xref: /linux/arch/arm/mm/dma-mapping.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 struct arm_dma_alloc_args {
46 	struct device *dev;
47 	size_t size;
48 	gfp_t gfp;
49 	pgprot_t prot;
50 	const void *caller;
51 	bool want_vaddr;
52 };
53 
54 struct arm_dma_free_args {
55 	struct device *dev;
56 	size_t size;
57 	void *cpu_addr;
58 	struct page *page;
59 	bool want_vaddr;
60 };
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 		size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 		size_t, enum dma_data_direction);
110 
111 /**
112  * arm_dma_map_page - map a portion of a page for streaming DMA
113  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114  * @page: page that buffer resides in
115  * @offset: offset into page for start of buffer
116  * @size: size of buffer to map
117  * @dir: DMA transfer direction
118  *
119  * Ensure that any data held in the cache is appropriately discarded
120  * or written back.
121  *
122  * The device owns this memory once this call has completed.  The CPU
123  * can regain ownership by calling dma_unmap_page().
124  */
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 	     unsigned long offset, size_t size, enum dma_data_direction dir,
127 	     struct dma_attrs *attrs)
128 {
129 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
130 		__dma_page_cpu_to_dev(page, offset, size, dir);
131 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133 
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 	     unsigned long offset, size_t size, enum dma_data_direction dir,
136 	     struct dma_attrs *attrs)
137 {
138 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140 
141 /**
142  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144  * @handle: DMA address of buffer
145  * @size: size of buffer (same as passed to dma_map_page)
146  * @dir: DMA transfer direction (same as passed to dma_map_page)
147  *
148  * Unmap a page streaming mode DMA translation.  The handle and size
149  * must match what was provided in the previous dma_map_page() call.
150  * All other usages are undefined.
151  *
152  * After this call, reads by the CPU to the buffer are guaranteed to see
153  * whatever the device wrote there.
154  */
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 		size_t size, enum dma_data_direction dir,
157 		struct dma_attrs *attrs)
158 {
159 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
160 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 				      handle & ~PAGE_MASK, size, dir);
162 }
163 
164 static void arm_dma_sync_single_for_cpu(struct device *dev,
165 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
166 {
167 	unsigned int offset = handle & (PAGE_SIZE - 1);
168 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
169 	__dma_page_dev_to_cpu(page, offset, size, dir);
170 }
171 
172 static void arm_dma_sync_single_for_device(struct device *dev,
173 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
174 {
175 	unsigned int offset = handle & (PAGE_SIZE - 1);
176 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
177 	__dma_page_cpu_to_dev(page, offset, size, dir);
178 }
179 
180 struct dma_map_ops arm_dma_ops = {
181 	.alloc			= arm_dma_alloc,
182 	.free			= arm_dma_free,
183 	.mmap			= arm_dma_mmap,
184 	.get_sgtable		= arm_dma_get_sgtable,
185 	.map_page		= arm_dma_map_page,
186 	.unmap_page		= arm_dma_unmap_page,
187 	.map_sg			= arm_dma_map_sg,
188 	.unmap_sg		= arm_dma_unmap_sg,
189 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
190 	.sync_single_for_device	= arm_dma_sync_single_for_device,
191 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
192 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
193 };
194 EXPORT_SYMBOL(arm_dma_ops);
195 
196 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
197 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
198 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
199 				  dma_addr_t handle, struct dma_attrs *attrs);
200 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
202 		 struct dma_attrs *attrs);
203 
204 struct dma_map_ops arm_coherent_dma_ops = {
205 	.alloc			= arm_coherent_dma_alloc,
206 	.free			= arm_coherent_dma_free,
207 	.mmap			= arm_coherent_dma_mmap,
208 	.get_sgtable		= arm_dma_get_sgtable,
209 	.map_page		= arm_coherent_dma_map_page,
210 	.map_sg			= arm_dma_map_sg,
211 };
212 EXPORT_SYMBOL(arm_coherent_dma_ops);
213 
214 static int __dma_supported(struct device *dev, u64 mask, bool warn)
215 {
216 	unsigned long max_dma_pfn;
217 
218 	/*
219 	 * If the mask allows for more memory than we can address,
220 	 * and we actually have that much memory, then we must
221 	 * indicate that DMA to this device is not supported.
222 	 */
223 	if (sizeof(mask) != sizeof(dma_addr_t) &&
224 	    mask > (dma_addr_t)~0 &&
225 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
226 		if (warn) {
227 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
228 				 mask);
229 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
230 		}
231 		return 0;
232 	}
233 
234 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
235 
236 	/*
237 	 * Translate the device's DMA mask to a PFN limit.  This
238 	 * PFN number includes the page which we can DMA to.
239 	 */
240 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
241 		if (warn)
242 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
243 				 mask,
244 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
245 				 max_dma_pfn + 1);
246 		return 0;
247 	}
248 
249 	return 1;
250 }
251 
252 static u64 get_coherent_dma_mask(struct device *dev)
253 {
254 	u64 mask = (u64)DMA_BIT_MASK(32);
255 
256 	if (dev) {
257 		mask = dev->coherent_dma_mask;
258 
259 		/*
260 		 * Sanity check the DMA mask - it must be non-zero, and
261 		 * must be able to be satisfied by a DMA allocation.
262 		 */
263 		if (mask == 0) {
264 			dev_warn(dev, "coherent DMA mask is unset\n");
265 			return 0;
266 		}
267 
268 		if (!__dma_supported(dev, mask, true))
269 			return 0;
270 	}
271 
272 	return mask;
273 }
274 
275 static void __dma_clear_buffer(struct page *page, size_t size)
276 {
277 	/*
278 	 * Ensure that the allocated pages are zeroed, and that any data
279 	 * lurking in the kernel direct-mapped region is invalidated.
280 	 */
281 	if (PageHighMem(page)) {
282 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
283 		phys_addr_t end = base + size;
284 		while (size > 0) {
285 			void *ptr = kmap_atomic(page);
286 			memset(ptr, 0, PAGE_SIZE);
287 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
288 			kunmap_atomic(ptr);
289 			page++;
290 			size -= PAGE_SIZE;
291 		}
292 		outer_flush_range(base, end);
293 	} else {
294 		void *ptr = page_address(page);
295 		memset(ptr, 0, size);
296 		dmac_flush_range(ptr, ptr + size);
297 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
298 	}
299 }
300 
301 /*
302  * Allocate a DMA buffer for 'dev' of size 'size' using the
303  * specified gfp mask.  Note that 'size' must be page aligned.
304  */
305 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
306 {
307 	unsigned long order = get_order(size);
308 	struct page *page, *p, *e;
309 
310 	page = alloc_pages(gfp, order);
311 	if (!page)
312 		return NULL;
313 
314 	/*
315 	 * Now split the huge page and free the excess pages
316 	 */
317 	split_page(page, order);
318 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
319 		__free_page(p);
320 
321 	__dma_clear_buffer(page, size);
322 
323 	return page;
324 }
325 
326 /*
327  * Free a DMA buffer.  'size' must be page aligned.
328  */
329 static void __dma_free_buffer(struct page *page, size_t size)
330 {
331 	struct page *e = page + (size >> PAGE_SHIFT);
332 
333 	while (page < e) {
334 		__free_page(page);
335 		page++;
336 	}
337 }
338 
339 #ifdef CONFIG_MMU
340 
341 static void *__alloc_from_contiguous(struct device *dev, size_t size,
342 				     pgprot_t prot, struct page **ret_page,
343 				     const void *caller, bool want_vaddr);
344 
345 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
346 				 pgprot_t prot, struct page **ret_page,
347 				 const void *caller, bool want_vaddr);
348 
349 static void *
350 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
351 	const void *caller)
352 {
353 	/*
354 	 * DMA allocation can be mapped to user space, so lets
355 	 * set VM_USERMAP flags too.
