xref: /linux/arch/arm/mm/dma-mapping.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27 
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <xen/swiotlb-xen.h>
37 
38 #include "dma.h"
39 #include "mm.h"
40 
41 struct arm_dma_alloc_args {
42 	struct device *dev;
43 	size_t size;
44 	gfp_t gfp;
45 	pgprot_t prot;
46 	const void *caller;
47 	bool want_vaddr;
48 	int coherent_flag;
49 };
50 
51 struct arm_dma_free_args {
52 	struct device *dev;
53 	size_t size;
54 	void *cpu_addr;
55 	struct page *page;
56 	bool want_vaddr;
57 };
58 
59 #define NORMAL	    0
60 #define COHERENT    1
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 		size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 		size_t, enum dma_data_direction);
110 
111 /**
112  * arm_dma_map_page - map a portion of a page for streaming DMA
113  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114  * @page: page that buffer resides in
115  * @offset: offset into page for start of buffer
116  * @size: size of buffer to map
117  * @dir: DMA transfer direction
118  *
119  * Ensure that any data held in the cache is appropriately discarded
120  * or written back.
121  *
122  * The device owns this memory once this call has completed.  The CPU
123  * can regain ownership by calling dma_unmap_page().
124  */
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 	     unsigned long offset, size_t size, enum dma_data_direction dir,
127 	     unsigned long attrs)
128 {
129 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
130 		__dma_page_cpu_to_dev(page, offset, size, dir);
131 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133 
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 	     unsigned long offset, size_t size, enum dma_data_direction dir,
136 	     unsigned long attrs)
137 {
138 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140 
141 /**
142  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144  * @handle: DMA address of buffer
145  * @size: size of buffer (same as passed to dma_map_page)
146  * @dir: DMA transfer direction (same as passed to dma_map_page)
147  *
148  * Unmap a page streaming mode DMA translation.  The handle and size
149  * must match what was provided in the previous dma_map_page() call.
150  * All other usages are undefined.
151  *
152  * After this call, reads by the CPU to the buffer are guaranteed to see
153  * whatever the device wrote there.
154  */
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 		size_t size, enum dma_data_direction dir, unsigned long attrs)
157 {
158 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
159 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
160 				      handle & ~PAGE_MASK, size, dir);
161 }
162 
163 static void arm_dma_sync_single_for_cpu(struct device *dev,
164 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
165 {
166 	unsigned int offset = handle & (PAGE_SIZE - 1);
167 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
168 	__dma_page_dev_to_cpu(page, offset, size, dir);
169 }
170 
171 static void arm_dma_sync_single_for_device(struct device *dev,
172 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
173 {
174 	unsigned int offset = handle & (PAGE_SIZE - 1);
175 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
176 	__dma_page_cpu_to_dev(page, offset, size, dir);
177 }
178 
179 /*
180  * Return whether the given device DMA address mask can be supported
181  * properly.  For example, if your device can only drive the low 24-bits
182  * during bus mastering, then you would pass 0x00ffffff as the mask
183  * to this function.
184  */
185 static int arm_dma_supported(struct device *dev, u64 mask)
186 {
187 	unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
188 
189 	/*
190 	 * Translate the device's DMA mask to a PFN limit.  This
191 	 * PFN number includes the page which we can DMA to.
192 	 */
193 	return dma_to_pfn(dev, mask) >= max_dma_pfn;
194 }
195 
196 const struct dma_map_ops arm_dma_ops = {
197 	.alloc			= arm_dma_alloc,
198 	.free			= arm_dma_free,
199 	.alloc_pages		= dma_direct_alloc_pages,
200 	.free_pages		= dma_direct_free_pages,
201 	.mmap			= arm_dma_mmap,
202 	.get_sgtable		= arm_dma_get_sgtable,
203 	.map_page		= arm_dma_map_page,
204 	.unmap_page		= arm_dma_unmap_page,
205 	.map_sg			= arm_dma_map_sg,
206 	.unmap_sg		= arm_dma_unmap_sg,
207 	.map_resource		= dma_direct_map_resource,
208 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
209 	.sync_single_for_device	= arm_dma_sync_single_for_device,
210 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
211 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
212 	.dma_supported		= arm_dma_supported,
213 	.get_required_mask	= dma_direct_get_required_mask,
214 };
215 EXPORT_SYMBOL(arm_dma_ops);
216 
217 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
218 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
219 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
220 				  dma_addr_t handle, unsigned long attrs);
221 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
222 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
223 		 unsigned long attrs);
224 
225 const struct dma_map_ops arm_coherent_dma_ops = {
226 	.alloc			= arm_coherent_dma_alloc,
227 	.free			= arm_coherent_dma_free,
228 	.alloc_pages		= dma_direct_alloc_pages,
229 	.free_pages		= dma_direct_free_pages,
230 	.mmap			= arm_coherent_dma_mmap,
231 	.get_sgtable		= arm_dma_get_sgtable,
232 	.map_page		= arm_coherent_dma_map_page,
233 	.map_sg			= arm_dma_map_sg,
234 	.map_resource		= dma_direct_map_resource,
235 	.dma_supported		= arm_dma_supported,
236 	.get_required_mask	= dma_direct_get_required_mask,
237 };
238 EXPORT_SYMBOL(arm_coherent_dma_ops);
239 
240 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
241 {
242 	/*
243 	 * Ensure that the allocated pages are zeroed, and that any data
244 	 * lurking in the kernel direct-mapped region is invalidated.
245 	 */
246 	if (PageHighMem(page)) {
247 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
248 		phys_addr_t end = base + size;
249 		while (size > 0) {
250 			void *ptr = kmap_atomic(page);
251 			memset(ptr, 0, PAGE_SIZE);
252 			if (coherent_flag != COHERENT)
253 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
254 			kunmap_atomic(ptr);
255 			page++;
256 			size -= PAGE_SIZE;
257 		}
258 		if (coherent_flag != COHERENT)
259 			outer_flush_range(base, end);
260 	} else {
261 		void *ptr = page_address(page);
262 		memset(ptr, 0, size);
263 		if (coherent_flag != COHERENT) {
264 			dmac_flush_range(ptr, ptr + size);
265 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
266 		}
267 	}
268 }
269 
270 /*
271  * Allocate a DMA buffer for 'dev' of size 'size' using the
272  * specified gfp mask.  Note that 'size' must be page aligned.
273  */
274 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
275 				       gfp_t gfp, int coherent_flag)
276 {
277 	unsigned long order = get_order(size);
278 	struct page *page, *p, *e;
279 
280 	page = alloc_pages(gfp, order);
281 	if (!page)
282 		return NULL;
283 
284 	/*
285 	 * Now split the huge page and free the excess pages
286 	 */
287 	split_page(page, order);
288 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
289 		__free_page(p);
290 
291 	__dma_clear_buffer(page, size, coherent_flag);
292 
293 	return page;
294 }
295 
296 /*
297  * Free a DMA buffer.  'size' must be page aligned.
298  */
299 static void __dma_free_buffer(struct page *page, size_t size)
300 {
301 	struct page *e = page + (size >> PAGE_SHIFT);
302 
303 	while (page < e) {
304 		__free_page(page);
305 		page++;
306 	}
307 }
308 
309 static void *__alloc_from_contiguous(struct device *dev, size_t size,
310 				     pgprot_t prot, struct page **ret_page,
311 				     const void *caller, bool want_vaddr,
312 				     int coherent_flag, gfp_t gfp);
313 
314 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
315 				 pgprot_t prot, struct page **ret_page,
316 				 const void *caller, bool want_vaddr);
317 
318 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
319 static struct gen_pool *atomic_pool __ro_after_init;
320 
321 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
322 
323 static int __init early_coherent_pool(char *p)
324 {
325 	atomic_pool_size = memparse(p, &p);
326 	return 0;
327 }
328 early_param("coherent_pool", early_coherent_pool);
329 
330 /*
331  * Initialise the coherent pool for atomic allocations.
