1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/dma-mapping.c 4 * 5 * Copyright (C) 2000-2004 Russell King 6 * 7 * DMA uncached mapping support. 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/genalloc.h> 12 #include <linux/gfp.h> 13 #include <linux/errno.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/dma-direct.h> 18 #include <linux/dma-map-ops.h> 19 #include <linux/highmem.h> 20 #include <linux/memblock.h> 21 #include <linux/slab.h> 22 #include <linux/iommu.h> 23 #include <linux/io.h> 24 #include <linux/vmalloc.h> 25 #include <linux/sizes.h> 26 #include <linux/cma.h> 27 28 #include <asm/memory.h> 29 #include <asm/highmem.h> 30 #include <asm/cacheflush.h> 31 #include <asm/tlbflush.h> 32 #include <asm/mach/arch.h> 33 #include <asm/dma-iommu.h> 34 #include <asm/mach/map.h> 35 #include <asm/system_info.h> 36 #include <asm/xen/xen-ops.h> 37 38 #include "dma.h" 39 #include "mm.h" 40 41 struct arm_dma_alloc_args { 42 struct device *dev; 43 size_t size; 44 gfp_t gfp; 45 pgprot_t prot; 46 const void *caller; 47 bool want_vaddr; 48 int coherent_flag; 49 }; 50 51 struct arm_dma_free_args { 52 struct device *dev; 53 size_t size; 54 void *cpu_addr; 55 struct page *page; 56 bool want_vaddr; 57 }; 58 59 #define NORMAL 0 60 #define COHERENT 1 61 62 struct arm_dma_allocator { 63 void *(*alloc)(struct arm_dma_alloc_args *args, 64 struct page **ret_page); 65 void (*free)(struct arm_dma_free_args *args); 66 }; 67 68 struct arm_dma_buffer { 69 struct list_head list; 70 void *virt; 71 struct arm_dma_allocator *allocator; 72 }; 73 74 static LIST_HEAD(arm_dma_bufs); 75 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 76 77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 78 { 79 struct arm_dma_buffer *buf, *found = NULL; 80 unsigned long flags; 81 82 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 83 list_for_each_entry(buf, &arm_dma_bufs, list) { 84 if (buf->virt == virt) { 85 list_del(&buf->list); 86 found = buf; 87 break; 88 } 89 } 90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 91 return found; 92 } 93 94 /* 95 * The DMA API is built upon the notion of "buffer ownership". A buffer 96 * is either exclusively owned by the CPU (and therefore may be accessed 97 * by it) or exclusively owned by the DMA device. These helper functions 98 * represent the transitions between these two ownership states. 99 * 100 * Note, however, that on later ARMs, this notion does not work due to 101 * speculative prefetches. We model our approach on the assumption that 102 * the CPU does do speculative prefetches, which means we clean caches 103 * before transfers and delay cache invalidation until transfer completion. 104 * 105 */ 106 107 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 108 { 109 /* 110 * Ensure that the allocated pages are zeroed, and that any data 111 * lurking in the kernel direct-mapped region is invalidated. 112 */ 113 if (PageHighMem(page)) { 114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 115 phys_addr_t end = base + size; 116 while (size > 0) { 117 void *ptr = kmap_atomic(page); 118 memset(ptr, 0, PAGE_SIZE); 119 if (coherent_flag != COHERENT) 120 dmac_flush_range(ptr, ptr + PAGE_SIZE); 121 kunmap_atomic(ptr); 122 page++; 123 size -= PAGE_SIZE; 124 } 125 if (coherent_flag != COHERENT) 126 outer_flush_range(base, end); 127 } else { 128 void *ptr = page_address(page); 129 memset(ptr, 0, size); 130 if (coherent_flag != COHERENT) { 131 dmac_flush_range(ptr, ptr + size); 132 outer_flush_range(__pa(ptr), __pa(ptr) + size); 133 } 134 } 135 } 136 137 /* 138 * Allocate a DMA buffer for 'dev' of size 'size' using the 139 * specified gfp mask. Note that 'size' must be page aligned. 140 */ 141 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 142 gfp_t gfp, int coherent_flag) 143 { 144 unsigned long order = get_order(size); 145 struct page *page, *p, *e; 146 147 page = alloc_pages(gfp, order); 148 if (!page) 149 return NULL; 150 151 /* 152 * Now split the huge page and free the excess pages 153 */ 154 split_page(page, order); 155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 156 __free_page(p); 157 158 __dma_clear_buffer(page, size, coherent_flag); 159 160 return page; 161 } 162 163 /* 164 * Free a DMA buffer. 'size' must be page aligned. 165 */ 166 static void __dma_free_buffer(struct page *page, size_t size) 167 { 168 struct page *e = page + (size >> PAGE_SHIFT); 169 170 while (page < e) { 171 __free_page(page); 172 page++; 173 } 174 } 175 176 static void *__alloc_from_contiguous(struct device *dev, size_t size, 177 pgprot_t prot, struct page **ret_page, 178 const void *caller, bool want_vaddr, 179 int coherent_flag, gfp_t gfp); 180 181 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 182 pgprot_t prot, struct page **ret_page, 183 const void *caller, bool want_vaddr); 184 185 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 186 static struct gen_pool *atomic_pool __ro_after_init; 187 188 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 189 190 static int __init early_coherent_pool(char *p) 191 { 192 atomic_pool_size = memparse(p, &p); 193 return 0; 194 } 195 early_param("coherent_pool", early_coherent_pool); 196 197 /* 198 * Initialise the coherent pool for atomic allocations. 199 */ 200 static int __init atomic_pool_init(void) 201 { 202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 203 gfp_t gfp = GFP_KERNEL | GFP_DMA; 204 struct page *page; 205 void *ptr; 206 207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 208 if (!atomic_pool) 209 goto out; 210 /* 211 * The atomic pool is only used for non-coherent allocations 212 * so we must pass NORMAL for coherent_flag. 213 */ 214 if (dev_get_cma_area(NULL)) 215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 216 &page, atomic_pool_init, true, NORMAL, 217 GFP_KERNEL); 218 else 219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 220 &page, atomic_pool_init, true); 221 if (ptr) { 222 int ret; 223 224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 225 page_to_phys(page), 226 atomic_pool_size, -1); 227 if (ret) 228 goto destroy_genpool; 229 230 gen_pool_set_algo(atomic_pool, 231 gen_pool_first_fit_order_align, 232 NULL); 233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 234 atomic_pool_size / 1024); 235 return 