356 	 */
357 	return dma_common_contiguous_remap(page, size,
358 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
359 			prot, caller);
360 }
361 
362 static void __dma_free_remap(void *cpu_addr, size_t size)
363 {
364 	dma_common_free_remap(cpu_addr, size,
365 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
366 }
367 
368 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
369 static struct gen_pool *atomic_pool;
370 
371 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
372 
373 static int __init early_coherent_pool(char *p)
374 {
375 	atomic_pool_size = memparse(p, &p);
376 	return 0;
377 }
378 early_param("coherent_pool", early_coherent_pool);
379 
380 void __init init_dma_coherent_pool_size(unsigned long size)
381 {
382 	/*
383 	 * Catch any attempt to set the pool size too late.
384 	 */
385 	BUG_ON(atomic_pool);
386 
387 	/*
388 	 * Set architecture specific coherent pool size only if
389 	 * it has not been changed by kernel command line parameter.
390 	 */
391 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
392 		atomic_pool_size = size;
393 }
394 
395 /*
396  * Initialise the coherent pool for atomic allocations.
397  */
398 static int __init atomic_pool_init(void)
399 {
400 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
401 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
402 	struct page *page;
403 	void *ptr;
404 
405 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
406 	if (!atomic_pool)
407 		goto out;
408 
409 	if (dev_get_cma_area(NULL))
410 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
411 					      &page, atomic_pool_init, true);
412 	else
413 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
414 					   &page, atomic_pool_init, true);
415 	if (ptr) {
416 		int ret;
417 
418 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
419 					page_to_phys(page),
420 					atomic_pool_size, -1);
421 		if (ret)
422 			goto destroy_genpool;
423 
424 		gen_pool_set_algo(atomic_pool,
425 				gen_pool_first_fit_order_align,
426 				(void *)PAGE_SHIFT);
427 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
428 		       atomic_pool_size / 1024);
429 		return 0;
430 	}
431 
432 destroy_genpool:
433 	gen_pool_destroy(atomic_pool);
434 	atomic_pool = NULL;
435 out:
436 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
437 	       atomic_pool_size / 1024);
438 	return -ENOMEM;
439 }
440 /*
441  * CMA is activated by core_initcall, so we must be called after it.
442  */
443 postcore_initcall(atomic_pool_init);
444 
445 struct dma_contig_early_reserve {
446 	phys_addr_t base;
447 	unsigned long size;
448 };
449 
450 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
451 
452 static int dma_mmu_remap_num __initdata;
453 
454 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
455 {
456 	dma_mmu_remap[dma_mmu_remap_num].base = base;
457 	dma_mmu_remap[dma_mmu_remap_num].size = size;
458 	dma_mmu_remap_num++;
459 }
460 
461 void __init dma_contiguous_remap(void)
462 {
463 	int i;
464 	for (i = 0; i < dma_mmu_remap_num; i++) {
465 		phys_addr_t start = dma_mmu_remap[i].base;
466 		phys_addr_t end = start + dma_mmu_remap[i].size;
467 		struct map_desc map;
468 		unsigned long addr;
469 
470 		if (end > arm_lowmem_limit)
471 			end = arm_lowmem_limit;
472 		if (start >= end)
473 			continue;
474 
475 		map.pfn = __phys_to_pfn(start);
476 		map.virtual = __phys_to_virt(start);
477 		map.length = end - start;
478 		map.type = MT_MEMORY_DMA_READY;
479 
480 		/*
481 		 * Clear previous low-memory mapping to ensure that the
482 		 * TLB does not see any conflicting entries, then flush
483 		 * the TLB of the old entries before creating new mappings.
484 		 *
485 		 * This ensures that any speculatively loaded TLB entries
486 		 * (even though they may be rare) can not cause any problems,
487 		 * and ensures that this code is architecturally compliant.
488 		 */
489 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
490 		     addr += PMD_SIZE)
491 			pmd_clear(pmd_off_k(addr));
492 
493 		flush_tlb_kernel_range(__phys_to_virt(start),
494 				       __phys_to_virt(end));
495 
496 		iotable_init(&map, 1);
497 	}
498 }
499 
500 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
501 			    void *data)
502 {
503 	struct page *page = virt_to_page(addr);
504 	pgprot_t prot = *(pgprot_t *)data;
505 
506 	set_pte_ext(pte, mk_pte(page, prot), 0);
507 	return 0;
508 }
509 
510 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
511 {
512 	unsigned long start = (unsigned long) page_address(page);
513 	unsigned end = start + size;
514 
515 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
516 	flush_tlb_kernel_range(start, end);
517 }
518 
519 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
520 				 pgprot_t prot, struct page **ret_page,
521 				 const void *caller, bool want_vaddr)
522 {
523 	struct page *page;
524 	void *ptr = NULL;
525 	page = __dma_alloc_buffer(dev, size, gfp);
526 	if (!page)
527 		return NULL;
528 	if (!want_vaddr)
529 		goto out;
530 
531 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
532 	if (!ptr) {
533 		__dma_free_buffer(page, size);
534 		return NULL;
535 	}
536 
537  out:
538 	*ret_page = page;
539 	return ptr;
540 }
541 
542 static void *__alloc_from_pool(size_t size, struct page **ret_page)
543 {
544 	unsigned long val;
545 	void *ptr = NULL;
546 
547 	if (!atomic_pool) {
548 		WARN(1, "coherent pool not initialised!\n");
549 		return NULL;
550 	}
551 
552 	val = gen_pool_alloc(atomic_pool, size);
553 	if (val) {
554 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
555 
556 		*ret_page = phys_to_page(phys);
557 		ptr = (void *)val;
558 	}
559 
560 	return ptr;
561 }
562 
563 static bool __in_atomic_pool(void *start, size_t size)
564 {
565 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
566 }
567 
568 static int __free_from_pool(void *start, size_t size)
569 {
570 	if (!__in_atomic_pool(start, size))
571 		return 0;
572 
573 	gen_pool_free(atomic_pool, (unsigned long)start, size);
574 
575 	return 1;
576 }
577 
578 static void *__alloc_from_contiguous(struct device *dev, size_t size,
579 				     pgprot_t prot, struct page **ret_page,
580 				     const void *caller, bool want_vaddr)
581 {
582 	unsigned long order = get_order(size);
583 	size_t count = size >> PAGE_SHIFT;
584 	struct page *page;
585 	void *ptr = NULL;
586 
587 	page = dma_alloc_from_contiguous(dev, count, order);
588 	if (!page)
589 		return NULL;
590 
591 	__dma_clear_buffer(page, size);
592 
593 	if (!want_vaddr)
594 		goto out;
595 
596 	if (PageHighMem(page)) {
597 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
598 		if (!ptr) {
599 			dma_release_from_contiguous(dev, page, count);
600 			return NULL;
601 		}
602 	} else {
603 		__dma_remap(page, size, prot);
604 		ptr = page_address(page);
605 	}
606 
607  out:
608 	*ret_page = page;
609 	return ptr;
610 }
611 
612 static void __free_from_contiguous(struct device *dev, struct page *page,
613 				   void *cpu_addr, size_t size, bool want_vaddr)
614 {
615 	if (want_vaddr) {
616 		if (PageHighMem(page))
617 			__dma_free_remap(cpu_addr, size);
618 		else
619 			__dma_remap(page, size, PAGE_KERNEL);
620 	}
621 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
622 }
623 
624 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
625 {
626 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
627 			    pgprot_writecombine(prot) :
628 			    pgprot_dmacoherent(prot);
629 	return prot;
630 }
631 
632 #define nommu() 0
633 
634 #else	/* !CONFIG_MMU */
635 
636 #define nommu() 1
637 
638 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
639 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
640 #define __alloc_from_pool(size, ret_page)			NULL
641 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
642 #define __free_from_pool(cpu_addr, size)			do { } while (0)
643 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
644 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
645 
646 #endif	/* CONFIG_MMU */
647 
648 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
649 				   struct page **ret_page)
650 {
651 	struct page *page;
652 	page = __dma_alloc_buffer(dev, size, gfp);
653 	if (!page)
654 		return NULL;
655 
656 	*ret_page = page;
657 	return page_address(page);
658 }
659 