332  */
333 static int __init atomic_pool_init(void)
334 {
335 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
336 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
337 	struct page *page;
338 	void *ptr;
339 
340 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
341 	if (!atomic_pool)
342 		goto out;
343 	/*
344 	 * The atomic pool is only used for non-coherent allocations
345 	 * so we must pass NORMAL for coherent_flag.
346 	 */
347 	if (dev_get_cma_area(NULL))
348 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
349 				      &page, atomic_pool_init, true, NORMAL,
350 				      GFP_KERNEL);
351 	else
352 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
353 					   &page, atomic_pool_init, true);
354 	if (ptr) {
355 		int ret;
356 
357 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
358 					page_to_phys(page),
359 					atomic_pool_size, -1);
360 		if (ret)
361 			goto destroy_genpool;
362 
363 		gen_pool_set_algo(atomic_pool,
364 				gen_pool_first_fit_order_align,
365 				NULL);
366 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
367 		       atomic_pool_size / 1024);
368 		return 0;
369 	}
370 
371 destroy_genpool:
372 	gen_pool_destroy(atomic_pool);
373 	atomic_pool = NULL;
374 out:
375 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
376 	       atomic_pool_size / 1024);
377 	return -ENOMEM;
378 }
379 /*
380  * CMA is activated by core_initcall, so we must be called after it.
381  */
382 postcore_initcall(atomic_pool_init);
383 
384 struct dma_contig_early_reserve {
385 	phys_addr_t base;
386 	unsigned long size;
387 };
388 
389 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
390 
391 static int dma_mmu_remap_num __initdata;
392 
393 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
394 {
395 	dma_mmu_remap[dma_mmu_remap_num].base = base;
396 	dma_mmu_remap[dma_mmu_remap_num].size = size;
397 	dma_mmu_remap_num++;
398 }
399 
400 void __init dma_contiguous_remap(void)
401 {
402 	int i;
403 	for (i = 0; i < dma_mmu_remap_num; i++) {
404 		phys_addr_t start = dma_mmu_remap[i].base;
405 		phys_addr_t end = start + dma_mmu_remap[i].size;
406 		struct map_desc map;
407 		unsigned long addr;
408 
409 		if (end > arm_lowmem_limit)
410 			end = arm_lowmem_limit;
411 		if (start >= end)
412 			continue;
413 
414 		map.pfn = __phys_to_pfn(start);
415 		map.virtual = __phys_to_virt(start);
416 		map.length = end - start;
417 		map.type = MT_MEMORY_DMA_READY;
418 
419 		/*
420 		 * Clear previous low-memory mapping to ensure that the
421 		 * TLB does not see any conflicting entries, then flush
422 		 * the TLB of the old entries before creating new mappings.
423 		 *
424 		 * This ensures that any speculatively loaded TLB entries
425 		 * (even though they may be rare) can not cause any problems,
426 		 * and ensures that this code is architecturally compliant.
427 		 */
428 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
429 		     addr += PMD_SIZE)
430 			pmd_clear(pmd_off_k(addr));
431 
432 		flush_tlb_kernel_range(__phys_to_virt(start),
433 				       __phys_to_virt(end));
434 
435 		iotable_init(&map, 1);
436 	}
437 }
438 
439 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
440 {
441 	struct page *page = virt_to_page(addr);
442 	pgprot_t prot = *(pgprot_t *)data;
443 
444 	set_pte_ext(pte, mk_pte(page, prot), 0);
445 	return 0;
446 }
447 
448 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
449 {
450 	unsigned long start = (unsigned long) page_address(page);
451 	unsigned end = start + size;
452 
453 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
454 	flush_tlb_kernel_range(start, end);
455 }
456 
457 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
458 				 pgprot_t prot, struct page **ret_page,
459 				 const void *caller, bool want_vaddr)
460 {
461 	struct page *page;
462 	void *ptr = NULL;
463 	/*
464 	 * __alloc_remap_buffer is only called when the device is
465 	 * non-coherent
466 	 */
467 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
468 	if (!page)
469 		return NULL;
470 	if (!want_vaddr)
471 		goto out;
472 
473 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
474 	if (!ptr) {
475 		__dma_free_buffer(page, size);
476 		return NULL;
477 	}
478 
479  out:
480 	*ret_page = page;
481 	return ptr;
482 }
483 
484 static void *__alloc_from_pool(size_t size, struct page **ret_page)
485 {
486 	unsigned long val;
487 	void *ptr = NULL;
488 
489 	if (!atomic_pool) {
490 		WARN(1, "coherent pool not initialised!\n");
491 		return NULL;
492 	}
493 
494 	val = gen_pool_alloc(atomic_pool, size);
495 	if (val) {
496 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
497 
498 		*ret_page = phys_to_page(phys);
499 		ptr = (void *)val;
500 	}
501 
502 	return ptr;
503 }
504 
505 static bool __in_atomic_pool(void *start, size_t size)
506 {
507 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
508 }
509 
510 static int __free_from_pool(void *start, size_t size)
511 {
512 	if (!__in_atomic_pool(start, size))
513 		return 0;
514 
515 	gen_pool_free(atomic_pool, (unsigned long)start, size);
516 
517 	return 1;
518 }
519 
520 static void *__alloc_from_contiguous(struct device *dev, size_t size,
521 				     pgprot_t prot, struct page **ret_page,
522 				     const void *caller, bool want_vaddr,
523 				     int coherent_flag, gfp_t gfp)
524 {
525 	unsigned long order = get_order(size);
526 	size_t count = size >> PAGE_SHIFT;
527 	struct page *page;
528 	void *ptr = NULL;
529 
530 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
531 	if (!page)
532 		return NULL;
533 
534 	__dma_clear_buffer(page, size, coherent_flag);
535 
536 	if (!want_vaddr)
537 		goto out;
538 
539 	if (PageHighMem(page)) {
540 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
541 		if (!ptr) {
542 			dma_release_from_contiguous(dev, page, count);
543 			return NULL;
544 		}
545 	} else {
546 		__dma_remap(page, size, prot);
547 		ptr = page_address(page);
548 	}
549 
550  out:
551 	*ret_page = page;
552 	return ptr;
553 }
554 
555 static void __free_from_contiguous(struct device *dev, struct page *page,
556 				   void *cpu_addr, size_t size, bool want_vaddr)
557 {
558 	if (want_vaddr) {
559 		if (PageHighMem(page))
560 			dma_common_free_remap(cpu_addr, size);
561 		else
562 			__dma_remap(page, size, PAGE_KERNEL);
563 	}
564 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
565 }
566 
567 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
568 {
569 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
570 			pgprot_writecombine(prot) :
571 			pgprot_dmacoherent(prot);
572 	return prot;
573 }
574 
575 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
576 				   struct page **ret_page)
577 {
578 	struct page *page;
579 	/* __alloc_simple_buffer is only called when the device is coherent */
580 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
581 	if (!page)
582 		return NULL;
583 
584 	*ret_page = page;
585 	return page_address(page);
586 }
587 
588 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
589 				    struct page **ret_page)
590 {
591 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
592 				     ret_page);
593 }
594 
595 static void simple_allocator_free(struct arm_dma_free_args *args)
596 {
597 	__dma_free_buffer(args->page, args->size);
598 }
599 
600 static struct arm_dma_allocator simple_allocator = {
601 	.alloc = simple_allocator_alloc,
602 	.free = simple_allocator_free,
603 };
604 
605 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
606 				 struct page **ret_page)
607 {
608 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
609 				       ret_page, args->caller,
610 				       args->want_vaddr, args->coherent_flag,
611 				       args->gfp);
612 }
613 
614 static void cma_allocator_free(struct arm_dma_free_args *args)
615 {
616 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
617 			       args->size, args->want_vaddr);
618 }
619 
620 static struct arm_dma_allocator cma_allocator = {
621 	.alloc = cma_allocator_alloc,
622 	.free = cma_allocator_free,
623 };
624 
625 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
626 				  struct page **ret_page)
627 {
628 	return __alloc_from_pool(args->size, ret_page);
629 }
630 
631 static void pool_allocator_free(struct arm_dma_free_args *args)
632 {
633 	__free_from_pool(args->cpu_addr, args->size);
634 }
635 
636 static struct arm_dma_allocator pool_allocator = {
637 	.alloc = pool_allocator_alloc,
638 	.free = pool_allocator_free,
639 };
640 
641 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
642 				   struct page **ret_page)
643 {
644 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
645 				    args->prot, ret_page, args->caller,
646 				    args->want_vaddr);
647 }
648 
649 static void remap_allocator_free(struct arm_dma_free_args *args)
650 {
651 	if (args->want_vaddr)
652 		dma_common_free_remap(args->cpu_addr, args->size);
653 
654 	__dma_free_buffer(args->page, args->size);
655 }
656 
657 static struct arm_dma_allocator remap_allocator = {
658 	.alloc = remap_allocator_alloc,
659 	.free = remap_allocator_free,
660 };
661 
662 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
663 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
664 			 unsigned long attrs, const void *caller)
665 {
666 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
667 	struct page *page = NULL;
668 	void *addr;
669 	bool allowblock, cma;
670 	struct arm_dma_buffer *buf;
671 	struct arm_dma_alloc_args args = {
672 		.dev = dev,
673 		.size = PAGE_ALIGN(size),
674 		.gfp = gfp,
675 		.prot = prot,
676 		.caller = caller,
677 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
678 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
679 	};
680 
681 #ifdef CONFIG_DMA_API_DEBUG
682 	u64 limit = (mask + 1) & ~mask;
683 	if (limit && size >= limit) {
684 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
685 			size, mask);
686 		return NULL;
687 	}
688 #endif
689 
690 	buf = kzalloc(sizeof(*buf),
691 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
692 	if (!buf)
693 		return NULL;
694 
695 	if (mask < 0xffffffffULL)
696 		gfp |= GFP_DMA;
697 
698 	/*
699 	 * Following is a work-around (a.k.a. hack) to prevent pages
700 	 * with __GFP_COMP being passed to split_page() which cannot
701 	 * handle them.  The real problem is that this flag probably
702 	 * should be 0 on ARM as it is not supported on this
703 	 * platform; see CONFIG_HUGETLBFS.