0; 236 } 237 238 destroy_genpool: 239 gen_pool_destroy(atomic_pool); 240 atomic_pool = NULL; 241 out: 242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 243 atomic_pool_size / 1024); 244 return -ENOMEM; 245 } 246 /* 247 * CMA is activated by core_initcall, so we must be called after it. 248 */ 249 postcore_initcall(atomic_pool_init); 250 251 #ifdef CONFIG_CMA_AREAS 252 struct dma_contig_early_reserve { 253 phys_addr_t base; 254 unsigned long size; 255 }; 256 257 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 258 259 static int dma_mmu_remap_num __initdata; 260 261 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 262 { 263 dma_mmu_remap[dma_mmu_remap_num].base = base; 264 dma_mmu_remap[dma_mmu_remap_num].size = size; 265 dma_mmu_remap_num++; 266 } 267 268 void __init dma_contiguous_remap(void) 269 { 270 int i; 271 for (i = 0; i < dma_mmu_remap_num; i++) { 272 phys_addr_t start = dma_mmu_remap[i].base; 273 phys_addr_t end = start + dma_mmu_remap[i].size; 274 struct map_desc map; 275 unsigned long addr; 276 277 if (end > arm_lowmem_limit) 278 end = arm_lowmem_limit; 279 if (start >= end) 280 continue; 281 282 map.pfn = __phys_to_pfn(start); 283 map.virtual = __phys_to_virt(start); 284 map.length = end - start; 285 map.type = MT_MEMORY_DMA_READY; 286 287 /* 288 * Clear previous low-memory mapping to ensure that the 289 * TLB does not see any conflicting entries, then flush 290 * the TLB of the old entries before creating new mappings. 291 * 292 * This ensures that any speculatively loaded TLB entries 293 * (even though they may be rare) can not cause any problems, 294 * and ensures that this code is architecturally compliant. 295 */ 296 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 297 addr += PMD_SIZE) 298 pmd_clear(pmd_off_k(addr)); 299 300 flush_tlb_kernel_range(__phys_to_virt(start), 301 __phys_to_virt(end)); 302 303 iotable_init(&map, 1); 304 } 305 } 306 #endif 307 308 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) 309 { 310 struct page *page = virt_to_page(addr); 311 pgprot_t prot = *(pgprot_t *)data; 312 313 set_pte_ext(pte, mk_pte(page, prot), 0); 314 return 0; 315 } 316 317 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 318 { 319 unsigned long start = (unsigned long) page_address(page); 320 unsigned end = start + size; 321 322 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 323 flush_tlb_kernel_range(start, end); 324 } 325 326 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 327 pgprot_t prot, struct page **ret_page, 328 const void *caller, bool want_vaddr) 329 { 330 struct page *page; 331 void *ptr = NULL; 332 /* 333 * __alloc_remap_buffer is only called when the device is 334 * non-coherent 335 */ 336 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 337 if (!page) 338 return NULL; 339 if (!want_vaddr) 340 goto out; 341 342 ptr = dma_common_contiguous_remap(page, size, prot, caller); 343 if (!ptr) { 344 __dma_free_buffer(page, size); 345 return NULL; 346 } 347 348 out: 349 *ret_page = page; 350 return ptr; 351 } 352 353 static void *__alloc_from_pool(size_t size, struct page **ret_page) 354 { 355 unsigned long val; 356 void *ptr = NULL; 357 358 if (!atomic_pool) { 359 WARN(1, "coherent pool not initialised!\n"); 360 return NULL; 361 } 362 363 val = gen_pool_alloc(atomic_pool, size); 364 if (val) { 365 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 366 367 *ret_page = phys_to_page(phys); 368 ptr = (void *)val; 369 } 370 371 return ptr; 372 } 373 374 static bool __in_atomic_pool(void *start, size_t size) 375 { 376 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size); 377 } 378 379 static int __free_from_pool(void *start, size_t size) 380 { 381 if (!__in_atomic_pool(start, size)) 382 return 0; 383 384 gen_pool_free(atomic_pool, (unsigned long)start, size); 385 386 return 1; 387 } 388 389 static void *__alloc_from_contiguous(struct device *dev, size_t size, 390 pgprot_t prot, struct page **ret_page, 391 const void *caller, bool want_vaddr, 392 int coherent_flag, gfp_t gfp) 393 { 394 unsigned long order = get_order(size); 395 size_t count = size >> PAGE_SHIFT; 396 struct page *page; 397 void *ptr = NULL; 398 399 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 400 if (!page) 401 return NULL; 402 403 __dma_clear_buffer(page, size, coherent_flag); 404 405 if (!want_vaddr) 406 goto out; 407 408 if (PageHighMem(page)) { 409 ptr = dma_common_contiguous_remap(page, size, prot, caller); 410 if (!ptr) { 411 dma_release_from_contiguous(dev, page, count); 412 return NULL; 413 } 414 } else { 415 __dma_remap(page, size, prot); 416 ptr = page_address(page); 417 } 418 419 out: 420 *ret_page = page; 421 return ptr; 422 } 423 424 static void __free_from_contiguous(struct device *dev, struct page *page, 425 void *cpu_addr, size_t size, bool want_vaddr) 426 { 427 if (want_vaddr) { 428 if (PageHighMem(page)) 429 dma_common_free_remap(cpu_addr, size); 430 else 431 __dma_remap(page, size, PAGE_KERNEL); 432 } 433 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 434 } 435 436 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 437 { 438 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 439 pgprot_writecombine(prot) : 440 pgprot_dmacoherent(prot); 441 return prot; 442 } 443 444 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 445 struct page **ret_page) 446 { 447 struct page *page; 448 /* __alloc_simple_buffer is only called when the device is coherent */ 449 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 450 if (!page) 451 return NULL; 452 453 *ret_page = page; 454 return page_address(page); 455 } 456 457 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 458 struct page **ret_page) 459 { 460 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 461 ret_page); 462 } 463 464 static void simple_allocator_free(struct arm_dma_free_args *args) 465 { 466 __dma_free_buffer(args->page, args->size); 467 } 468 469 static struct arm_dma_allocator simple_allocator = { 470 .alloc = simple_allocator_alloc, 471 .free = simple_allocator_free, 472 }; 473 474 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 475 struct page **ret_page) 476 { 477 return __alloc_from_contiguous(args->dev, args->size, args->prot, 478 ret_page, args->caller, 479 args->want_vaddr, args->coherent_flag, 