660 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
661 				    struct page **ret_page)
662 {
663 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
664 				     ret_page);
665 }
666 
667 static void simple_allocator_free(struct arm_dma_free_args *args)
668 {
669 	__dma_free_buffer(args->page, args->size);
670 }
671 
672 static struct arm_dma_allocator simple_allocator = {
673 	.alloc = simple_allocator_alloc,
674 	.free = simple_allocator_free,
675 };
676 
677 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
678 				 struct page **ret_page)
679 {
680 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
681 				       ret_page, args->caller,
682 				       args->want_vaddr);
683 }
684 
685 static void cma_allocator_free(struct arm_dma_free_args *args)
686 {
687 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
688 			       args->size, args->want_vaddr);
689 }
690 
691 static struct arm_dma_allocator cma_allocator = {
692 	.alloc = cma_allocator_alloc,
693 	.free = cma_allocator_free,
694 };
695 
696 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
697 				  struct page **ret_page)
698 {
699 	return __alloc_from_pool(args->size, ret_page);
700 }
701 
702 static void pool_allocator_free(struct arm_dma_free_args *args)
703 {
704 	__free_from_pool(args->cpu_addr, args->size);
705 }
706 
707 static struct arm_dma_allocator pool_allocator = {
708 	.alloc = pool_allocator_alloc,
709 	.free = pool_allocator_free,
710 };
711 
712 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
713 				   struct page **ret_page)
714 {
715 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
716 				    args->prot, ret_page, args->caller,
717 				    args->want_vaddr);
718 }
719 
720 static void remap_allocator_free(struct arm_dma_free_args *args)
721 {
722 	if (args->want_vaddr)
723 		__dma_free_remap(args->cpu_addr, args->size);
724 
725 	__dma_free_buffer(args->page, args->size);
726 }
727 
728 static struct arm_dma_allocator remap_allocator = {
729 	.alloc = remap_allocator_alloc,
730 	.free = remap_allocator_free,
731 };
732 
733 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
734 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
735 			 struct dma_attrs *attrs, const void *caller)
736 {
737 	u64 mask = get_coherent_dma_mask(dev);
738 	struct page *page = NULL;
739 	void *addr;
740 	bool allowblock, cma;
741 	struct arm_dma_buffer *buf;
742 	struct arm_dma_alloc_args args = {
743 		.dev = dev,
744 		.size = PAGE_ALIGN(size),
745 		.gfp = gfp,
746 		.prot = prot,
747 		.caller = caller,
748 		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
749 	};
750 
751 #ifdef CONFIG_DMA_API_DEBUG
752 	u64 limit = (mask + 1) & ~mask;
753 	if (limit && size >= limit) {
754 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
755 			size, mask);
756 		return NULL;
757 	}
758 #endif
759 
760 	if (!mask)
761 		return NULL;
762 
763 	buf = kzalloc(sizeof(*buf),
764 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
765 	if (!buf)
766 		return NULL;
767 
768 	if (mask < 0xffffffffULL)
769 		gfp |= GFP_DMA;
770 
771 	/*
772 	 * Following is a work-around (a.k.a. hack) to prevent pages
773 	 * with __GFP_COMP being passed to split_page() which cannot
774 	 * handle them.  The real problem is that this flag probably
775 	 * should be 0 on ARM as it is not supported on this
776 	 * platform; see CONFIG_HUGETLBFS.
777 	 */
778 	gfp &= ~(__GFP_COMP);
779 	args.gfp = gfp;
780 
781 	*handle = DMA_ERROR_CODE;
782 	allowblock = gfpflags_allow_blocking(gfp);
783 	cma = allowblock ? dev_get_cma_area(dev) : false;
784 
785 	if (cma)
786 		buf->allocator = &cma_allocator;
787 	else if (nommu() || is_coherent)
788 		buf->allocator = &simple_allocator;
789 	else if (allowblock)
790 		buf->allocator = &remap_allocator;
791 	else
792 		buf->allocator = &pool_allocator;
793 
794 	addr = buf->allocator->alloc(&args, &page);
795 
796 	if (page) {
797 		unsigned long flags;
798 
799 		*handle = pfn_to_dma(dev, page_to_pfn(page));
800 		buf->virt = args.want_vaddr ? addr : page;
801 
802 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
803 		list_add(&buf->list, &arm_dma_bufs);
804 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
805 	} else {
806 		kfree(buf);
807 	}
808 
809 	return args.want_vaddr ? addr : page;
810 }
811 
812 /*
813  * Allocate DMA-coherent memory space and return both the kernel remapped
814  * virtual and bus address for that space.
815  */
816 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
817 		    gfp_t gfp, struct dma_attrs *attrs)
818 {
819 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
820 
821 	return __dma_alloc(dev, size, handle, gfp, prot, false,
822 			   attrs, __builtin_return_address(0));
823 }
824 
825 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
826 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
827 {
828 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
829 			   attrs, __builtin_return_address(0));
830 }
831 
832 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
833 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
834 		 struct dma_attrs *attrs)
835 {
836 	int ret = -ENXIO;
837 #ifdef CONFIG_MMU
838 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
839 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
840 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
841 	unsigned long off = vma->vm_pgoff;
842 
843 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
844 		return ret;
845 
846 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
847 		ret = remap_pfn_range(vma, vma->vm_start,
848 				      pfn + off,
849 				      vma->vm_end - vma->vm_start,
850 				      vma->vm_page_prot);
851 	}
852 #endif	/* CONFIG_MMU */
853 
854 	return ret;
855 }
856 
857 /*
858  * Create userspace mapping for the DMA-coherent memory.
859  */
860 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
861 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
862 		 struct dma_attrs *attrs)
863 {
864 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
865 }
866 
867 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
868 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
869 		 struct dma_attrs *attrs)
870 {
871 #ifdef CONFIG_MMU
872 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
873 #endif	/* CONFIG_MMU */
874 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
875 }
876 
877 /*
878  * Free a buffer as defined by the above mapping.
879  */
880 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
881 			   dma_addr_t handle, struct dma_attrs *attrs,
882 			   bool is_coherent)
883 {
884 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
885 	struct arm_dma_buffer *buf;
886 	struct arm_dma_free_args args = {
887 		.dev = dev,
888 		.size = PAGE_ALIGN(size),
889 		.cpu_addr = cpu_addr,
890 		.page = page,
891 		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
892 	};
893 
894 	buf = arm_dma_buffer_find(cpu_addr);
895 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
896 		return;
897 
898 	buf->allocator->free(&args);
899 	kfree(buf);
900 }
901 
902 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
903 		  dma_addr_t handle, struct dma_attrs *attrs)
904 {
905 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
906 }
907 
908 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
909 				  dma_addr_t handle, struct dma_attrs *attrs)
910 {
911 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
912 }
913 
914 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
915 		 void *cpu_addr, dma_addr_t handle, size_t size,
916 		 struct dma_attrs *attrs)
917 {
918 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
919 	int ret;
920 
921 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
922 	if (unlikely(ret))
923 		return ret;
924 
925 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
926 	return 0;
927 }
928 
929 static void dma_cache_maint_page(struct page *page, unsigned long offset,
930 	size_t size, enum dma_data_direction dir,
931 	void (*op)(const void *, size_t, int))
932 {
933 	unsigned long pfn;
934 	size_t left = size;
935 
936 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
937 	offset %= PAGE_SIZE;
938 
939 	/*
940 	 * A single sg entry may refer to multiple physically contiguous
941 	 * pages.  But we still need to process highmem pages individually.