704 	 */
705 	gfp &= ~(__GFP_COMP);
706 	args.gfp = gfp;
707 
708 	*handle = DMA_MAPPING_ERROR;
709 	allowblock = gfpflags_allow_blocking(gfp);
710 	cma = allowblock ? dev_get_cma_area(dev) : false;
711 
712 	if (cma)
713 		buf->allocator = &cma_allocator;
714 	else if (is_coherent)
715 		buf->allocator = &simple_allocator;
716 	else if (allowblock)
717 		buf->allocator = &remap_allocator;
718 	else
719 		buf->allocator = &pool_allocator;
720 
721 	addr = buf->allocator->alloc(&args, &page);
722 
723 	if (page) {
724 		unsigned long flags;
725 
726 		*handle = pfn_to_dma(dev, page_to_pfn(page));
727 		buf->virt = args.want_vaddr ? addr : page;
728 
729 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
730 		list_add(&buf->list, &arm_dma_bufs);
731 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
732 	} else {
733 		kfree(buf);
734 	}
735 
736 	return args.want_vaddr ? addr : page;
737 }
738 
739 /*
740  * Allocate DMA-coherent memory space and return both the kernel remapped
741  * virtual and bus address for that space.
742  */
743 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
744 		    gfp_t gfp, unsigned long attrs)
745 {
746 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
747 
748 	return __dma_alloc(dev, size, handle, gfp, prot, false,
749 			   attrs, __builtin_return_address(0));
750 }
751 
752 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
753 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
754 {
755 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
756 			   attrs, __builtin_return_address(0));
757 }
758 
759 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
760 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
761 		 unsigned long attrs)
762 {
763 	int ret = -ENXIO;
764 	unsigned long nr_vma_pages = vma_pages(vma);
765 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
766 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
767 	unsigned long off = vma->vm_pgoff;
768 
769 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
770 		return ret;
771 
772 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
773 		ret = remap_pfn_range(vma, vma->vm_start,
774 				      pfn + off,
775 				      vma->vm_end - vma->vm_start,
776 				      vma->vm_page_prot);
777 	}
778 
779 	return ret;
780 }
781 
782 /*
783  * Create userspace mapping for the DMA-coherent memory.
784  */
785 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
786 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
787 		 unsigned long attrs)
788 {
789 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
790 }
791 
792 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
793 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
794 		 unsigned long attrs)
795 {
796 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
797 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
798 }
799 
800 /*
801  * Free a buffer as defined by the above mapping.
802  */
803 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
804 			   dma_addr_t handle, unsigned long attrs,
805 			   bool is_coherent)
806 {
807 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
808 	struct arm_dma_buffer *buf;
809 	struct arm_dma_free_args args = {
810 		.dev = dev,
811 		.size = PAGE_ALIGN(size),
812 		.cpu_addr = cpu_addr,
813 		.page = page,
814 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
815 	};
816 
817 	buf = arm_dma_buffer_find(cpu_addr);
818 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
819 		return;
820 
821 	buf->allocator->free(&args);
822 	kfree(buf);
823 }
824 
825 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
826 		  dma_addr_t handle, unsigned long attrs)
827 {
828 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
829 }
830 
831 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
832 				  dma_addr_t handle, unsigned long attrs)
833 {
834 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
835 }
836 
837 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
838 		 void *cpu_addr, dma_addr_t handle, size_t size,
839 		 unsigned long attrs)
840 {
841 	unsigned long pfn = dma_to_pfn(dev, handle);
842 	struct page *page;
843 	int ret;
844 
845 	/* If the PFN is not valid, we do not have a struct page */
846 	if (!pfn_valid(pfn))
847 		return -ENXIO;
848 
849 	page = pfn_to_page(pfn);
850 
851 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
852 	if (unlikely(ret))
853 		return ret;
854 
855 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
856 	return 0;
857 }
858 
859 static void dma_cache_maint_page(struct page *page, unsigned long offset,
860 	size_t size, enum dma_data_direction dir,
861 	void (*op)(const void *, size_t, int))
862 {
863 	unsigned long pfn;
864 	size_t left = size;
865 
866 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
867 	offset %= PAGE_SIZE;
868 
869 	/*
870 	 * A single sg entry may refer to multiple physically contiguous
871 	 * pages.  But we still need to process highmem pages individually.
872 	 * If highmem is not configured then the bulk of this loop gets
873 	 * optimized out.
874 	 */
875 	do {
876 		size_t len = left;
877 		void *vaddr;
878 
879 		page = pfn_to_page(pfn);
880 
881 		if (PageHighMem(page)) {
882 			if (len + offset > PAGE_SIZE)
883 				len = PAGE_SIZE - offset;
884 
885 			if (cache_is_vipt_nonaliasing()) {
886 				vaddr = kmap_atomic(page);
887 				op(vaddr + offset, len, dir);
888 				kunmap_atomic(vaddr);
889 			} else {
890 				vaddr = kmap_high_get(page);
891 				if (vaddr) {
892 					op(vaddr + offset, len, dir);
893 					kunmap_high(page);
894 				}
895 			}
896 		} else {
897 			vaddr = page_address(page) + offset;
898 			op(vaddr, len, dir);
899 		}
900 		offset = 0;
901 		pfn++;
902 		left -= len;
903 	} while (left);
904 }
905 
906 /*
907  * Make an area consistent for devices.
908  * Note: Drivers should NOT use this function directly, as it will break
909  * platforms with CONFIG_DMABOUNCE.
910  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
911  */
912 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
913 	size_t size, enum dma_data_direction dir)
914 {
915 	phys_addr_t paddr;
916 
917 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
918 
919 	paddr = page_to_phys(page) + off;
920 	if (dir == DMA_FROM_DEVICE) {
921 		outer_inv_range(paddr, paddr + size);
922 	} else {
923 		outer_clean_range(paddr, paddr + size);
924 	}
925 	/* FIXME: non-speculating: flush on bidirectional mappings? */
926 }
927 
928 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
929 	size_t size, enum dma_data_direction dir)
930 {
931 	phys_addr_t paddr = page_to_phys(page) + off;
932 
933 	/* FIXME: non-speculating: not required */
934 	/* in any case, don't bother invalidating if DMA to device */
935 	if (dir != DMA_TO_DEVICE) {
936 		outer_inv_range(paddr, paddr + size);
937 
938 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
939 	}
940 
941 	/*
942 	 * Mark the D-cache clean for these pages to avoid extra flushing.