480 args->gfp); 481 } 482 483 static void cma_allocator_free(struct arm_dma_free_args *args) 484 { 485 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 486 args->size, args->want_vaddr); 487 } 488 489 static struct arm_dma_allocator cma_allocator = { 490 .alloc = cma_allocator_alloc, 491 .free = cma_allocator_free, 492 }; 493 494 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 495 struct page **ret_page) 496 { 497 return __alloc_from_pool(args->size, ret_page); 498 } 499 500 static void pool_allocator_free(struct arm_dma_free_args *args) 501 { 502 __free_from_pool(args->cpu_addr, args->size); 503 } 504 505 static struct arm_dma_allocator pool_allocator = { 506 .alloc = pool_allocator_alloc, 507 .free = pool_allocator_free, 508 }; 509 510 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 511 struct page **ret_page) 512 { 513 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 514 args->prot, ret_page, args->caller, 515 args->want_vaddr); 516 } 517 518 static void remap_allocator_free(struct arm_dma_free_args *args) 519 { 520 if (args->want_vaddr) 521 dma_common_free_remap(args->cpu_addr, args->size); 522 523 __dma_free_buffer(args->page, args->size); 524 } 525 526 static struct arm_dma_allocator remap_allocator = { 527 .alloc = remap_allocator_alloc, 528 .free = remap_allocator_free, 529 }; 530 531 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 532 gfp_t gfp, pgprot_t prot, bool is_coherent, 533 unsigned long attrs, const void *caller) 534 { 535 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 536 struct page *page = NULL; 537 void *addr; 538 bool allowblock, cma; 539 struct arm_dma_buffer *buf; 540 struct arm_dma_alloc_args args = { 541 .dev = dev, 542 .size = PAGE_ALIGN(size), 543 .gfp = gfp, 544 .prot = prot, 545 .caller = caller, 546 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 547 .coherent_flag = is_coherent ? COHERENT : NORMAL, 548 }; 549 550 #ifdef CONFIG_DMA_API_DEBUG 551 u64 limit = (mask + 1) & ~mask; 552 if (limit && size >= limit) { 553 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 554 size, mask); 555 return NULL; 556 } 557 #endif 558 559 buf = kzalloc(sizeof(*buf), 560 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 561 if (!buf) 562 return NULL; 563 564 if (mask < 0xffffffffULL) 565 gfp |= GFP_DMA; 566 567 /* 568 * Following is a work-around (a.k.a. hack) to prevent pages 569 * with __GFP_COMP being passed to split_page() which cannot 570 * handle them. The real problem is that this flag probably 571 * should be 0 on ARM as it is not supported on this 572 * platform; see CONFIG_HUGETLBFS. 573 */ 574 gfp &= ~(__GFP_COMP); 575 args.gfp = gfp; 576 577 *handle = DMA_MAPPING_ERROR; 578 allowblock = gfpflags_allow_blocking(gfp); 579 cma = allowblock ? dev_get_cma_area(dev) : NULL; 580 581 if (cma) 582 buf->allocator = &cma_allocator; 583 else if (is_coherent) 584 buf->allocator = &simple_allocator; 585 else if (allowblock) 586 buf->allocator = &remap_allocator; 587 else 588 buf->allocator = &pool_allocator; 589 590 addr = buf->allocator->alloc(&args, &page); 591 592 if (page) { 593 unsigned long flags; 594 595 *handle = phys_to_dma(dev, page_to_phys(page)); 596 buf->virt = args.want_vaddr ? addr : page; 597 598 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 599 list_add(&buf->list, &arm_dma_bufs); 600 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 601 } else { 602 kfree(buf); 603 } 604 605 return args.want_vaddr ? addr : page; 606 } 607 608 /* 609 * Free a buffer as defined by the above mapping. 610 */ 611 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 612 dma_addr_t handle, unsigned long attrs, 613 bool is_coherent) 614 { 615 struct page *page = phys_to_page(dma_to_phys(dev, handle)); 616 struct arm_dma_buffer *buf; 617 struct arm_dma_free_args args = { 618 .dev = dev, 619 .size = PAGE_ALIGN(size), 620 .cpu_addr = cpu_addr, 621 .page = page, 622 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 623 }; 624 625 buf = arm_dma_buffer_find(cpu_addr); 626 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 627 return; 628 629 buf->allocator->free(&args); 630 kfree(buf); 631 } 632 633 static void dma_cache_maint_page(struct page *page, unsigned long offset, 634 size_t size, enum dma_data_direction dir, 635 void (*op)(const void *, size_t, int)) 636 { 637 unsigned long pfn; 638 size_t left = size; 639 640 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 641 offset %= PAGE_SIZE; 642 643 /* 644 * A single sg entry may refer to multiple physically contiguous 645 * pages. But we still need to process highmem pages individually. 646 * If highmem is not configured then the bulk of this loop gets 647 * optimized out. 648 */ 649 do { 650 size_t len = left; 651 void *vaddr; 652 653 page = pfn_to_page(pfn); 654 655 if (PageHighMem(page)) { 656 if (len + offset > PAGE_SIZE) 657 len = PAGE_SIZE - offset; 658 659 if (cache_is_vipt_nonaliasing()) { 660 vaddr = kmap_atomic(page); 661 op(vaddr + offset, len, dir); 662 kunmap_atomic(vaddr); 663 } else { 664 vaddr = kmap_high_get(page); 665 if (vaddr) { 666 op(vaddr + offset, len, dir); 667 kunmap_high(page); 668 } 669 } 670 } else { 671 vaddr = page_address(page) + offset; 672 op(vaddr, len, dir); 673 } 674 offset = 0; 675 pfn++; 676 left -= len; 677 } while (left); 678 } 679 680 /* 681 * Make an area consistent for devices. 682 * Note: Drivers should NOT use this function directly. 683 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 684 */ 685 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 686 size_t size, enum dma_data_direction dir) 687 { 688 phys_addr_t paddr; 689 690 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 691 692 paddr = page_to_phys(page) + off; 693 if (dir == DMA_FROM_DEVICE) { 694 outer_inv_range(paddr, paddr + size); 695 } else { 696 outer_clean_range(paddr, paddr + size); 697 } 698 /* FIXME: non-speculating: flush on bidirectional mappings? */ 699 } 700 701 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 702 size_t size, enum dma_data_direction dir) 703 { 704 phys_addr_t paddr = page_to_phys(page) + off; 705 706 /* FIXME: non-speculating: not required */ 707 /* in any case, don't bother invalidating if DMA to device */ 708 if (dir != DMA_TO_DEVICE) { 709 outer_inv_range(paddr, paddr + size); 710 711 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 712 } 713 714 /* 715 * Mark the D-cache clean for these pages to avoid extra flushing. 