942 	 * If highmem is not configured then the bulk of this loop gets
943 	 * optimized out.
944 	 */
945 	do {
946 		size_t len = left;
947 		void *vaddr;
948 
949 		page = pfn_to_page(pfn);
950 
951 		if (PageHighMem(page)) {
952 			if (len + offset > PAGE_SIZE)
953 				len = PAGE_SIZE - offset;
954 
955 			if (cache_is_vipt_nonaliasing()) {
956 				vaddr = kmap_atomic(page);
957 				op(vaddr + offset, len, dir);
958 				kunmap_atomic(vaddr);
959 			} else {
960 				vaddr = kmap_high_get(page);
961 				if (vaddr) {
962 					op(vaddr + offset, len, dir);
963 					kunmap_high(page);
964 				}
965 			}
966 		} else {
967 			vaddr = page_address(page) + offset;
968 			op(vaddr, len, dir);
969 		}
970 		offset = 0;
971 		pfn++;
972 		left -= len;
973 	} while (left);
974 }
975 
976 /*
977  * Make an area consistent for devices.
978  * Note: Drivers should NOT use this function directly, as it will break
979  * platforms with CONFIG_DMABOUNCE.
980  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
981  */
982 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
983 	size_t size, enum dma_data_direction dir)
984 {
985 	phys_addr_t paddr;
986 
987 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
988 
989 	paddr = page_to_phys(page) + off;
990 	if (dir == DMA_FROM_DEVICE) {
991 		outer_inv_range(paddr, paddr + size);
992 	} else {
993 		outer_clean_range(paddr, paddr + size);
994 	}
995 	/* FIXME: non-speculating: flush on bidirectional mappings? */
996 }
997 
998 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
999 	size_t size, enum dma_data_direction dir)
1000 {
1001 	phys_addr_t paddr = page_to_phys(page) + off;
1002 
1003 	/* FIXME: non-speculating: not required */
1004 	/* in any case, don't bother invalidating if DMA to device */
1005 	if (dir != DMA_TO_DEVICE) {
1006 		outer_inv_range(paddr, paddr + size);
1007 
1008 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1009 	}
1010 
1011 	/*
1012 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1013 	 */
1014 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1015 		unsigned long pfn;
1016 		size_t left = size;
1017 
1018 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1019 		off %= PAGE_SIZE;
1020 		if (off) {
1021 			pfn++;
1022 			left -= PAGE_SIZE - off;
1023 		}
1024 		while (left >= PAGE_SIZE) {
1025 			page = pfn_to_page(pfn++);
1026 			set_bit(PG_dcache_clean, &page->flags);
1027 			left -= PAGE_SIZE;
1028 		}
1029 	}
1030 }
1031 
1032 /**
1033  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1034  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1035  * @sg: list of buffers
1036  * @nents: number of buffers to map
1037  * @dir: DMA transfer direction
1038  *
1039  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1040  * This is the scatter-gather version of the dma_map_single interface.
1041  * Here the scatter gather list elements are each tagged with the
1042  * appropriate dma address and length.  They are obtained via
1043  * sg_dma_{address,length}.
1044  *
1045  * Device ownership issues as mentioned for dma_map_single are the same
1046  * here.
1047  */
1048 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1049 		enum dma_data_direction dir, struct dma_attrs *attrs)
1050 {
1051 	struct dma_map_ops *ops = get_dma_ops(dev);
1052 	struct scatterlist *s;
1053 	int i, j;
1054 
1055 	for_each_sg(sg, s, nents, i) {
1056 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1057 		s->dma_length = s->length;
1058 #endif
1059 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1060 						s->length, dir, attrs);
1061 		if (dma_mapping_error(dev, s->dma_address))
1062 			goto bad_mapping;
1063 	}
1064 	return nents;
1065 
1066  bad_mapping:
1067 	for_each_sg(sg, s, i, j)
1068 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1069 	return 0;
1070 }
1071 
1072 /**
1073  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1074  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1075  * @sg: list of buffers
1076  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1077  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1078  *
1079  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1080  * rules concerning calls here are the same as for dma_unmap_single().
1081  */
1082 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1083 		enum dma_data_direction dir, struct dma_attrs *attrs)
1084 {
1085 	struct dma_map_ops *ops = get_dma_ops(dev);
1086 	struct scatterlist *s;
1087 
1088 	int i;
1089 
1090 	for_each_sg(sg, s, nents, i)
1091 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1092 }
1093 
1094 /**
1095  * arm_dma_sync_sg_for_cpu
1096  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1097  * @sg: list of buffers
1098  * @nents: number of buffers to map (returned from dma_map_sg)
1099  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1100  */
1101 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1102 			int nents, enum dma_data_direction dir)
1103 {
1104 	struct dma_map_ops *ops = get_dma_ops(dev);
1105 	struct scatterlist *s;
1106 	int i;
1107 
1108 	for_each_sg(sg, s, nents, i)
1109 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1110 					 dir);
1111 }
1112 
1113 /**
1114  * arm_dma_sync_sg_for_device
1115  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1116  * @sg: list of buffers
1117  * @nents: number of buffers to map (returned from dma_map_sg)
1118  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1119  */
1120 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1121 			int nents, enum dma_data_direction dir)
1122 {
1123 	struct dma_map_ops *ops = get_dma_ops(dev);
1124 	struct scatterlist *s;
1125 	int i;
1126 
1127 	for_each_sg(sg, s, nents, i)
1128 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1129 					    dir);
1130 }
1131 
1132 /*
1133  * Return whether the given device DMA address mask can be supported
1134  * properly.  For example, if your device can only drive the low 24-bits
1135  * during bus mastering, then you would pass 0x00ffffff as the mask
1136  * to this function.
1137  */
1138 int dma_supported(struct device *dev, u64 mask)
1139 {
1140 	return __dma_supported(dev, mask, false);
1141 }
1142 EXPORT_SYMBOL(dma_supported);
1143 
1144 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1145 
1146 static int __init dma_debug_do_init(void)
1147 {
1148 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1149 	return 0;
1150 }
1151 fs_initcall(dma_debug_do_init);
1152 
1153 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1154 
1155 /* IOMMU */
1156 
1157 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1158 
1159 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1160 				      size_t size)
1161 {
1162 	unsigned int order = get_order(size);
1163 	unsigned int align = 0;
1164 	unsigned int count, start;
1165 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1166 	unsigned long flags;
1167 	dma_addr_t iova;
1168 	int i;
1169 
1170 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1171 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1172 
1173 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1174 	align = (1 << order) - 1;
1175 
1176 	spin_lock_irqsave(&mapping->lock, flags);
1177 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1178 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1179 				mapping->bits, 0, count, align);
1180 
1181 		if (start > mapping->bits)
1182 			continue;
1183 
1184 		bitmap_set(mapping->bitmaps[i], start, count);
1185 		break;
1186 	}
1187 
1188 	/*
1189 	 * No unused range found. Try to extend the existing mapping
1190 	 * and perform a second attempt to reserve an IO virtual
1191 	 * address range of size bytes.