943 	 */
944 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
945 		unsigned long pfn;
946 		size_t left = size;
947 
948 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
949 		off %= PAGE_SIZE;
950 		if (off) {
951 			pfn++;
952 			left -= PAGE_SIZE - off;
953 		}
954 		while (left >= PAGE_SIZE) {
955 			page = pfn_to_page(pfn++);
956 			set_bit(PG_dcache_clean, &page->flags);
957 			left -= PAGE_SIZE;
958 		}
959 	}
960 }
961 
962 /**
963  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
964  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
965  * @sg: list of buffers
966  * @nents: number of buffers to map
967  * @dir: DMA transfer direction
968  *
969  * Map a set of buffers described by scatterlist in streaming mode for DMA.
970  * This is the scatter-gather version of the dma_map_single interface.
971  * Here the scatter gather list elements are each tagged with the
972  * appropriate dma address and length.  They are obtained via
973  * sg_dma_{address,length}.
974  *
975  * Device ownership issues as mentioned for dma_map_single are the same
976  * here.
977  */
978 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
979 		enum dma_data_direction dir, unsigned long attrs)
980 {
981 	const struct dma_map_ops *ops = get_dma_ops(dev);
982 	struct scatterlist *s;
983 	int i, j, ret;
984 
985 	for_each_sg(sg, s, nents, i) {
986 #ifdef CONFIG_NEED_SG_DMA_LENGTH
987 		s->dma_length = s->length;
988 #endif
989 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
990 						s->length, dir, attrs);
991 		if (dma_mapping_error(dev, s->dma_address)) {
992 			ret = -EIO;
993 			goto bad_mapping;
994 		}
995 	}
996 	return nents;
997 
998  bad_mapping:
999 	for_each_sg(sg, s, i, j)
1000 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1001 	return ret;
1002 }
1003 
1004 /**
1005  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1006  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1007  * @sg: list of buffers
1008  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1009  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1010  *
1011  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1012  * rules concerning calls here are the same as for dma_unmap_single().
1013  */
1014 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1015 		enum dma_data_direction dir, unsigned long attrs)
1016 {
1017 	const struct dma_map_ops *ops = get_dma_ops(dev);
1018 	struct scatterlist *s;
1019 
1020 	int i;
1021 
1022 	for_each_sg(sg, s, nents, i)
1023 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1024 }
1025 
1026 /**
1027  * arm_dma_sync_sg_for_cpu
1028  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1029  * @sg: list of buffers
1030  * @nents: number of buffers to map (returned from dma_map_sg)
1031  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1032  */
1033 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1034 			int nents, enum dma_data_direction dir)
1035 {
1036 	const struct dma_map_ops *ops = get_dma_ops(dev);
1037 	struct scatterlist *s;
1038 	int i;
1039 
1040 	for_each_sg(sg, s, nents, i)
1041 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1042 					 dir);
1043 }
1044 
1045 /**
1046  * arm_dma_sync_sg_for_device
1047  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1048  * @sg: list of buffers
1049  * @nents: number of buffers to map (returned from dma_map_sg)
1050  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1051  */
1052 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1053 			int nents, enum dma_data_direction dir)
1054 {
1055 	const struct dma_map_ops *ops = get_dma_ops(dev);
1056 	struct scatterlist *s;
1057 	int i;
1058 
1059 	for_each_sg(sg, s, nents, i)
1060 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1061 					    dir);
1062 }
1063 
1064 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1065 {
1066 	/*
1067 	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1068 	 * 32-bits, which then can't be addressed by devices that only support
1069 	 * 32-bit DMA.
1070 	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1071 	 * handles bounce buffering for us.
1072 	 */
1073 	if (IS_ENABLED(CONFIG_ARM_LPAE))
1074 		return NULL;
1075 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1076 }
1077 
1078 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1079 
1080 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1081 {
1082 	int prot = 0;
1083 
1084 	if (attrs & DMA_ATTR_PRIVILEGED)
1085 		prot |= IOMMU_PRIV;
1086 
1087 	switch (dir) {
1088 	case DMA_BIDIRECTIONAL:
1089 		return prot | IOMMU_READ | IOMMU_WRITE;
1090 	case DMA_TO_DEVICE:
1091 		return prot | IOMMU_READ;
1092 	case DMA_FROM_DEVICE:
1093 		return prot | IOMMU_WRITE;
1094 	default:
1095 		return prot;
1096 	}
1097 }
1098 
1099 /* IOMMU */
1100 
1101 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1102 
1103 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1104 				      size_t size)
1105 {
1106 	unsigned int order = get_order(size);
1107 	unsigned int align = 0;
1108 	unsigned int count, start;
1109 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1110 	unsigned long flags;
1111 	dma_addr_t iova;
1112 	int i;
1113 
1114 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1115 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1116 
1117 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1118 	align = (1 << order) - 1;
1119 
1120 	spin_lock_irqsave(&mapping->lock, flags);
1121 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1122 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1123 				mapping->bits, 0, count, align);
1124 
1125 		if (start > mapping->bits)
1126 			continue;
1127 
1128 		bitmap_set(mapping->bitmaps[i], start, count);
1129 		break;
1130 	}
1131 
1132 	/*
1133 	 * No unused range found. Try to extend the existing mapping
1134 	 * and perform a second attempt to reserve an IO virtual
1135 	 * address range of size bytes.
1136 	 */
1137 	if (i == mapping->nr_bitmaps) {
1138 		if (extend_iommu_mapping(mapping)) {
1139 			spin_unlock_irqrestore(&mapping->lock, flags);
1140 			return DMA_MAPPING_ERROR;
1141 		}
1142 
1143 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1144 				mapping->bits, 0, count, align);
1145 
1146 		if (start > mapping->bits) {
1147 			spin_unlock_irqrestore(&mapping->lock, flags);
1148 			return DMA_MAPPING_ERROR;
1149 		}
1150 
1151 		bitmap_set(mapping->bitmaps[i], start, count);
1152 	}
1153 	spin_unlock_irqrestore(&mapping->lock, flags);
1154 
1155 	iova = mapping->base + (mapping_size * i);
1156 	iova += start << PAGE_SHIFT;
1157 
1158 	return iova;
1159 }
1160 
1161 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1162 			       dma_addr_t addr, size_t size)
1163 {
1164 	unsigned int start, count;
1165 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1166 	unsigned long flags;
1167 	dma_addr_t bitmap_base;
1168 	u32 bitmap_index;
1169 
1170 	if (!size)
1171 		return;
1172 
1173 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1174 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1175 
1176 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1177 
1178 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1179 
1180 	if (addr + size > bitmap_base + mapping_size) {
1181 		/*
1182 		 * The address range to be freed reaches into the iova
1183 		 * range of the next bitmap. This should not happen as
1184 		 * we don't allow this in __alloc_iova (at the
1185 		 * moment).