716 */ 717 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 718 unsigned long pfn; 719 size_t left = size; 720 721 pfn = page_to_pfn(page) + off / PAGE_SIZE; 722 off %= PAGE_SIZE; 723 if (off) { 724 pfn++; 725 left -= PAGE_SIZE - off; 726 } 727 while (left >= PAGE_SIZE) { 728 page = pfn_to_page(pfn++); 729 set_bit(PG_dcache_clean, &page->flags); 730 left -= PAGE_SIZE; 731 } 732 } 733 } 734 735 #ifdef CONFIG_ARM_DMA_USE_IOMMU 736 737 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 738 { 739 int prot = 0; 740 741 if (attrs & DMA_ATTR_PRIVILEGED) 742 prot |= IOMMU_PRIV; 743 744 switch (dir) { 745 case DMA_BIDIRECTIONAL: 746 return prot | IOMMU_READ | IOMMU_WRITE; 747 case DMA_TO_DEVICE: 748 return prot | IOMMU_READ; 749 case DMA_FROM_DEVICE: 750 return prot | IOMMU_WRITE; 751 default: 752 return prot; 753 } 754 } 755 756 /* IOMMU */ 757 758 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 759 760 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 761 size_t size) 762 { 763 unsigned int order = get_order(size); 764 unsigned int align = 0; 765 unsigned int count, start; 766 size_t mapping_size = mapping->bits << PAGE_SHIFT; 767 unsigned long flags; 768 dma_addr_t iova; 769 int i; 770 771 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 772 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 773 774 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 775 align = (1 << order) - 1; 776 777 spin_lock_irqsave(&mapping->lock, flags); 778 for (i = 0; i < mapping->nr_bitmaps; i++) { 779 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 780 mapping->bits, 0, count, align); 781 782 if (start > mapping->bits) 783 continue; 784 785 bitmap_set(mapping->bitmaps[i], start, count); 786 break; 787 } 788 789 /* 790 * No unused range found. Try to extend the existing mapping 791 * and perform a second attempt to reserve an IO virtual 792 * address range of size bytes. 793 */ 794 if (i == mapping->nr_bitmaps) { 795 if (extend_iommu_mapping(mapping)) { 796 spin_unlock_irqrestore(&mapping->lock, flags); 797 return DMA_MAPPING_ERROR; 798 } 799 800 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 801 mapping->bits, 0, count, align); 802 803 if (start > mapping->bits) { 804 spin_unlock_irqrestore(&mapping->lock, flags); 805 return DMA_MAPPING_ERROR; 806 } 807 808 bitmap_set(mapping->bitmaps[i], start, count); 809 } 810 spin_unlock_irqrestore(&mapping->lock, flags); 811 812 iova = mapping->base + (mapping_size * i); 813 iova += start << PAGE_SHIFT; 814 815 return iova; 816 } 817 818 static inline void __free_iova(struct dma_iommu_mapping *mapping, 819 dma_addr_t addr, size_t size) 820 { 821 unsigned int start, count; 822 size_t mapping_size = mapping->bits << PAGE_SHIFT; 823 unsigned long flags; 824 dma_addr_t bitmap_base; 825 u32 bitmap_index; 826 827 if (!size) 828 return; 829 830 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 831 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 832 833 bitmap_base = mapping->base + mapping_size * bitmap_index; 834 835 start = (addr - bitmap_base) >> PAGE_SHIFT; 836 837 if (addr + size > bitmap_base + mapping_size) { 838 /* 839 * The address range to be freed reaches into the iova 840 * range of the next bitmap. This should not happen as 841 * we don't allow this in __alloc_iova (at the 842 * moment). 843 */ 844 BUG(); 845 } else 846 count = size >> PAGE_SHIFT; 847 848 spin_lock_irqsave(&mapping->lock, flags); 849 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 850 spin_unlock_irqrestore(&mapping->lock, flags); 851 } 852 853 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 854 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 855 856 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 857 gfp_t gfp, unsigned long attrs, 858 int coherent_flag) 859 { 860 struct page **pages; 861 int count = size >> PAGE_SHIFT; 862 int array_size = count * sizeof(struct page *); 863 int i = 0; 864 int order_idx = 0; 865 866 if (array_size <= PAGE_SIZE) 867 pages = kzalloc(array_size, GFP_KERNEL); 868 else 869 pages = vzalloc(array_size); 870 if (!pages) 871 return NULL; 872 873 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 874 { 875 unsigned long order = get_order(size); 876 struct page *page; 877 878 page = dma_alloc_from_contiguous(dev, count, order, 879 gfp & __GFP_NOWARN); 880 if (!page) 881 goto error; 882 883 __dma_clear_buffer(page, size, coherent_flag); 884 885 for (i = 0; i < count; i++) 886 pages[i] = page + i; 887 888 return pages; 889 } 890 891 /* Go straight to 4K chunks if caller says it's OK. */ 892 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 893 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 894 895 /* 896 * IOMMU can map any pages, so himem can also be used here 897 */ 898 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 899 900 while (count) { 901 int j, order; 902 903 order = iommu_order_array[order_idx]; 904 905 /* Drop down when we get small */ 906 if (__fls(count) < order) { 907 order_idx++; 908 continue; 909 } 910 911 if (order) { 912 /* See if it's easy to allocate a high-order chunk */ 913 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 914 915 /* Go down a notch at first sign of pressure */ 916 if (!pages[i]) { 917 order_idx++; 918 continue; 919 } 920 } else { 921 pages[i] = alloc_pages(gfp, 0); 922 if (!pages[i]) 923 goto error; 924 } 925 926 if (order) { 927 split_page(pages[i], order); 928 j = 1 << order; 929 while (--j) 930 pages[i + j] = pages[i] + j; 931 } 932 933 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 934 i += 1 << order; 935 count -= 1 << order; 936 } 937 938 return pages; 939 error: 940 while (i--) 941 if (pages[i]) 942 __free_pages(pages[i], 0); 943 kvfree(pages); 944 return NULL; 945 } 946 947 static int __iommu_free_buffer(struct device *dev, struct page **pages, 948 size_t size, unsigned long attrs) 949 { 950 int count = size >> PAGE_SHIFT; 951 int i; 952 953 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 954 dma_release_from_contiguous(dev, pages[0], count); 955 } else { 956 for (i = 0; i < count; i++) 957 if (pages[i]) 958 __free_pages(pages[i], 