1192 	 */
1193 	if (i == mapping->nr_bitmaps) {
1194 		if (extend_iommu_mapping(mapping)) {
1195 			spin_unlock_irqrestore(&mapping->lock, flags);
1196 			return DMA_ERROR_CODE;
1197 		}
1198 
1199 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1200 				mapping->bits, 0, count, align);
1201 
1202 		if (start > mapping->bits) {
1203 			spin_unlock_irqrestore(&mapping->lock, flags);
1204 			return DMA_ERROR_CODE;
1205 		}
1206 
1207 		bitmap_set(mapping->bitmaps[i], start, count);
1208 	}
1209 	spin_unlock_irqrestore(&mapping->lock, flags);
1210 
1211 	iova = mapping->base + (mapping_size * i);
1212 	iova += start << PAGE_SHIFT;
1213 
1214 	return iova;
1215 }
1216 
1217 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1218 			       dma_addr_t addr, size_t size)
1219 {
1220 	unsigned int start, count;
1221 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1222 	unsigned long flags;
1223 	dma_addr_t bitmap_base;
1224 	u32 bitmap_index;
1225 
1226 	if (!size)
1227 		return;
1228 
1229 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1230 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1231 
1232 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1233 
1234 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1235 
1236 	if (addr + size > bitmap_base + mapping_size) {
1237 		/*
1238 		 * The address range to be freed reaches into the iova
1239 		 * range of the next bitmap. This should not happen as
1240 		 * we don't allow this in __alloc_iova (at the
1241 		 * moment).
1242 		 */
1243 		BUG();
1244 	} else
1245 		count = size >> PAGE_SHIFT;
1246 
1247 	spin_lock_irqsave(&mapping->lock, flags);
1248 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1249 	spin_unlock_irqrestore(&mapping->lock, flags);
1250 }
1251 
1252 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1253 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1254 
1255 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1256 					  gfp_t gfp, struct dma_attrs *attrs)
1257 {
1258 	struct page **pages;
1259 	int count = size >> PAGE_SHIFT;
1260 	int array_size = count * sizeof(struct page *);
1261 	int i = 0;
1262 	int order_idx = 0;
1263 
1264 	if (array_size <= PAGE_SIZE)
1265 		pages = kzalloc(array_size, GFP_KERNEL);
1266 	else
1267 		pages = vzalloc(array_size);
1268 	if (!pages)
1269 		return NULL;
1270 
1271 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1272 	{
1273 		unsigned long order = get_order(size);
1274 		struct page *page;
1275 
1276 		page = dma_alloc_from_contiguous(dev, count, order);
1277 		if (!page)
1278 			goto error;
1279 
1280 		__dma_clear_buffer(page, size);
1281 
1282 		for (i = 0; i < count; i++)
1283 			pages[i] = page + i;
1284 
1285 		return pages;
1286 	}
1287 
1288 	/* Go straight to 4K chunks if caller says it's OK. */
1289 	if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1290 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1291 
1292 	/*
1293 	 * IOMMU can map any pages, so himem can also be used here
1294 	 */
1295 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1296 
1297 	while (count) {
1298 		int j, order;
1299 
1300 		order = iommu_order_array[order_idx];
1301 
1302 		/* Drop down when we get small */
1303 		if (__fls(count) < order) {
1304 			order_idx++;
1305 			continue;
1306 		}
1307 
1308 		if (order) {
1309 			/* See if it's easy to allocate a high-order chunk */
1310 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1311 
1312 			/* Go down a notch at first sign of pressure */
1313 			if (!pages[i]) {
1314 				order_idx++;
1315 				continue;
1316 			}
1317 		} else {
1318 			pages[i] = alloc_pages(gfp, 0);
1319 			if (!pages[i])
1320 				goto error;
1321 		}
1322 
1323 		if (order) {
1324 			split_page(pages[i], order);
1325 			j = 1 << order;
1326 			while (--j)
1327 				pages[i + j] = pages[i] + j;
1328 		}
1329 
1330 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1331 		i += 1 << order;
1332 		count -= 1 << order;
1333 	}
1334 
1335 	return pages;
1336 error:
1337 	while (i--)
1338 		if (pages[i])
1339 			__free_pages(pages[i], 0);
1340 	kvfree(pages);
1341 	return NULL;
1342 }
1343 
1344 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1345 			       size_t size, struct dma_attrs *attrs)
1346 {
1347 	int count = size >> PAGE_SHIFT;
1348 	int i;
1349 
1350 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1351 		dma_release_from_contiguous(dev, pages[0], count);
1352 	} else {
1353 		for (i = 0; i < count; i++)
1354 			if (pages[i])
1355 				__free_pages(pages[i], 0);
1356 	}
1357 
1358 	kvfree(pages);
1359 	return 0;
1360 }
1361 
1362 /*
1363  * Create a CPU mapping for a specified pages
1364  */
1365 static void *
1366 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1367 		    const void *caller)
1368 {
1369 	return dma_common_pages_remap(pages, size,
1370 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1371 }
1372 
1373 /*
1374  * Create a mapping in device IO address space for specified pages
1375  */
1376 static dma_addr_t
1377 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1378 {
1379 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1380 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1381 	dma_addr_t dma_addr, iova;
1382 	int i;
1383 
1384 	dma_addr = __alloc_iova(mapping, size);
1385 	if (dma_addr == DMA_ERROR_CODE)
1386 		return dma_addr;
1387 
1388 	iova = dma_addr;
1389 	for (i = 0; i < count; ) {
1390 		int ret;
1391 
1392 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1393 		phys_addr_t phys = page_to_phys(pages[i]);
1394 		unsigned int len, j;
1395 
1396 		for (j = i + 1; j < count; j++, next_pfn++)
1397 			if (page_to_pfn(pages[j]) != next_pfn)
1398 				break;
1399 
1400 		len = (j - i) << PAGE_SHIFT;
1401 		ret = iommu_map(mapping->domain, iova, phys, len,
1402 				IOMMU_READ|IOMMU_WRITE);
1403 		if (ret < 0)
1404 			goto fail;
1405 		iova += len;
1406 		i = j;
1407 	}
1408 	return dma_addr;
1409 fail:
1410 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1411 	__free_iova(mapping, dma_addr, size);
1412 	return DMA_ERROR_CODE;
1413 }
1414 
1415 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1416 {
1417 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1418 
1419 	/*
1420 	 * add optional in-page offset from iova to size and align
1421 	 * result to page size
1422 	 */
1423 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1424 	iova &= PAGE_MASK;
1425 
1426 	iommu_unmap(mapping->domain, iova, size);
1427 	__free_iova(mapping, iova, size);
1428 	return 0;
1429 }
1430 
1431 static struct page **__atomic_get_pages(void *addr)
1432 {
1433 	struct page *page;
1434 	phys_addr_t phys;
1435 
1436 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1437 	page = phys_to_page(phys);
1438 
1439 	return (struct page **)page;
1440 }
1441 
1442 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1443 {
1444 	struct vm_struct *area;
1445 
1446 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1447 		return __atomic_get_pages(cpu_addr);
1448 
1449 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1450 		return cpu_addr;
1451 
1452 	area = find_vm_area(cpu_addr);
1453 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1454 		return area->pages;
1455 	return NULL;
1456 }
1457 
1458 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1459 				  dma_addr_t *handle)
1460 {
1461 	struct page *page;
1462 	void *addr;
1463 
1464 	addr = __alloc_from_pool(size, &page);
1465 	if (!addr)
1466 		return NULL;
1467 
1468 	*handle = __iommu_create_mapping(dev, &page, size);
1469 	if (*handle == DMA_ERROR_CODE)
1470 		goto err_mapping;
1471 
1472 	return addr;
1473 
1474 err_mapping:
1475 	__free_from_pool(addr, size);
1476 	return NULL;
1477 }
1478 
1479 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1480 				dma_addr_t handle, size_t size)
1481 {
1482 	__iommu_remove_mapping(dev, handle, size);
1483 	__free_from_pool(cpu_addr, size);
1484 }
1485 
1486 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1487 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1488 {
1489 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1490 	struct page **pages;
1491 	void *addr = NULL;
1492 
1493 	*handle = DMA_ERROR_CODE;
1494 	size = PAGE_ALIGN(size);
1495 
1496 	if (!gfpflags_allow_blocking(gfp))
1497 		return __iommu_alloc_atomic(dev, size, handle);
1498 
1499 	/*
1500 	 * Following is a work-around (a.k.a. hack) to prevent pages
1501 	 * with __GFP_COMP being passed to split_page() which cannot
1502 	 * handle them.  The real problem is that this flag probably
1503 	 * should be 0 on ARM as it is not supported on this
1504 	 * platform; see CONFIG_HUGETLBFS.