1186 		 */
1187 		BUG();
1188 	} else
1189 		count = size >> PAGE_SHIFT;
1190 
1191 	spin_lock_irqsave(&mapping->lock, flags);
1192 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1193 	spin_unlock_irqrestore(&mapping->lock, flags);
1194 }
1195 
1196 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1197 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1198 
1199 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1200 					  gfp_t gfp, unsigned long attrs,
1201 					  int coherent_flag)
1202 {
1203 	struct page **pages;
1204 	int count = size >> PAGE_SHIFT;
1205 	int array_size = count * sizeof(struct page *);
1206 	int i = 0;
1207 	int order_idx = 0;
1208 
1209 	if (array_size <= PAGE_SIZE)
1210 		pages = kzalloc(array_size, GFP_KERNEL);
1211 	else
1212 		pages = vzalloc(array_size);
1213 	if (!pages)
1214 		return NULL;
1215 
1216 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1217 	{
1218 		unsigned long order = get_order(size);
1219 		struct page *page;
1220 
1221 		page = dma_alloc_from_contiguous(dev, count, order,
1222 						 gfp & __GFP_NOWARN);
1223 		if (!page)
1224 			goto error;
1225 
1226 		__dma_clear_buffer(page, size, coherent_flag);
1227 
1228 		for (i = 0; i < count; i++)
1229 			pages[i] = page + i;
1230 
1231 		return pages;
1232 	}
1233 
1234 	/* Go straight to 4K chunks if caller says it's OK. */
1235 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1236 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1237 
1238 	/*
1239 	 * IOMMU can map any pages, so himem can also be used here
1240 	 */
1241 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1242 
1243 	while (count) {
1244 		int j, order;
1245 
1246 		order = iommu_order_array[order_idx];
1247 
1248 		/* Drop down when we get small */
1249 		if (__fls(count) < order) {
1250 			order_idx++;
1251 			continue;
1252 		}
1253 
1254 		if (order) {
1255 			/* See if it's easy to allocate a high-order chunk */
1256 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1257 
1258 			/* Go down a notch at first sign of pressure */
1259 			if (!pages[i]) {
1260 				order_idx++;
1261 				continue;
1262 			}
1263 		} else {
1264 			pages[i] = alloc_pages(gfp, 0);
1265 			if (!pages[i])
1266 				goto error;
1267 		}
1268 
1269 		if (order) {
1270 			split_page(pages[i], order);
1271 			j = 1 << order;
1272 			while (--j)
1273 				pages[i + j] = pages[i] + j;
1274 		}
1275 
1276 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1277 		i += 1 << order;
1278 		count -= 1 << order;
1279 	}
1280 
1281 	return pages;
1282 error:
1283 	while (i--)
1284 		if (pages[i])
1285 			__free_pages(pages[i], 0);
1286 	kvfree(pages);
1287 	return NULL;
1288 }
1289 
1290 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1291 			       size_t size, unsigned long attrs)
1292 {
1293 	int count = size >> PAGE_SHIFT;
1294 	int i;
1295 
1296 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1297 		dma_release_from_contiguous(dev, pages[0], count);
1298 	} else {
1299 		for (i = 0; i < count; i++)
1300 			if (pages[i])
1301 				__free_pages(pages[i], 0);
1302 	}
1303 
1304 	kvfree(pages);
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Create a mapping in device IO address space for specified pages
1310  */
1311 static dma_addr_t
1312 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1313 		       unsigned long attrs)
1314 {
1315 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1316 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1317 	dma_addr_t dma_addr, iova;
1318 	int i;
1319 
1320 	dma_addr = __alloc_iova(mapping, size);
1321 	if (dma_addr == DMA_MAPPING_ERROR)
1322 		return dma_addr;
1323 
1324 	iova = dma_addr;
1325 	for (i = 0; i < count; ) {
1326 		int ret;
1327 
1328 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1329 		phys_addr_t phys = page_to_phys(pages[i]);
1330 		unsigned int len, j;
1331 
1332 		for (j = i + 1; j < count; j++, next_pfn++)
1333 			if (page_to_pfn(pages[j]) != next_pfn)
1334 				break;
1335 
1336 		len = (j - i) << PAGE_SHIFT;
1337 		ret = iommu_map(mapping->domain, iova, phys, len,
1338 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1339 		if (ret < 0)
1340 			goto fail;
1341 		iova += len;
1342 		i = j;
1343 	}
1344 	return dma_addr;
1345 fail:
1346 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1347 	__free_iova(mapping, dma_addr, size);
1348 	return DMA_MAPPING_ERROR;
1349 }
1350 
1351 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1352 {
1353 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1354 
1355 	/*
1356 	 * add optional in-page offset from iova to size and align
1357 	 * result to page size
1358 	 */
1359 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1360 	iova &= PAGE_MASK;
1361 
1362 	iommu_unmap(mapping->domain, iova, size);
1363 	__free_iova(mapping, iova, size);
1364 	return 0;
1365 }
1366 
1367 static struct page **__atomic_get_pages(void *addr)
1368 {
1369 	struct page *page;
1370 	phys_addr_t phys;
1371 
1372 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1373 	page = phys_to_page(phys);
1374 
1375 	return (struct page **)page;
1376 }
1377 
1378 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1379 {
1380 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1381 		return __atomic_get_pages(cpu_addr);
1382 
1383 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1384 		return cpu_addr;
1385 
1386 	return dma_common_find_pages(cpu_addr);
1387 }
1388 
1389 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1390 				  dma_addr_t *handle, int coherent_flag,
1391 				  unsigned long attrs)
1392 {
1393 	struct page *page;
1394 	void *addr;
1395 
1396 	if (coherent_flag  == COHERENT)
1397 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1398 	else
1399 		addr = __alloc_from_pool(size, &page);
1400 	if (!addr)
1401 		return NULL;
1402 
1403 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1404 	if (*handle == DMA_MAPPING_ERROR)
1405 		goto err_mapping;
1406 
1407 	return addr;
1408 
1409 err_mapping:
1410 	__free_from_pool(addr, size);
1411 	return NULL;
1412 }
1413 
1414 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1415 			dma_addr_t handle, size_t size, int coherent_flag)
1416 {
1417 	__iommu_remove_mapping(dev, handle, size);
1418 	if (coherent_flag == COHERENT)
1419 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1420 	else
1421 		__free_from_pool(cpu_addr, size);
1422 }
1423 
1424 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1425 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1426 	    int coherent_flag)
1427 {
1428 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1429 	struct page **pages;
1430 	void *addr = NULL;
1431 
1432 	*handle = DMA_MAPPING_ERROR;
1433 	size = PAGE_ALIGN(size);
1434 
1435 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1436 		return __iommu_alloc_simple(dev, size, gfp, handle,
1437 					    coherent_flag, attrs);
1438 
1439 	/*
1440 	 * Following is a work-around (a.k.a. hack) to prevent pages
1441 	 * with __GFP_COMP being passed to split_page() which cannot
1442 	 * handle them.  The real problem is that this flag probably
1443 	 * should be 0 on ARM as it is not supported on this
1444 	 * platform; see CONFIG_HUGETLBFS.
1445 	 */
1446 	gfp &= ~(__GFP_COMP);
1447 
1448 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1449 	if (!pages)
1450 		return NULL;
1451 
1452 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1453 	if (*handle == DMA_MAPPING_ERROR)
1454 		goto err_buffer;
1455 
1456 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1457 		return pages;
1458 
1459 	addr = dma_common_pages_remap(pages, size, prot,
1460 				   __builtin_return_address(0));
1461 	if (!addr)
1462 		goto err_mapping;
1463 
1464 	return addr;
1465 
1466 err_mapping:
1467 	__iommu_remove_mapping(dev, *handle, size);
1468 err_buffer:
1469 	__iommu_free_buffer(dev, pages, size, attrs);
1470 	return NULL;
1471 }
1472 
1473 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1474 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1475 {
1476 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1477 }
1478 
1479 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1480 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1481 {
1482 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1483 }
1484 
1485 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1486 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1487 		    unsigned long attrs)
1488 {
1489 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1490 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1491 	int err;
1492 
1493 	if (!pages)
1494 		return -ENXIO;
1495 
1496 	if (vma->vm_pgoff >= nr_pages)
1497 		return -ENXIO;
1498 
1499 	err = vm_map_pages(vma, pages, nr_pages);
1500 	if (err)
1501 		pr_err("Remapping memory failed: %d\n", err);
1502 
1503 	return err;
1504 }
1505 static int arm_iommu_mmap_attrs(struct device *dev,
1506 		struct vm_area_struct *vma, void *cpu_addr,
1507 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1508 {
1509 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1510 
1511 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1512 }
1513 
1514 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1515 		struct vm_area_struct *vma, void *cpu_addr,
1516 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1517 {
1518 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1519 }
1520 
1521 /*
1522  * free a page as defined by the above mapping.