0); 959 } 960 961 kvfree(pages); 962 return 0; 963 } 964 965 /* 966 * Create a mapping in device IO address space for specified pages 967 */ 968 static dma_addr_t 969 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 970 unsigned long attrs) 971 { 972 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 973 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 974 dma_addr_t dma_addr, iova; 975 int i; 976 977 dma_addr = __alloc_iova(mapping, size); 978 if (dma_addr == DMA_MAPPING_ERROR) 979 return dma_addr; 980 981 iova = dma_addr; 982 for (i = 0; i < count; ) { 983 int ret; 984 985 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 986 phys_addr_t phys = page_to_phys(pages[i]); 987 unsigned int len, j; 988 989 for (j = i + 1; j < count; j++, next_pfn++) 990 if (page_to_pfn(pages[j]) != next_pfn) 991 break; 992 993 len = (j - i) << PAGE_SHIFT; 994 ret = iommu_map(mapping->domain, iova, phys, len, 995 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 996 if (ret < 0) 997 goto fail; 998 iova += len; 999 i = j; 1000 } 1001 return dma_addr; 1002 fail: 1003 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1004 __free_iova(mapping, dma_addr, size); 1005 return DMA_MAPPING_ERROR; 1006 } 1007 1008 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1009 { 1010 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1011 1012 /* 1013 * add optional in-page offset from iova to size and align 1014 * result to page size 1015 */ 1016 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1017 iova &= PAGE_MASK; 1018 1019 iommu_unmap(mapping->domain, iova, size); 1020 __free_iova(mapping, iova, size); 1021 return 0; 1022 } 1023 1024 static struct page **__atomic_get_pages(void *addr) 1025 { 1026 struct page *page; 1027 phys_addr_t phys; 1028 1029 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1030 page = phys_to_page(phys); 1031 1032 return (struct page **)page; 1033 } 1034 1035 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1036 { 1037 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1038 return __atomic_get_pages(cpu_addr); 1039 1040 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1041 return cpu_addr; 1042 1043 return dma_common_find_pages(cpu_addr); 1044 } 1045 1046 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1047 dma_addr_t *handle, int coherent_flag, 1048 unsigned long attrs) 1049 { 1050 struct page *page; 1051 void *addr; 1052 1053 if (coherent_flag == COHERENT) 1054 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1055 else 1056 addr = __alloc_from_pool(size, &page); 1057 if (!addr) 1058 return NULL; 1059 1060 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1061 if (*handle == DMA_MAPPING_ERROR) 1062 goto err_mapping; 1063 1064 return addr; 1065 1066 err_mapping: 1067 __free_from_pool(addr, size); 1068 return NULL; 1069 } 1070 1071 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1072 dma_addr_t handle, size_t size, int coherent_flag) 1073 { 1074 __iommu_remove_mapping(dev, handle, size); 1075 if (coherent_flag == COHERENT) 1076 __dma_free_buffer(virt_to_page(cpu_addr), size); 1077 else 1078 __free_from_pool(cpu_addr, size); 1079 } 1080 1081 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1082 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1083 { 1084 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1085 struct page **pages; 1086 void *addr = NULL; 1087 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL; 1088 1089 *handle = DMA_MAPPING_ERROR; 1090 size = PAGE_ALIGN(size); 1091 1092 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1093 return __iommu_alloc_simple(dev, size, gfp, handle, 1094 coherent_flag, attrs); 1095 1096 /* 1097 * Following is a work-around (a.k.a. hack) to prevent pages 1098 * with __GFP_COMP being passed to split_page() which cannot 1099 * handle them. The real problem is that this flag probably 1100 * should be 0 on ARM as it is not supported on this 1101 * platform; see CONFIG_HUGETLBFS. 1102 */ 1103 gfp &= ~(__GFP_COMP); 1104 1105 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1106 if (!pages) 1107 return NULL; 1108 1109 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1110 if (*handle == DMA_MAPPING_ERROR) 1111 goto err_buffer; 1112 1113 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1114 return pages; 1115 1116 addr = dma_common_pages_remap(pages, size, prot, 1117 __builtin_return_address(0)); 1118 if (!addr) 1119 goto err_mapping; 1120 1121 return addr; 1122 1123 err_mapping: 1124 __iommu_remove_mapping(dev, *handle, size); 1125 err_buffer: 1126 __iommu_free_buffer(dev, pages, size, attrs); 1127 return NULL; 1128 } 1129 1130 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1131 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1132 unsigned long attrs) 1133 { 1134 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1135 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1136 int err; 1137 1138 if (!pages) 1139 return -ENXIO; 1140 1141 if (vma->vm_pgoff >= nr_pages) 1142 return -ENXIO; 1143 1144 if (!dev->dma_coherent) 1145 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1146 1147 err = vm_map_pages(vma, pages, nr_pages); 1148 if (err) 1149 pr_err("Remapping memory failed: %d\n", err); 1150 1151 return err; 1152 } 1153 1154 /* 1155 * free a page as defined by the above mapping. 1156 * Must not be called with IRQs disabled. 