1505 	 */
1506 	gfp &= ~(__GFP_COMP);
1507 
1508 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1509 	if (!pages)
1510 		return NULL;
1511 
1512 	*handle = __iommu_create_mapping(dev, pages, size);
1513 	if (*handle == DMA_ERROR_CODE)
1514 		goto err_buffer;
1515 
1516 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1517 		return pages;
1518 
1519 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1520 				   __builtin_return_address(0));
1521 	if (!addr)
1522 		goto err_mapping;
1523 
1524 	return addr;
1525 
1526 err_mapping:
1527 	__iommu_remove_mapping(dev, *handle, size);
1528 err_buffer:
1529 	__iommu_free_buffer(dev, pages, size, attrs);
1530 	return NULL;
1531 }
1532 
1533 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1534 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1535 		    struct dma_attrs *attrs)
1536 {
1537 	unsigned long uaddr = vma->vm_start;
1538 	unsigned long usize = vma->vm_end - vma->vm_start;
1539 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1540 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1541 	unsigned long off = vma->vm_pgoff;
1542 
1543 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1544 
1545 	if (!pages)
1546 		return -ENXIO;
1547 
1548 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1549 		return -ENXIO;
1550 
1551 	pages += off;
1552 
1553 	do {
1554 		int ret = vm_insert_page(vma, uaddr, *pages++);
1555 		if (ret) {
1556 			pr_err("Remapping memory failed: %d\n", ret);
1557 			return ret;
1558 		}
1559 		uaddr += PAGE_SIZE;
1560 		usize -= PAGE_SIZE;
1561 	} while (usize > 0);
1562 
1563 	return 0;
1564 }
1565 
1566 /*
1567  * free a page as defined by the above mapping.
1568  * Must not be called with IRQs disabled.
1569  */
1570 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1571 			  dma_addr_t handle, struct dma_attrs *attrs)
1572 {
1573 	struct page **pages;
1574 	size = PAGE_ALIGN(size);
1575 
1576 	if (__in_atomic_pool(cpu_addr, size)) {
1577 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1578 		return;
1579 	}
1580 
1581 	pages = __iommu_get_pages(cpu_addr, attrs);
1582 	if (!pages) {
1583 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1584 		return;
1585 	}
1586 
1587 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1588 		dma_common_free_remap(cpu_addr, size,
1589 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1590 	}
1591 
1592 	__iommu_remove_mapping(dev, handle, size);
1593 	__iommu_free_buffer(dev, pages, size, attrs);
1594 }
1595 
1596 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1597 				 void *cpu_addr, dma_addr_t dma_addr,
1598 				 size_t size, struct dma_attrs *attrs)
1599 {
1600 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1601 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1602 
1603 	if (!pages)
1604 		return -ENXIO;
1605 
1606 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1607 					 GFP_KERNEL);
1608 }
1609 
1610 static int __dma_direction_to_prot(enum dma_data_direction dir)
1611 {
1612 	int prot;
1613 
1614 	switch (dir) {
1615 	case DMA_BIDIRECTIONAL:
1616 		prot = IOMMU_READ | IOMMU_WRITE;
1617 		break;
1618 	case DMA_TO_DEVICE:
1619 		prot = IOMMU_READ;
1620 		break;
1621 	case DMA_FROM_DEVICE:
1622 		prot = IOMMU_WRITE;
1623 		break;
1624 	default:
1625 		prot = 0;
1626 	}
1627 
1628 	return prot;
1629 }
1630 
1631 /*
1632  * Map a part of the scatter-gather list into contiguous io address space
1633  */
1634 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1635 			  size_t size, dma_addr_t *handle,
1636 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1637 			  bool is_coherent)
1638 {
1639 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1640 	dma_addr_t iova, iova_base;
1641 	int ret = 0;
1642 	unsigned int count;
1643 	struct scatterlist *s;
1644 	int prot;
1645 
1646 	size = PAGE_ALIGN(size);
1647 	*handle = DMA_ERROR_CODE;
1648 
1649 	iova_base = iova = __alloc_iova(mapping, size);
1650 	if (iova == DMA_ERROR_CODE)
1651 		return -ENOMEM;
1652 
1653 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1654 		phys_addr_t phys = page_to_phys(sg_page(s));
1655 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1656 
1657 		if (!is_coherent &&
1658 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1659 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1660 
1661 		prot = __dma_direction_to_prot(dir);
1662 
1663 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1664 		if (ret < 0)
1665 			goto fail;
1666 		count += len >> PAGE_SHIFT;
1667 		iova += len;
1668 	}
1669 	*handle = iova_base;
1670 
1671 	return 0;
1672 fail:
1673 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1674 	__free_iova(mapping, iova_base, size);
1675 	return ret;
1676 }
1677 
1678 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1679 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1680 		     bool is_coherent)
1681 {
1682 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1683 	int i, count = 0;
1684 	unsigned int offset = s->offset;
1685 	unsigned int size = s->offset + s->length;
1686 	unsigned int max = dma_get_max_seg_size(dev);
1687 
1688 	for (i = 1; i < nents; i++) {
1689 		s = sg_next(s);
1690 
1691 		s->dma_address = DMA_ERROR_CODE;
1692 		s->dma_length = 0;
1693 
1694 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1695 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1696 			    dir, attrs, is_coherent) < 0)
1697 				goto bad_mapping;
1698 
1699 			dma->dma_address += offset;
1700 			dma->dma_length = size - offset;
1701 
1702 			size = offset = s->offset;
1703 			start = s;
1704 			dma = sg_next(dma);
1705 			count += 1;
1706 		}
1707 		size += s->length;
1708 	}
1709 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1710 		is_coherent) < 0)
1711 		goto bad_mapping;
1712 
1713 	dma->dma_address += offset;
1714 	dma->dma_length = size - offset;
1715 
1716 	return count+1;
1717 
1718 bad_mapping:
1719 	for_each_sg(sg, s, count, i)
1720 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1721 	return 0;
1722 }
1723 
1724 /**
1725  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1726  * @dev: valid struct device pointer
1727  * @sg: list of buffers
1728  * @nents: number of buffers to map
1729  * @dir: DMA transfer direction
1730  *
1731  * Map a set of i/o coherent buffers described by scatterlist in streaming
1732  * mode for DMA. The scatter gather list elements are merged together (if
1733  * possible) and tagged with the appropriate dma address and length. They are
1734  * obtained via sg_dma_{address,length}.
1735  */
1736 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1737 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1738 {
1739 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1740 }
1741 
1742 /**
1743  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1744  * @dev: valid struct device pointer
1745  * @sg: list of buffers
1746  * @nents: number of buffers to map
1747  * @dir: DMA transfer direction
1748  *
1749  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1750  * The scatter gather list elements are merged together (if possible) and
1751  * tagged with the appropriate dma address and length. They are obtained via
1752  * sg_dma_{address,length}.