1523  * Must not be called with IRQs disabled.
1524  */
1525 static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1526 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1527 {
1528 	struct page **pages;
1529 	size = PAGE_ALIGN(size);
1530 
1531 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1532 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1533 		return;
1534 	}
1535 
1536 	pages = __iommu_get_pages(cpu_addr, attrs);
1537 	if (!pages) {
1538 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1539 		return;
1540 	}
1541 
1542 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1543 		dma_common_free_remap(cpu_addr, size);
1544 
1545 	__iommu_remove_mapping(dev, handle, size);
1546 	__iommu_free_buffer(dev, pages, size, attrs);
1547 }
1548 
1549 static void arm_iommu_free_attrs(struct device *dev, size_t size,
1550 				 void *cpu_addr, dma_addr_t handle,
1551 				 unsigned long attrs)
1552 {
1553 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1554 }
1555 
1556 static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1557 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1558 {
1559 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1560 }
1561 
1562 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1563 				 void *cpu_addr, dma_addr_t dma_addr,
1564 				 size_t size, unsigned long attrs)
1565 {
1566 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1567 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1568 
1569 	if (!pages)
1570 		return -ENXIO;
1571 
1572 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1573 					 GFP_KERNEL);
1574 }
1575 
1576 /*
1577  * Map a part of the scatter-gather list into contiguous io address space
1578  */
1579 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1580 			  size_t size, dma_addr_t *handle,
1581 			  enum dma_data_direction dir, unsigned long attrs,
1582 			  bool is_coherent)
1583 {
1584 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1585 	dma_addr_t iova, iova_base;
1586 	int ret = 0;
1587 	unsigned int count;
1588 	struct scatterlist *s;
1589 	int prot;
1590 
1591 	size = PAGE_ALIGN(size);
1592 	*handle = DMA_MAPPING_ERROR;
1593 
1594 	iova_base = iova = __alloc_iova(mapping, size);
1595 	if (iova == DMA_MAPPING_ERROR)
1596 		return -ENOMEM;
1597 
1598 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1599 		phys_addr_t phys = page_to_phys(sg_page(s));
1600 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1601 
1602 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1603 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1604 
1605 		prot = __dma_info_to_prot(dir, attrs);
1606 
1607 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1608 		if (ret < 0)
1609 			goto fail;
1610 		count += len >> PAGE_SHIFT;
1611 		iova += len;
1612 	}
1613 	*handle = iova_base;
1614 
1615 	return 0;
1616 fail:
1617 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1618 	__free_iova(mapping, iova_base, size);
1619 	return ret;
1620 }
1621 
1622 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1623 		     enum dma_data_direction dir, unsigned long attrs,
1624 		     bool is_coherent)
1625 {
1626 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1627 	int i, count = 0, ret;
1628 	unsigned int offset = s->offset;
1629 	unsigned int size = s->offset + s->length;
1630 	unsigned int max = dma_get_max_seg_size(dev);
1631 
1632 	for (i = 1; i < nents; i++) {
1633 		s = sg_next(s);
1634 
1635 		s->dma_length = 0;
1636 
1637 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1638 			ret = __map_sg_chunk(dev, start, size,
1639 					     &dma->dma_address, dir, attrs,
1640 					     is_coherent);
1641 			if (ret < 0)
1642 				goto bad_mapping;
1643 
1644 			dma->dma_address += offset;
1645 			dma->dma_length = size - offset;
1646 
1647 			size = offset = s->offset;
1648 			start = s;
1649 			dma = sg_next(dma);
1650 			count += 1;
1651 		}
1652 		size += s->length;
1653 	}
1654 	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1655 			     is_coherent);
1656 	if (ret < 0)
1657 		goto bad_mapping;
1658 
1659 	dma->dma_address += offset;
1660 	dma->dma_length = size - offset;
1661 
1662 	return count+1;
1663 
1664 bad_mapping:
1665 	for_each_sg(sg, s, count, i)
1666 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1667 	if (ret == -ENOMEM)
1668 		return ret;
1669 	return -EINVAL;
1670 }
1671 
1672 /**
1673  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1674  * @dev: valid struct device pointer
1675  * @sg: list of buffers
1676  * @nents: number of buffers to map
1677  * @dir: DMA transfer direction
1678  *
1679  * Map a set of i/o coherent buffers described by scatterlist in streaming
1680  * mode for DMA. The scatter gather list elements are merged together (if
1681  * possible) and tagged with the appropriate dma address and length. They are
1682  * obtained via sg_dma_{address,length}.
1683  */
1684 static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1685 		int nents, enum dma_data_direction dir, unsigned long attrs)
1686 {
1687 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1688 }
1689 
1690 /**
1691  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1692  * @dev: valid struct device pointer
1693  * @sg: list of buffers
1694  * @nents: number of buffers to map
1695  * @dir: DMA transfer direction
1696  *
1697  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1698  * The scatter gather list elements are merged together (if possible) and
1699  * tagged with the appropriate dma address and length. They are obtained via
1700  * sg_dma_{address,length}.
1701  */
1702 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1703 		int nents, enum dma_data_direction dir, unsigned long attrs)
1704 {
1705 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1706 }
1707 
1708 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1709 		int nents, enum dma_data_direction dir,
1710 		unsigned long attrs, bool is_coherent)
1711 {
1712 	struct scatterlist *s;
1713 	int i;
1714 
1715 	for_each_sg(sg, s, nents, i) {
1716 		if (sg_dma_len(s))
1717 			__iommu_remove_mapping(dev, sg_dma_address(s),
1718 					       sg_dma_len(s));
1719 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1720 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1721 					      s->length, dir);
1722 	}
1723 }
1724 
1725 /**
1726  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1727  * @dev: valid struct device pointer
1728  * @sg: list of buffers
1729  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1730  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1731  *
1732  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1733  * rules concerning calls here are the same as for dma_unmap_single().
1734  */
1735 static void arm_coherent_iommu_unmap_sg(struct device *dev,
1736 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
1737 		unsigned long attrs)
1738 {
1739 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1740 }
1741 
1742 /**
1743  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1744  * @dev: valid struct device pointer
1745  * @sg: list of buffers
1746  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1747  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1748  *
1749  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1750  * rules concerning calls here are the same as for dma_unmap_single().