1157 */ 1158 static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1159 dma_addr_t handle, unsigned long attrs) 1160 { 1161 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL; 1162 struct page **pages; 1163 size = PAGE_ALIGN(size); 1164 1165 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1166 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1167 return; 1168 } 1169 1170 pages = __iommu_get_pages(cpu_addr, attrs); 1171 if (!pages) { 1172 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1173 return; 1174 } 1175 1176 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) 1177 dma_common_free_remap(cpu_addr, size); 1178 1179 __iommu_remove_mapping(dev, handle, size); 1180 __iommu_free_buffer(dev, pages, size, attrs); 1181 } 1182 1183 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1184 void *cpu_addr, dma_addr_t dma_addr, 1185 size_t size, unsigned long attrs) 1186 { 1187 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1188 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1189 1190 if (!pages) 1191 return -ENXIO; 1192 1193 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1194 GFP_KERNEL); 1195 } 1196 1197 /* 1198 * Map a part of the scatter-gather list into contiguous io address space 1199 */ 1200 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1201 size_t size, dma_addr_t *handle, 1202 enum dma_data_direction dir, unsigned long attrs) 1203 { 1204 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1205 dma_addr_t iova, iova_base; 1206 int ret = 0; 1207 unsigned int count; 1208 struct scatterlist *s; 1209 int prot; 1210 1211 size = PAGE_ALIGN(size); 1212 *handle = DMA_MAPPING_ERROR; 1213 1214 iova_base = iova = __alloc_iova(mapping, size); 1215 if (iova == DMA_MAPPING_ERROR) 1216 return -ENOMEM; 1217 1218 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1219 phys_addr_t phys = page_to_phys(sg_page(s)); 1220 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1221 1222 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1223 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1224 1225 prot = __dma_info_to_prot(dir, attrs); 1226 1227 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1228 if (ret < 0) 1229 goto fail; 1230 count += len >> PAGE_SHIFT; 1231 iova += len; 1232 } 1233 *handle = iova_base; 1234 1235 return 0; 1236 fail: 1237 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1238 __free_iova(mapping, iova_base, size); 1239 return ret; 1240 } 1241 1242 /** 1243 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1244 * @dev: valid struct device pointer 1245 * @sg: list of buffers 1246 * @nents: number of buffers to map 1247 * @dir: DMA transfer direction 1248 * 1249 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1250 * The scatter gather list elements are merged together (if possible) and 1251 * tagged with the appropriate dma address and length. They are obtained via 1252 * sg_dma_{address,length}. 1253 */ 1254 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1255 int nents, enum dma_data_direction dir, unsigned long attrs) 1256 { 1257 struct scatterlist *s = sg, *dma = sg, *start = sg; 1258 int i, count = 0, ret; 1259 unsigned int offset = s->offset; 1260 unsigned int size = s->offset + s->length; 1261 unsigned int max = dma_get_max_seg_size(dev); 1262 1263 for (i = 1; i < nents; i++) { 1264 s = sg_next(s); 1265 1266 s->dma_length = 0; 1267 1268 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1269 ret = __map_sg_chunk(dev, start, size, 1270 &dma->dma_address, dir, attrs); 1271 if (ret < 0) 1272 goto bad_mapping; 1273 1274 dma->dma_address += offset; 1275 dma->dma_length = size - offset; 1276 1277 size = offset = s->offset; 1278 start = s; 1279 dma = sg_next(dma); 1280 count += 1; 1281 } 1282 size += s->length; 1283 } 1284 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs); 1285 if (ret < 0) 1286 goto bad_mapping; 1287 1288 dma->dma_address += offset; 1289 dma->dma_length = size - offset; 1290 1291 return count+1; 1292 1293 bad_mapping: 1294 for_each_sg(sg, s, count, i) 1295 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1296 if (ret == -ENOMEM) 1297 return ret; 1298 return -EINVAL; 1299 } 1300 1301 /** 1302 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1303 * @dev: valid struct device pointer 1304 * @sg: list of buffers 1305 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1306 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1307 * 1308 * Unmap a set of streaming mode DMA translations. Again, CPU access 1309 * rules concerning calls here are the same as for dma_unmap_single(). 1310 */ 1311 static void arm_iommu_unmap_sg(struct device *dev, 1312 struct scatterlist *sg, int nents, 1313 enum dma_data_direction dir, 1314 unsigned long attrs) 1315 { 1316 struct scatterlist *s; 1317 int i; 1318 1319 for_each_sg(sg, s, nents, i) { 1320 if (sg_dma_len(s)) 1321 __iommu_remove_mapping(dev, sg_dma_address(s), 1322 sg_dma_len(s)); 1323 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1324 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1325 s->length, dir); 1326 } 1327 } 1328 1329 /** 1330 * arm_iommu_sync_sg_for_cpu 1331 * @dev: valid struct device pointer 1332 * @sg: list of buffers 1333 * @nents: number of buffers to map (returned from dma_map_sg) 1334 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1335 */ 1336 static void arm_iommu_sync_sg_for_cpu(struct device *dev, 1337 struct scatterlist *sg, 1338 int nents, enum dma_data_direction dir) 1339 { 1340 struct scatterlist *s; 1341 int i; 1342 1343 if (dev->dma_coherent) 1344 return; 1345 1346 for_each_sg(sg, s, nents, i) 1347 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1348 1349 } 1350 1351 /** 1352 * arm_iommu_sync_sg_for_device 1353 * @dev: valid struct device pointer 1354 * @sg: list of buffers 1355 * @nents: number of buffers to map (returned from dma_map_sg) 1356 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1357 */ 1358 static void arm_iommu_sync_sg_for_device(struct device *dev, 1359 struct scatterlist *sg, 1360 int nents, enum dma_data_direction dir) 1361 { 1362 struct scatterlist *s; 1363 int i; 1364 1365 if (dev->dma_coherent) 1366 return; 1367 1368 for_each_sg(sg, s, nents, i) 1369 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1370 } 1371 1372 /** 1373 * arm_iommu_map_page 1374 * @dev: valid struct device pointer 1375 * @page: page that buffer resides in 1376 * @offset: offset into page for start of buffer 1377 * @size: size of buffer to map 1378 * @dir: DMA transfer direction 1379 * 1380 * IOMMU aware version of arm_dma_map_page() 1381 */ 1382 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1383 unsigned long offset, size_t size, enum dma_data_direction dir, 1384 unsigned long attrs) 1385 { 1386 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1387 dma_addr_t dma_addr; 1388 int ret, prot, len = PAGE_ALIGN(size + offset); 1389 1390 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1391 __dma_page_cpu_to_dev(page, offset, size, dir); 1392 1393 dma_addr = __alloc_iova(mapping, len); 1394 if (dma_addr == DMA_MAPPING_ERROR) 1395 return dma_addr; 1396 1397 prot = __dma_info_to_prot(dir, attrs); 1398 1399 