1753  */
1754 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1755 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1756 {
1757 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1758 }
1759 
1760 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1761 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1762 		bool is_coherent)
1763 {
1764 	struct scatterlist *s;
1765 	int i;
1766 
1767 	for_each_sg(sg, s, nents, i) {
1768 		if (sg_dma_len(s))
1769 			__iommu_remove_mapping(dev, sg_dma_address(s),
1770 					       sg_dma_len(s));
1771 		if (!is_coherent &&
1772 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1773 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1774 					      s->length, dir);
1775 	}
1776 }
1777 
1778 /**
1779  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1780  * @dev: valid struct device pointer
1781  * @sg: list of buffers
1782  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1783  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1784  *
1785  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1786  * rules concerning calls here are the same as for dma_unmap_single().
1787  */
1788 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1789 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1790 {
1791 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1792 }
1793 
1794 /**
1795  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1796  * @dev: valid struct device pointer
1797  * @sg: list of buffers
1798  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1799  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1800  *
1801  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1802  * rules concerning calls here are the same as for dma_unmap_single().
1803  */
1804 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1805 			enum dma_data_direction dir, struct dma_attrs *attrs)
1806 {
1807 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1808 }
1809 
1810 /**
1811  * arm_iommu_sync_sg_for_cpu
1812  * @dev: valid struct device pointer
1813  * @sg: list of buffers
1814  * @nents: number of buffers to map (returned from dma_map_sg)
1815  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1816  */
1817 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1818 			int nents, enum dma_data_direction dir)
1819 {
1820 	struct scatterlist *s;
1821 	int i;
1822 
1823 	for_each_sg(sg, s, nents, i)
1824 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1825 
1826 }
1827 
1828 /**
1829  * arm_iommu_sync_sg_for_device
1830  * @dev: valid struct device pointer
1831  * @sg: list of buffers
1832  * @nents: number of buffers to map (returned from dma_map_sg)
1833  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1834  */
1835 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1836 			int nents, enum dma_data_direction dir)
1837 {
1838 	struct scatterlist *s;
1839 	int i;
1840 
1841 	for_each_sg(sg, s, nents, i)
1842 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1843 }
1844 
1845 
1846 /**
1847  * arm_coherent_iommu_map_page
1848  * @dev: valid struct device pointer
1849  * @page: page that buffer resides in
1850  * @offset: offset into page for start of buffer
1851  * @size: size of buffer to map
1852  * @dir: DMA transfer direction
1853  *
1854  * Coherent IOMMU aware version of arm_dma_map_page()
1855  */
1856 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1857 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1858 	     struct dma_attrs *attrs)
1859 {
1860 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1861 	dma_addr_t dma_addr;
1862 	int ret, prot, len = PAGE_ALIGN(size + offset);
1863 
1864 	dma_addr = __alloc_iova(mapping, len);
1865 	if (dma_addr == DMA_ERROR_CODE)
1866 		return dma_addr;
1867 
1868 	prot = __dma_direction_to_prot(dir);
1869 
1870 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1871 	if (ret < 0)
1872 		goto fail;
1873 
1874 	return dma_addr + offset;
1875 fail:
1876 	__free_iova(mapping, dma_addr, len);
1877 	return DMA_ERROR_CODE;
1878 }
1879 
1880 /**
1881  * arm_iommu_map_page
1882  * @dev: valid struct device pointer
1883  * @page: page that buffer resides in
1884  * @offset: offset into page for start of buffer
1885  * @size: size of buffer to map
1886  * @dir: DMA transfer direction
1887  *
1888  * IOMMU aware version of arm_dma_map_page()
1889  */
1890 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1891 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1892 	     struct dma_attrs *attrs)
1893 {
1894 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1895 		__dma_page_cpu_to_dev(page, offset, size, dir);
1896 
1897 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1898 }
1899 
1900 /**
1901  * arm_coherent_iommu_unmap_page
1902  * @dev: valid struct device pointer
1903  * @handle: DMA address of buffer
1904  * @size: size of buffer (same as passed to dma_map_page)
1905  * @dir: DMA transfer direction (same as passed to dma_map_page)
1906  *
1907  * Coherent IOMMU aware version of arm_dma_unmap_page()
1908  */
1909 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1910 		size_t size, enum dma_data_direction dir,
1911 		struct dma_attrs *attrs)
1912 {
1913 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1914 	dma_addr_t iova = handle & PAGE_MASK;
1915 	int offset = handle & ~PAGE_MASK;
1916 	int len = PAGE_ALIGN(size + offset);
1917 
1918 	if (!iova)
1919 		return;
1920 
1921 	iommu_unmap(mapping->domain, iova, len);
1922 	__free_iova(mapping, iova, len);
1923 }
1924 
1925 /**
1926  * arm_iommu_unmap_page
1927  * @dev: valid struct device pointer
1928  * @handle: DMA address of buffer
1929  * @size: size of buffer (same as passed to dma_map_page)
1930  * @dir: DMA transfer direction (same as passed to dma_map_page)
1931  *
1932  * IOMMU aware version of arm_dma_unmap_page()
1933  */
1934 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1935 		size_t size, enum dma_data_direction dir,
1936 		struct dma_attrs *attrs)
1937 {
1938 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1939 	dma_addr_t iova = handle & PAGE_MASK;
1940 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1941 	int offset = handle & ~PAGE_MASK;
1942 	int len = PAGE_ALIGN(size + offset);
1943 
1944 	if (!iova)
1945 		return;
1946 
1947 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1948 		__dma_page_dev_to_cpu(page, offset, size, dir);
1949 
1950 	iommu_unmap(mapping->domain, iova, len);
1951 	__free_iova(mapping, iova, len);
1952 }
1953 
1954 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956 {
1957 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958 	dma_addr_t iova = handle & PAGE_MASK;
1959 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960 	unsigned int offset = handle & ~PAGE_MASK;
1961 
1962 	if (!iova)
1963 		return;
1964 
1965 	__dma_page_dev_to_cpu(page, offset, size, dir);
1966 }
1967 
1968 static void arm_iommu_sync_single_for_device(struct device *dev,
1969 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970 {
1971 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972 	dma_addr_t iova = handle & PAGE_MASK;
1973 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974 	unsigned int offset = handle & ~PAGE_MASK;
1975 
1976 	if (!iova)
1977 		return;
1978 
1979 	__dma_page_cpu_to_dev(page, offset, size, dir);
1980 }
1981 
1982 struct dma_map_ops iommu_ops = {
1983 	.alloc		= arm_iommu_alloc_attrs,
1984 	.free		= arm_iommu_free_attrs,
1985 	.mmap		= arm_iommu_mmap_attrs,
1986 	.get_sgtable	= arm_iommu_get_sgtable,
1987 
1988 	.map_page		= arm_iommu_map_page,
1989 	.unmap_page		= arm_iommu_unmap_page,
1990 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1991 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1992 
1993 	.map_sg			= arm_iommu_map_sg,
1994 	.unmap_sg		= arm_iommu_unmap_sg,
1995 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1996 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1997 };
1998 
1999 struct dma_map_ops iommu_coherent_ops = {
2000 	.alloc		= arm_iommu_alloc_attrs,
2001 	.free		= arm_iommu_free_attrs,
2002 	.mmap		= arm_iommu_mmap_attrs,
2003 	.get_sgtable	= arm_iommu_get_sgtable,
2004 
2005 	.map_page	= arm_coherent_iommu_map_page,
2006 	.unmap_page	= arm_coherent_iommu_unmap_page,
2007 
2008 	.map_sg		= arm_coherent_iommu_map_sg,
2009 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2010 };
2011 
2012 /**
2013  * arm_iommu_create_mapping
2014  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2015  * @base: start address of the valid IO address space
2016  * @size: maximum size of the valid IO address space
2017  *
2018  * Creates a mapping structure which holds information about used/unused
2019  * IO address ranges, which is required to perform memory allocation and
2020  * mapping with IOMMU aware functions.