1751  */
1752 static void arm_iommu_unmap_sg(struct device *dev,
1753 			       struct scatterlist *sg, int nents,
1754 			       enum dma_data_direction dir,
1755 			       unsigned long attrs)
1756 {
1757 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1758 }
1759 
1760 /**
1761  * arm_iommu_sync_sg_for_cpu
1762  * @dev: valid struct device pointer
1763  * @sg: list of buffers
1764  * @nents: number of buffers to map (returned from dma_map_sg)
1765  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1766  */
1767 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1768 			struct scatterlist *sg,
1769 			int nents, enum dma_data_direction dir)
1770 {
1771 	struct scatterlist *s;
1772 	int i;
1773 
1774 	for_each_sg(sg, s, nents, i)
1775 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1776 
1777 }
1778 
1779 /**
1780  * arm_iommu_sync_sg_for_device
1781  * @dev: valid struct device pointer
1782  * @sg: list of buffers
1783  * @nents: number of buffers to map (returned from dma_map_sg)
1784  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1785  */
1786 static void arm_iommu_sync_sg_for_device(struct device *dev,
1787 			struct scatterlist *sg,
1788 			int nents, enum dma_data_direction dir)
1789 {
1790 	struct scatterlist *s;
1791 	int i;
1792 
1793 	for_each_sg(sg, s, nents, i)
1794 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1795 }
1796 
1797 
1798 /**
1799  * arm_coherent_iommu_map_page
1800  * @dev: valid struct device pointer
1801  * @page: page that buffer resides in
1802  * @offset: offset into page for start of buffer
1803  * @size: size of buffer to map
1804  * @dir: DMA transfer direction
1805  *
1806  * Coherent IOMMU aware version of arm_dma_map_page()
1807  */
1808 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1809 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1810 	     unsigned long attrs)
1811 {
1812 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1813 	dma_addr_t dma_addr;
1814 	int ret, prot, len = PAGE_ALIGN(size + offset);
1815 
1816 	dma_addr = __alloc_iova(mapping, len);
1817 	if (dma_addr == DMA_MAPPING_ERROR)
1818 		return dma_addr;
1819 
1820 	prot = __dma_info_to_prot(dir, attrs);
1821 
1822 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1823 	if (ret < 0)
1824 		goto fail;
1825 
1826 	return dma_addr + offset;
1827 fail:
1828 	__free_iova(mapping, dma_addr, len);
1829 	return DMA_MAPPING_ERROR;
1830 }
1831 
1832 /**
1833  * arm_iommu_map_page
1834  * @dev: valid struct device pointer
1835  * @page: page that buffer resides in
1836  * @offset: offset into page for start of buffer
1837  * @size: size of buffer to map
1838  * @dir: DMA transfer direction
1839  *
1840  * IOMMU aware version of arm_dma_map_page()
1841  */
1842 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1843 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1844 	     unsigned long attrs)
1845 {
1846 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1847 		__dma_page_cpu_to_dev(page, offset, size, dir);
1848 
1849 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1850 }
1851 
1852 /**
1853  * arm_coherent_iommu_unmap_page
1854  * @dev: valid struct device pointer
1855  * @handle: DMA address of buffer
1856  * @size: size of buffer (same as passed to dma_map_page)
1857  * @dir: DMA transfer direction (same as passed to dma_map_page)
1858  *
1859  * Coherent IOMMU aware version of arm_dma_unmap_page()
1860  */
1861 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1862 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1863 {
1864 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1865 	dma_addr_t iova = handle & PAGE_MASK;
1866 	int offset = handle & ~PAGE_MASK;
1867 	int len = PAGE_ALIGN(size + offset);
1868 
1869 	if (!iova)
1870 		return;
1871 
1872 	iommu_unmap(mapping->domain, iova, len);
1873 	__free_iova(mapping, iova, len);
1874 }
1875 
1876 /**
1877  * arm_iommu_unmap_page
1878  * @dev: valid struct device pointer
1879  * @handle: DMA address of buffer
1880  * @size: size of buffer (same as passed to dma_map_page)
1881  * @dir: DMA transfer direction (same as passed to dma_map_page)
1882  *
1883  * IOMMU aware version of arm_dma_unmap_page()
1884  */
1885 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1886 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1887 {
1888 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1889 	dma_addr_t iova = handle & PAGE_MASK;
1890 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1891 	int offset = handle & ~PAGE_MASK;
1892 	int len = PAGE_ALIGN(size + offset);
1893 
1894 	if (!iova)
1895 		return;
1896 
1897 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1898 		__dma_page_dev_to_cpu(page, offset, size, dir);
1899 
1900 	iommu_unmap(mapping->domain, iova, len);
1901 	__free_iova(mapping, iova, len);
1902 }
1903 
1904 /**
1905  * arm_iommu_map_resource - map a device resource for DMA
1906  * @dev: valid struct device pointer
1907  * @phys_addr: physical address of resource
1908  * @size: size of resource to map
1909  * @dir: DMA transfer direction
1910  */
1911 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1912 		phys_addr_t phys_addr, size_t size,
1913 		enum dma_data_direction dir, unsigned long attrs)
1914 {
1915 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1916 	dma_addr_t dma_addr;
1917 	int ret, prot;
1918 	phys_addr_t addr = phys_addr & PAGE_MASK;
1919 	unsigned int offset = phys_addr & ~PAGE_MASK;
1920 	size_t len = PAGE_ALIGN(size + offset);
1921 
1922 	dma_addr = __alloc_iova(mapping, len);
1923 	if (dma_addr == DMA_MAPPING_ERROR)
1924 		return dma_addr;
1925 
1926 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1927 
1928 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1929 	if (ret < 0)
1930 		goto fail;
1931 
1932 	return dma_addr + offset;
1933 fail:
1934 	__free_iova(mapping, dma_addr, len);
1935 	return DMA_MAPPING_ERROR;
1936 }
1937 
1938 /**
1939  * arm_iommu_unmap_resource - unmap a device DMA resource
1940  * @dev: valid struct device pointer
1941  * @dma_handle: DMA address to resource
1942  * @size: size of resource to map
1943  * @dir: DMA transfer direction
1944  */
1945 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1946 		size_t size, enum dma_data_direction dir,
1947 		unsigned long attrs)
1948 {
1949 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1950 	dma_addr_t iova = dma_handle & PAGE_MASK;
1951 	unsigned int offset = dma_handle & ~PAGE_MASK;
1952 	size_t len = PAGE_ALIGN(size + offset);
1953 
1954 	if (!iova)
1955 		return;
1956 
1957 	iommu_unmap(mapping->domain, iova, len);
1958 	__free_iova(mapping, iova, len);
1959 }
1960 
1961 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1962 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1963 {
1964 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1965 	dma_addr_t iova = handle & PAGE_MASK;
1966 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1967 	unsigned int offset = handle & ~PAGE_MASK;
1968 
1969 	if (!iova)
1970 		return;
1971 
1972 	__dma_page_dev_to_cpu(page, offset, size, dir);
1973 }
1974 
1975 static void arm_iommu_sync_single_for_device(struct device *dev,
1976 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1977 {
1978 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979 	dma_addr_t iova = handle & PAGE_MASK;
1980 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1981 	unsigned int offset = handle & ~PAGE_MASK;
1982 
1983 	if (!iova)
1984 		return;
1985 
1986 	__dma_page_cpu_to_dev(page, offset, size, dir);
1987 }
1988 
1989 static const struct dma_map_ops iommu_ops = {
1990 	.alloc		= arm_iommu_alloc_attrs,
1991 	.free		= arm_iommu_free_attrs,
1992 	.mmap		= arm_iommu_mmap_attrs,
1993 	.get_sgtable	= arm_iommu_get_sgtable,
1994 
1995 	.map_page		= arm_iommu_map_page,
1996 	.unmap_page		= arm_iommu_unmap_page,
1997 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1998 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1999 
2000 	.map_sg			= arm_iommu_map_sg,
2001 	.unmap_sg		= arm_iommu_unmap_sg,
2002 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2003 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2004 
2005 	.map_resource		= arm_iommu_map_resource,
2006 	.unmap_resource		= arm_iommu_unmap_resource,
2007 
2008 	.dma_supported		= arm_dma_supported,
2009 };
2010 
2011 static const struct dma_map_ops iommu_coherent_ops = {
2012 	.alloc		= arm_coherent_iommu_alloc_attrs,
2013 	.free		= arm_coherent_iommu_free_attrs,
2014 	.mmap		= arm_coherent_iommu_mmap_attrs,
2015 	.get_sgtable	= arm_iommu_get_sgtable,
2016 
2017 	.map_page	= arm_coherent_iommu_map_page,
2018 	.unmap_page	= arm_coherent_iommu_unmap_page,
2019 
2020 	.map_sg		= arm_coherent_iommu_map_sg,
2021 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2022 
2023 	.map_resource	= arm_iommu_map_resource,
2024 	.unmap_resource	= arm_iommu_unmap_resource,
2025 
2026 	.dma_supported		= arm_dma_supported,
2027 };
2028 
2029 /**
2030  * arm_iommu_create_mapping
2031  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2032  * @base: start address of the valid IO address space
2033  * @size: maximum size of the valid IO address space
2034  *
2035  * Creates a mapping structure which holds information about used/unused
2036  * IO address ranges, which is required to perform memory allocation and
2037  * mapping with IOMMU aware functions.
2038  *
2039  * The client device need to be attached to the mapping with
2040  * arm_iommu_attach_device function.