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1400 if (ret < 0) 1401 goto fail; 1402 1403 return dma_addr + offset; 1404 fail: 1405 __free_iova(mapping, dma_addr, len); 1406 return DMA_MAPPING_ERROR; 1407 } 1408 1409 /** 1410 * arm_iommu_unmap_page 1411 * @dev: valid struct device pointer 1412 * @handle: DMA address of buffer 1413 * @size: size of buffer (same as passed to dma_map_page) 1414 * @dir: DMA transfer direction (same as passed to dma_map_page) 1415 * 1416 * IOMMU aware version of arm_dma_unmap_page() 1417 */ 1418 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1419 size_t size, enum dma_data_direction dir, unsigned long attrs) 1420 { 1421 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1422 dma_addr_t iova = handle & PAGE_MASK; 1423 struct page *page; 1424 int offset = handle & ~PAGE_MASK; 1425 int len = PAGE_ALIGN(size + offset); 1426 1427 if (!iova) 1428 return; 1429 1430 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 1431 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1432 __dma_page_dev_to_cpu(page, offset, size, dir); 1433 } 1434 1435 iommu_unmap(mapping->domain, iova, len); 1436 __free_iova(mapping, iova, len); 1437 } 1438 1439 /** 1440 * arm_iommu_map_resource - map a device resource for DMA 1441 * @dev: valid struct device pointer 1442 * @phys_addr: physical address of resource 1443 * @size: size of resource to map 1444 * @dir: DMA transfer direction 1445 */ 1446 static dma_addr_t arm_iommu_map_resource(struct device *dev, 1447 phys_addr_t phys_addr, size_t size, 1448 enum dma_data_direction dir, unsigned long attrs) 1449 { 1450 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1451 dma_addr_t dma_addr; 1452 int ret, prot; 1453 phys_addr_t addr = phys_addr & PAGE_MASK; 1454 unsigned int offset = phys_addr & ~PAGE_MASK; 1455 size_t len = PAGE_ALIGN(size + offset); 1456 1457 dma_addr = __alloc_iova(mapping, len); 1458 if (dma_addr == DMA_MAPPING_ERROR) 1459 return dma_addr; 1460 1461 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 1462 1463 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 1464 if (ret < 0) 1465 goto fail; 1466 1467 return dma_addr + offset; 1468 fail: 1469 __free_iova(mapping, dma_addr, len); 1470 return DMA_MAPPING_ERROR; 1471 } 1472 1473 /** 1474 * arm_iommu_unmap_resource - unmap a device DMA resource 1475 * @dev: valid struct device pointer 1476 * @dma_handle: DMA address to resource 1477 * @size: size of resource to map 1478 * @dir: DMA transfer direction 1479 */ 1480 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 1481 size_t size, enum dma_data_direction dir, 1482 unsigned long attrs) 1483 { 1484 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1485 dma_addr_t iova = dma_handle & PAGE_MASK; 1486 unsigned int offset = dma_handle & ~PAGE_MASK; 1487 size_t len = PAGE_ALIGN(size + offset); 1488 1489 if (!iova) 1490 return; 1491 1492 iommu_unmap(mapping->domain, iova, len); 1493 __free_iova(mapping, iova, len); 1494 } 1495 1496 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1497 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1498 { 1499 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1500 dma_addr_t iova = handle & PAGE_MASK; 1501 struct page *page; 1502 unsigned int offset = handle & ~PAGE_MASK; 1503 1504 if (dev->dma_coherent || !iova) 1505 return; 1506 1507 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1508 __dma_page_dev_to_cpu(page, offset, size, dir); 1509 } 1510 1511 static void arm_iommu_sync_single_for_device(struct device *dev, 1512 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1513 { 1514 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1515 dma_addr_t iova = handle & PAGE_MASK; 1516 struct page *page; 1517 unsigned int offset = handle & ~PAGE_MASK; 1518 1519 if (dev->dma_coherent || !iova) 1520 return; 1521 1522 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1523 __dma_page_cpu_to_dev(page, offset, size, dir); 1524 } 1525 1526 static const struct dma_map_ops iommu_ops = { 1527 .alloc = arm_iommu_alloc_attrs, 1528 .free = arm_iommu_free_attrs, 1529 .mmap = arm_iommu_mmap_attrs, 1530 .get_sgtable = arm_iommu_get_sgtable, 1531 1532 .map_page = arm_iommu_map_page, 1533 .unmap_page = arm_iommu_unmap_page, 1534 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1535 .sync_single_for_device = arm_iommu_sync_single_for_device, 1536 1537 .map_sg = arm_iommu_map_sg, 1538 .unmap_sg = arm_iommu_unmap_sg, 1539 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1540 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1541 1542 .map_resource = arm_iommu_map_resource, 1543 .unmap_resource = arm_iommu_unmap_resource, 1544 }; 1545 1546 /** 1547 * arm_iommu_create_mapping 1548 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1549 * @base: start address of the valid IO address space 1550 * @size: maximum size of the valid IO address space 1551 * 1552 * Creates a mapping structure which holds information about used/unused 1553 * IO address ranges, which is required to perform memory allocation and 1554 * mapping with IOMMU aware functions. 1555 * 1556 * The client device need to be attached to the mapping with 1557 * arm_iommu_attach_device function. 1558 */ 1559 struct dma_iommu_mapping * 1560 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 1561 { 1562 unsigned int bits = size >> PAGE_SHIFT; 1563 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 1564 struct dma_iommu_mapping *mapping; 1565 int extensions = 1; 1566 int err = -ENOMEM; 1567 1568 /* currently only 32-bit DMA address space is supported */ 1569 if (size > DMA_BIT_MASK(32) + 1) 1570 return ERR_PTR(-ERANGE); 1571 1572 if (!bitmap_size) 1573 return ERR_PTR(-EINVAL); 1574 1575 if (bitmap_size > PAGE_SIZE) { 1576 extensions = bitmap_size / PAGE_SIZE; 1577 bitmap_size = PAGE_SIZE; 1578 } 1579 1580 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1581 if (!mapping) 1582 goto err; 1583 1584 mapping->bitmap_size = bitmap_size; 1585 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 1586 GFP_KERNEL); 1587 if (!mapping->bitmaps) 1588 goto err2; 1589 1590 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 1591 if (!mapping->bitmaps[0]) 1592 goto err3; 1593 1594 mapping->nr_bitmaps = 1; 1595 mapping->extensions = extensions; 1596 mapping->base = base; 1597 