);
2103 	kfree(mapping->bitmaps);
2104 	kfree(mapping);
2105 }
2106 
2107 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2108 {
2109 	int next_bitmap;
2110 
2111 	if (mapping->nr_bitmaps >= mapping->extensions)
2112 		return -EINVAL;
2113 
2114 	next_bitmap = mapping->nr_bitmaps;
2115 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2116 						GFP_ATOMIC);
2117 	if (!mapping->bitmaps[next_bitmap])
2118 		return -ENOMEM;
2119 
2120 	mapping->nr_bitmaps++;
2121 
2122 	return 0;
2123 }
2124 
2125 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2126 {
2127 	if (mapping)
2128 		kref_put(&mapping->kref, release_iommu_mapping);
2129 }
2130 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2131 
2132 static int __arm_iommu_attach_device(struct device *dev,
2133 				     struct dma_iommu_mapping *mapping)
2134 {
2135 	int err;
2136 
2137 	err = iommu_attach_device(mapping->domain, dev);
2138 	if (err)
2139 		return err;
2140 
2141 	kref_get(&mapping->kref);
2142 	to_dma_iommu_mapping(dev) = mapping;
2143 
2144 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2145 	return 0;
2146 }
2147 
2148 /**
2149  * arm_iommu_attach_device
2150  * @dev: valid struct device pointer
2151  * @mapping: io address space mapping structure (returned from
2152  *	arm_iommu_create_mapping)
2153  *
2154  * Attaches specified io address space mapping to the provided device.
2155  * This replaces the dma operations (dma_map_ops pointer) with the
2156  * IOMMU aware version.
2157  *
2158  * More than one client might be attached to the same io address space
2159  * mapping.
2160  */
2161 int arm_iommu_attach_device(struct device *dev,
2162 			    struct dma_iommu_mapping *mapping)
2163 {
2164 	int err;
2165 
2166 	err = __arm_iommu_attach_device(dev, mapping);
2167 	if (err)
2168 		return err;
2169 
2170 	set_dma_ops(dev, &iommu_ops);
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2174 
2175 /**
2176  * arm_iommu_detach_device
2177  * @dev: valid struct device pointer
2178  *
2179  * Detaches the provided device from a previously attached map.
2180  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2181  */
2182 void arm_iommu_detach_device(struct device *dev)
2183 {
2184 	struct dma_iommu_mapping *mapping;
2185 
2186 	mapping = to_dma_iommu_mapping(dev);
2187 	if (!mapping) {
2188 		dev_warn(dev, "Not attached\n");
2189 		return;
2190 	}
2191 
2192 	iommu_detach_device(mapping->domain, dev);
2193 	kref_put(&mapping->kref, release_iommu_mapping);
2194 	to_dma_iommu_mapping(dev) = NULL;
2195 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2196 
2197 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2198 }
2199 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2200 
2201 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2202 {
2203 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2204 }
2205 
2206 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2207 				    const struct iommu_ops *iommu)
2208 {
2209 	struct dma_iommu_mapping *mapping;
2210 
2211 	if (!iommu)
2212 		return false;
2213 
2214 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2215 	if (IS_ERR(mapping)) {
2216 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2217 				size, dev_name(dev));
2218 		return false;
2219 	}
2220 
2221 	if (__arm_iommu_attach_device(dev, mapping)) {
2222 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2223 				dev_name(dev));
2224 		arm_iommu_release_mapping(mapping);
2225 		return false;
2226 	}
2227 
2228 	return true;
2229 }
2230 
2231 static void arm_teardown_iommu_dma_ops(struct device *dev)
2232 {
2233 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2234 
2235 	if (!mapping)
2236 		return;
2237 
2238 	arm_iommu_detach_device(dev);
2239 	arm_iommu_release_mapping(mapping);
2240 }
2241 
2242 #else
2243 
2244 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2245 				    const struct iommu_ops *iommu)
2246 {
2247 	return false;
2248 }
2249 
2250 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2251 
2252 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2253 
2254 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2255 
2256 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257 			const struct iommu_ops *iommu, bool coherent)
2258 {
2259 	const struct dma_map_ops *dma_ops;
2260 
2261 	dev->archdata.dma_coherent = coherent;
2262 #ifdef CONFIG_SWIOTLB
2263 	dev->dma_coherent = coherent;
2264 #endif
2265 
2266 	/*
2267 	 * Don't override the dma_ops if they have already been set. Ideally
2268 	 * this should be the only location where dma_ops are set, remove this
2269 	 * check when all other callers of set_dma_ops will have disappeared.
2270 	 */
2271 	if (dev->dma_ops)
2272 		return;
2273 
2274 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2275 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2276 	else
2277 		dma_ops = arm_get_dma_map_ops(coherent);
2278 
2279 	set_dma_ops(dev, dma_ops);
2280 
2281 #ifdef CONFIG_XEN
2282 	if (xen_initial_domain())
2283 		dev->dma_ops = &xen_swiotlb_dma_ops;
2284 #endif
2285 	dev->archdata.dma_ops_setup = true;
2286 }
2287 
2288 void arch_teardown_dma_ops(struct device *dev)
2289 {
2290 	if (!dev->archdata.dma_ops_setup)
2291 		return;
2292 
2293 	arm_teardown_iommu_dma_ops(dev);
2294 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2295 	set_dma_ops(dev, NULL);
2296 }
2297 
2298 #ifdef CONFIG_SWIOTLB
2299 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2300 		enum dma_data_direction dir)
2301 {
2302 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2303 			      size, dir);
2304 }
2305 
2306 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2307 		enum dma_data_direction dir)
2308 {
2309 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2310 			      size, dir);
2311 }
2312 
2313 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2314 		gfp_t gfp, unsigned long attrs)
2315 {
2316 	return __dma_alloc(dev, size, dma_handle, gfp,
2317 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2318 			   attrs, __builtin_return_address(0));
2319 }
2320 
2321 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2322 		dma_addr_t dma_handle, unsigned long attrs)
2323 {
2324 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2325 }
2326 #endif /* CONFIG_SWIOTLB */
2327