2021  *
2022  * The client device need to be attached to the mapping with
2023  * arm_iommu_attach_device function.
2024  */
2025 struct dma_iommu_mapping *
2026 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2027 {
2028 	unsigned int bits = size >> PAGE_SHIFT;
2029 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2030 	struct dma_iommu_mapping *mapping;
2031 	int extensions = 1;
2032 	int err = -ENOMEM;
2033 
2034 	/* currently only 32-bit DMA address space is supported */
2035 	if (size > DMA_BIT_MASK(32) + 1)
2036 		return ERR_PTR(-ERANGE);
2037 
2038 	if (!bitmap_size)
2039 		return ERR_PTR(-EINVAL);
2040 
2041 	if (bitmap_size > PAGE_SIZE) {
2042 		extensions = bitmap_size / PAGE_SIZE;
2043 		bitmap_size = PAGE_SIZE;
2044 	}
2045 
2046 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2047 	if (!mapping)
2048 		goto err;
2049 
2050 	mapping->bitmap_size = bitmap_size;
2051 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2052 				GFP_KERNEL);
2053 	if (!mapping->bitmaps)
2054 		goto err2;
2055 
2056 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2057 	if (!mapping->bitmaps[0])
2058 		goto err3;
2059 
2060 	mapping->nr_bitmaps = 1;
2061 	mapping->extensions = extensions;
2062 	mapping->base = base;
2063 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2064 
2065 	spin_lock_init(&mapping->lock);
2066 
2067 	mapping->domain = iommu_domain_alloc(bus);
2068 	if (!mapping->domain)
2069 		goto err4;
2070 
2071 	kref_init(&mapping->kref);
2072 	return mapping;
2073 err4:
2074 	kfree(mapping->bitmaps[0]);
2075 err3:
2076 	kfree(mapping->bitmaps);
2077 err2:
2078 	kfree(mapping);
2079 err:
2080 	return ERR_PTR(err);
2081 }
2082 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2083 
2084 static void release_iommu_mapping(struct kref *kref)
2085 {
2086 	int i;
2087 	struct dma_iommu_mapping *mapping =
2088 		container_of(kref, struct dma_iommu_mapping, kref);
2089 
2090 	iommu_domain_free(mapping->domain);
2091 	for (i = 0; i < mapping->nr_bitmaps; i++)
2092 		kfree(mapping->bitmaps[i]);
2093 	kfree(mapping->bitmaps);
2094 	kfree(mapping);
2095 }
2096 
2097 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2098 {
2099 	int next_bitmap;
2100 
2101 	if (mapping->nr_bitmaps >= mapping->extensions)
2102 		return -EINVAL;
2103 
2104 	next_bitmap = mapping->nr_bitmaps;
2105 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2106 						GFP_ATOMIC);
2107 	if (!mapping->bitmaps[next_bitmap])
2108 		return -ENOMEM;
2109 
2110 	mapping->nr_bitmaps++;
2111 
2112 	return 0;
2113 }
2114 
2115 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2116 {
2117 	if (mapping)
2118 		kref_put(&mapping->kref, release_iommu_mapping);
2119 }
2120 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2121 
2122 static int __arm_iommu_attach_device(struct device *dev,
2123 				     struct dma_iommu_mapping *mapping)
2124 {
2125 	int err;
2126 
2127 	err = iommu_attach_device(mapping->domain, dev);
2128 	if (err)
2129 		return err;
2130 
2131 	kref_get(&mapping->kref);
2132 	to_dma_iommu_mapping(dev) = mapping;
2133 
2134 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2135 	return 0;
2136 }
2137 
2138 /**
2139  * arm_iommu_attach_device
2140  * @dev: valid struct device pointer
2141  * @mapping: io address space mapping structure (returned from
2142  *	arm_iommu_create_mapping)
2143  *
2144  * Attaches specified io address space mapping to the provided device.
2145  * This replaces the dma operations (dma_map_ops pointer) with the
2146  * IOMMU aware version.
2147  *
2148  * More than one client might be attached to the same io address space
2149  * mapping.
2150  */
2151 int arm_iommu_attach_device(struct device *dev,
2152 			    struct dma_iommu_mapping *mapping)
2153 {
2154 	int err;
2155 
2156 	err = __arm_iommu_attach_device(dev, mapping);
2157 	if (err)
2158 		return err;
2159 
2160 	set_dma_ops(dev, &iommu_ops);
2161 	return 0;
2162 }
2163 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2164 
2165 static void __arm_iommu_detach_device(struct device *dev)
2166 {
2167 	struct dma_iommu_mapping *mapping;
2168 
2169 	mapping = to_dma_iommu_mapping(dev);
2170 	if (!mapping) {
2171 		dev_warn(dev, "Not attached\n");
2172 		return;
2173 	}
2174 
2175 	iommu_detach_device(mapping->domain, dev);
2176 	kref_put(&mapping->kref, release_iommu_mapping);
2177 	to_dma_iommu_mapping(dev) = NULL;
2178 
2179 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2180 }
2181 
2182 /**
2183  * arm_iommu_detach_device
2184  * @dev: valid struct device pointer
2185  *
2186  * Detaches the provided device from a previously attached map.
2187  * This voids the dma operations (dma_map_ops pointer)
2188  */
2189 void arm_iommu_detach_device(struct device *dev)
2190 {
2191 	__arm_iommu_detach_device(dev);
2192 	set_dma_ops(dev, NULL);
2193 }
2194 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2195 
2196 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2197 {
2198 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2199 }
2200 
2201 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2202 				    const struct iommu_ops *iommu)
2203 {
2204 	struct dma_iommu_mapping *mapping;
2205 
2206 	if (!iommu)
2207 		return false;
2208 
2209 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2210 	if (IS_ERR(mapping)) {
2211 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2212 				size, dev_name(dev));
2213 		return false;
2214 	}
2215 
2216 	if (__arm_iommu_attach_device(dev, mapping)) {
2217 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2218 				dev_name(dev));
2219 		arm_iommu_release_mapping(mapping);
2220 		return false;
2221 	}
2222 
2223 	return true;
2224 }
2225 
2226 static void arm_teardown_iommu_dma_ops(struct device *dev)
2227 {
2228 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2229 
2230 	if (!mapping)
2231 		return;
2232 
2233 	__arm_iommu_detach_device(dev);
2234 	arm_iommu_release_mapping(mapping);
2235 }
2236 
2237 #else
2238 
2239 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2240 				    const struct iommu_ops *iommu)
2241 {
2242 	return false;
2243 }
2244 
2245 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2246 
2247 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2248 
2249 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2250 
2251 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2252 {
2253 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2254 }
2255 
2256 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257 			const struct iommu_ops *iommu, bool coherent)
2258 {
2259 	struct dma_map_ops *dma_ops;
2260 
2261 	dev->archdata.dma_coherent = coherent;
2262 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2263 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2264 	else
2265 		dma_ops = arm_get_dma_map_ops(coherent);
2266 
2267 	set_dma_ops(dev, dma_ops);
2268 }
2269 
2270 void arch_teardown_dma_ops(struct device *dev)
2271 {
2272 	arm_teardown_iommu_dma_ops(dev);
2273 }
2274