mapping->bits = BITS_PER_BYTE * bitmap_size; 1598 1599 spin_lock_init(&mapping->lock); 1600 1601 mapping->domain = iommu_domain_alloc(bus); 1602 if (!mapping->domain) 1603 goto err4; 1604 1605 kref_init(&mapping->kref); 1606 return mapping; 1607 err4: 1608 kfree(mapping->bitmaps[0]); 1609 err3: 1610 kfree(mapping->bitmaps); 1611 err2: 1612 kfree(mapping); 1613 err: 1614 return ERR_PTR(err); 1615 } 1616 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 1617 1618 static void release_iommu_mapping(struct kref *kref) 1619 { 1620 int i; 1621 struct dma_iommu_mapping *mapping = 1622 container_of(kref, struct dma_iommu_mapping, kref); 1623 1624 iommu_domain_free(mapping->domain); 1625 for (i = 0; i < mapping->nr_bitmaps; i++) 1626 kfree(mapping->bitmaps[i]); 1627 kfree(mapping->bitmaps); 1628 kfree(mapping); 1629 } 1630 1631 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 1632 { 1633 int next_bitmap; 1634 1635 if (mapping->nr_bitmaps >= mapping->extensions) 1636 return -EINVAL; 1637 1638 next_bitmap = mapping->nr_bitmaps; 1639 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 1640 GFP_ATOMIC); 1641 if (!mapping->bitmaps[next_bitmap]) 1642 return -ENOMEM; 1643 1644 mapping->nr_bitmaps++; 1645 1646 return 0; 1647 } 1648 1649 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1650 { 1651 if (mapping) 1652 kref_put(&mapping->kref, release_iommu_mapping); 1653 } 1654 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 1655 1656 static int __arm_iommu_attach_device(struct device *dev, 1657 struct dma_iommu_mapping *mapping) 1658 { 1659 int err; 1660 1661 err = iommu_attach_device(mapping->domain, dev); 1662 if (err) 1663 return err; 1664 1665 kref_get(&mapping->kref); 1666 to_dma_iommu_mapping(dev) = mapping; 1667 1668 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1669 return 0; 1670 } 1671 1672 /** 1673 * arm_iommu_attach_device 1674 * @dev: valid struct device pointer 1675 * @mapping: io address space mapping structure (returned from 1676 * arm_iommu_create_mapping) 1677 * 1678 * Attaches specified io address space mapping to the provided device. 1679 * This replaces the dma operations (dma_map_ops pointer) with the 1680 * IOMMU aware version. 1681 * 1682 * More than one client might be attached to the same io address space 1683 * mapping. 1684 */ 1685 int arm_iommu_attach_device(struct device *dev, 1686 struct dma_iommu_mapping *mapping) 1687 { 1688 int err; 1689 1690 err = __arm_iommu_attach_device(dev, mapping); 1691 if (err) 1692 return err; 1693 1694 set_dma_ops(dev, &iommu_ops); 1695 return 0; 1696 } 1697 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 1698 1699 /** 1700 * arm_iommu_detach_device 1701 * @dev: valid struct device pointer 1702 * 1703 * Detaches the provided device from a previously attached map. 1704 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. 1705 */ 1706 void arm_iommu_detach_device(struct device *dev) 1707 { 1708 struct dma_iommu_mapping *mapping; 1709 1710 mapping = to_dma_iommu_mapping(dev); 1711 if (!mapping) { 1712 dev_warn(dev, "Not attached\n"); 1713 return; 1714 } 1715 1716 iommu_detach_device(mapping->domain, dev); 1717 kref_put(&mapping->kref, release_iommu_mapping); 1718 to_dma_iommu_mapping(dev) = NULL; 1719 set_dma_ops(dev, NULL); 1720 1721 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 1722 } 1723 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 1724 1725 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 1726 const struct iommu_ops *iommu, bool coherent) 1727 { 1728 struct dma_iommu_mapping *mapping; 1729 1730 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 1731 if (IS_ERR(mapping)) { 1732 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 1733 size, dev_name(dev)); 1734 return; 1735 } 1736 1737 if (__arm_iommu_attach_device(dev, mapping)) { 1738 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 1739 dev_name(dev)); 1740 arm_iommu_release_mapping(mapping); 1741 return; 1742 } 1743 1744 set_dma_ops(dev, &iommu_ops); 1745 } 1746 1747 static void arm_teardown_iommu_dma_ops(struct device *dev) 1748 { 1749 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1750 1751 if (!mapping) 1752 return; 1753 1754 arm_iommu_detach_device(dev); 1755 arm_iommu_release_mapping(mapping); 1756 } 1757 1758 #else 1759 1760 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 1761 const struct iommu_ops *iommu, bool coherent) 1762 { 1763 } 1764 1765 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 1766 1767 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 1768 1769 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 1770 const struct iommu_ops *iommu, bool coherent) 1771 { 1772 dev->archdata.dma_coherent = coherent; 1773 dev->dma_coherent = coherent; 1774 1775 /* 1776 * Don't override the dma_ops if they have already been set. Ideally 1777 * this should be the only location where dma_ops are set, remove this 1778 * check when all other callers of set_dma_ops will have disappeared. 1779 */ 1780 if (dev->dma_ops) 1781 return; 1782 1783 if (iommu) 1784 arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent); 1785 1786 xen_setup_dma_ops(dev); 1787 dev->archdata.dma_ops_setup = true; 1788 } 1789 1790 void arch_teardown_dma_ops(struct device *dev) 1791 { 1792 if (!dev->archdata.dma_ops_setup) 1793 return; 1794 1795 arm_teardown_iommu_dma_ops(dev); 1796 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ 1797 set_dma_ops(dev, NULL); 1798 } 1799 1800 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, 1801 enum dma_data_direction dir) 1802 { 1803 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), 1804 size, dir); 1805 } 1806 1807 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, 1808 enum dma_data_direction dir) 1809 { 1810 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), 1811 size, dir); 1812 } 1813 1814 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 1815 gfp_t gfp, unsigned long attrs) 1816 { 1817 return __dma_alloc(dev, size, dma_handle, gfp, 1818 __get_dma_pgprot(attrs, PAGE_KERNEL), false, 1819 attrs, __builtin_return_address(0)); 1820 } 1821 1822 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, 1823 dma_addr_t dma_handle, unsigned long attrs) 1824 { 1825 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false); 1826 } 1827