2041  */
2042 struct dma_iommu_mapping *
2043 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2044 {
2045 	unsigned int bits = size >> PAGE_SHIFT;
2046 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2047 	struct dma_iommu_mapping *mapping;
2048 	int extensions = 1;
2049 	int err = -ENOMEM;
2050 
2051 	/* currently only 32-bit DMA address space is supported */
2052 	if (size > DMA_BIT_MASK(32) + 1)
2053 		return ERR_PTR(-ERANGE);
2054 
2055 	if (!bitmap_size)
2056 		return ERR_PTR(-EINVAL);
2057 
2058 	if (bitmap_size > PAGE_SIZE) {
2059 		extensions = bitmap_size / PAGE_SIZE;
2060 		bitmap_size = PAGE_SIZE;
2061 	}
2062 
2063 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2064 	if (!mapping)
2065 		goto err;
2066 
2067 	mapping->bitmap_size = bitmap_size;
2068 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2069 				   GFP_KERNEL);
2070 	if (!mapping->bitmaps)
2071 		goto err2;
2072 
2073 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2074 	if (!mapping->bitmaps[0])
2075 		goto err3;
2076 
2077 	mapping->nr_bitmaps = 1;
2078 	mapping->extensions = extensions;
2079 	mapping->base = base;
2080 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2081 
2082 	spin_lock_init(&mapping->lock);
2083 
2084 	mapping->domain = iommu_domain_alloc(bus);
2085 	if (!mapping->domain)
2086 		goto err4;
2087 
2088 	kref_init(&mapping->kref);
2089 	return mapping;
2090 err4:
2091 	kfree(mapping->bitmaps[0]);
2092 err3:
2093 	kfree(mapping->bitmaps);
2094 err2:
2095 	kfree(mapping);
2096 err:
2097 	return ERR_PTR(err);
2098 }
2099 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2100 
2101 static void release_iommu_mapping(struct kref *kref)
2102 {
2103 	int i;
2104 	struct dma_iommu_mapping *mapping =
2105 		container_of(kref, struct dma_iommu_mapping, kref);
2106 
2107 	iommu_domain_free(mapping->domain);
2108 	for (i = 0; i < mapping->nr_bitmaps; i++)
2109 		kfree(mapping->bitmaps[i]);
2110 	kfree(mapping->bitmaps);
2111 	kfree(mapping);
2112 }
2113 
2114 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2115 {
2116 	int next_bitmap;
2117 
2118 	if (mapping->nr_bitmaps >= mapping->extensions)
2119 		return -EINVAL;
2120 
2121 	next_bitmap = mapping->nr_bitmaps;
2122 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2123 						GFP_ATOMIC);
2124 	if (!mapping->bitmaps[next_bitmap])
2125 		return -ENOMEM;
2126 
2127 	mapping->nr_bitmaps++;
2128 
2129 	return 0;
2130 }
2131 
2132 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2133 {
2134 	if (mapping)
2135 		kref_put(&mapping->kref, release_iommu_mapping);
2136 }
2137 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2138 
2139 static int __arm_iommu_attach_device(struct device *dev,
2140 				     struct dma_iommu_mapping *mapping)
2141 {
2142 	int err;
2143 
2144 	err = iommu_attach_device(mapping->domain, dev);
2145 	if (err)
2146 		return err;
2147 
2148 	kref_get(&mapping->kref);
2149 	to_dma_iommu_mapping(dev) = mapping;
2150 
2151 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2152 	return 0;
2153 }
2154 
2155 /**
2156  * arm_iommu_attach_device
2157  * @dev: valid struct device pointer
2158  * @mapping: io address space mapping structure (returned from
2159  *	arm_iommu_create_mapping)
2160  *
2161  * Attaches specified io address space mapping to the provided device.
2162  * This replaces the dma operations (dma_map_ops pointer) with the
2163  * IOMMU aware version.
2164  *
2165  * More than one client might be attached to the same io address space
2166  * mapping.
2167  */
2168 int arm_iommu_attach_device(struct device *dev,
2169 			    struct dma_iommu_mapping *mapping)
2170 {
2171 	int err;
2172 
2173 	err = __arm_iommu_attach_device(dev, mapping);
2174 	if (err)
2175 		return err;
2176 
2177 	set_dma_ops(dev, &iommu_ops);
2178 	return 0;
2179 }
2180 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2181 
2182 /**
2183  * arm_iommu_detach_device
2184  * @dev: valid struct device pointer
2185  *
2186  * Detaches the provided device from a previously attached map.
2187  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2188  */
2189 void arm_iommu_detach_device(struct device *dev)
2190 {
2191 	struct dma_iommu_mapping *mapping;
2192 
2193 	mapping = to_dma_iommu_mapping(dev);
2194 	if (!mapping) {
2195 		dev_warn(dev, "Not attached\n");
2196 		return;
2197 	}
2198 
2199 	iommu_detach_device(mapping->domain, dev);
2200 	kref_put(&mapping->kref, release_iommu_mapping);
2201 	to_dma_iommu_mapping(dev) = NULL;
2202 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2203 
2204 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2205 }
2206 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2207 
2208 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2209 {
2210 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2211 }
2212 
2213 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2214 				    const struct iommu_ops *iommu)
2215 {
2216 	struct dma_iommu_mapping *mapping;
2217 
2218 	if (!iommu)
2219 		return false;
2220 
2221 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2222 	if (IS_ERR(mapping)) {
2223 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2224 				size, dev_name(dev));
2225 		return false;
2226 	}
2227 
2228 	if (__arm_iommu_attach_device(dev, mapping)) {
2229 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2230 				dev_name(dev));
2231 		arm_iommu_release_mapping(mapping);
2232 		return false;
2233 	}
2234 
2235 	return true;
2236 }
2237 
2238 static void arm_teardown_iommu_dma_ops(struct device *dev)
2239 {
2240 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2241 
2242 	if (!mapping)
2243 		return;
2244 
2245 	arm_iommu_detach_device(dev);
2246 	arm_iommu_release_mapping(mapping);
2247 }
2248 
2249 #else
2250 
2251 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2252 				    const struct iommu_ops *iommu)
2253 {
2254 	return false;
2255 }
2256 
2257 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2258 
2259 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2260 
2261 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2262 
2263 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2264 			const struct iommu_ops *iommu, bool coherent)
2265 {
2266 	const struct dma_map_ops *dma_ops;
2267 
2268 	dev->archdata.dma_coherent = coherent;
2269 #ifdef CONFIG_SWIOTLB
2270 	dev->dma_coherent = coherent;
2271 #endif
2272 
2273 	/*
2274 	 * Don't override the dma_ops if they have already been set. Ideally
2275 	 * this should be the only location where dma_ops are set, remove this
2276 	 * check when all other callers of set_dma_ops will have disappeared.
2277 	 */
2278 	if (dev->dma_ops)
2279 		return;
2280 
2281 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2282 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2283 	else
2284 		dma_ops = arm_get_dma_map_ops(coherent);
2285 
2286 	set_dma_ops(dev, dma_ops);
2287 
2288 #ifdef CONFIG_XEN
2289 	if (xen_initial_domain())
2290 		dev->dma_ops = &xen_swiotlb_dma_ops;
2291 #endif
2292 	dev->archdata.dma_ops_setup = true;
2293 }
2294 
2295 void arch_teardown_dma_ops(struct device *dev)
2296 {
2297 	if (!dev->archdata.dma_ops_setup)
2298 		return;
2299 
2300 	arm_teardown_iommu_dma_ops(dev);
2301 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2302 	set_dma_ops(dev, NULL);
2303 }
2304 
2305 #ifdef CONFIG_SWIOTLB
2306 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2307 		enum dma_data_direction dir)
2308 {
2309 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2310 			      size, dir);
2311 }
2312 
2313 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2314 		enum dma_data_direction dir)
2315 {
2316 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2317 			      size, dir);
2318 }
2319 
2320 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2321 		gfp_t gfp, unsigned long attrs)
2322 {
2323 	return __dma_alloc(dev, size, dma_handle, gfp,
2324 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2325 			   attrs, __builtin_return_address(0));
2326 }
2327 
2328 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2329 		dma_addr_t dma_handle, unsigned long attrs)
2330 {
2331 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2332 }
2333 #endif /* CONFIG_SWIOTLB */
2334