xref: /linux/arch/arm/mm/cache-b15-rac.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom Brahma-B15 CPU read-ahead cache management functions
4  *
5  * Copyright (C) 2015-2016 Broadcom
6  */
7 
8 #include <linux/cfi_types.h>
9 #include <linux/err.h>
10 #include <linux/spinlock.h>
11 #include <linux/io.h>
12 #include <linux/bitops.h>
13 #include <linux/of_address.h>
14 #include <linux/notifier.h>
15 #include <linux/cpu.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/reboot.h>
18 
19 #include <asm/cacheflush.h>
20 #include <asm/hardware/cache-b15-rac.h>
21 
22 extern void v7_flush_kern_cache_all(void);
23 
24 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
25 #define RAC_CONFIG0_REG			(0x78)
26 #define  RACENPREF_MASK			(0x3)
27 #define  RACPREFINST_SHIFT		(0)
28 #define  RACENINST_SHIFT		(2)
29 #define  RACPREFDATA_SHIFT		(4)
30 #define  RACENDATA_SHIFT		(6)
31 #define  RAC_CPU_SHIFT			(8)
32 #define  RACCFG_MASK			(0xff)
33 #define RAC_CONFIG1_REG			(0x7c)
34 /* Brahma-B15 is a quad-core only design */
35 #define B15_RAC_FLUSH_REG		(0x80)
36 /* Brahma-B53 is an octo-core design */
37 #define B53_RAC_FLUSH_REG		(0x84)
38 #define  FLUSH_RAC			(1 << 0)
39 
40 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
41 #define RAC_DATA_INST_EN_MASK		(1 << RACPREFINST_SHIFT | \
42 					 RACENPREF_MASK << RACENINST_SHIFT | \
43 					 1 << RACPREFDATA_SHIFT | \
44 					 RACENPREF_MASK << RACENDATA_SHIFT)
45 
46 #define RAC_ENABLED			0
47 /* Special state where we want to bypass the spinlock and call directly
48  * into the v7 cache maintenance operations during suspend/resume
49  */
50 #define RAC_SUSPENDED			1
51 
52 static void __iomem *b15_rac_base;
53 static DEFINE_SPINLOCK(rac_lock);
54 
55 static u32 rac_config0_reg;
56 static u32 rac_flush_offset;
57 
58 /* Initialization flag to avoid checking for b15_rac_base, and to prevent
59  * multi-platform kernels from crashing here as well.
60  */
61 static unsigned long b15_rac_flags;
62 
63 static inline u32 __b15_rac_disable(void)
64 {
65 	u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
66 	__raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
67 	dmb();
68 	return val;
69 }
70 
71 static inline void __b15_rac_flush(void)
72 {
73 	u32 reg;
74 
75 	__raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
76 	do {
77 		/* This dmb() is required to force the Bus Interface Unit
78 		 * to clean outstanding writes, and forces an idle cycle
79 		 * to be inserted.
80 		 */
81 		dmb();
82 		reg = __raw_readl(b15_rac_base + rac_flush_offset);
83 	} while (reg & FLUSH_RAC);
84 }
85 
86 static inline u32 b15_rac_disable_and_flush(void)
87 {
88 	u32 reg;
89 
90 	reg = __b15_rac_disable();
91 	__b15_rac_flush();
92 	return reg;
93 }
94 
95 static inline void __b15_rac_enable(u32 val)
96 {
97 	__raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
98 	/* dsb() is required here to be consistent with __flush_icache_all() */
99 	dsb();
100 }
101 
102 #define BUILD_RAC_CACHE_OP(name, bar)				\
103 void b15_flush_##name(void)					\
104 {								\
105 	unsigned int do_flush;					\
106 	u32 val = 0;						\
107 								\
108 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) {		\
109 		v7_flush_##name();				\
110 		bar;						\
111 		return;						\
112 	}							\
113 								\
114 	spin_lock(&rac_lock);					\
115 	do_flush = test_bit(RAC_ENABLED, &b15_rac_flags);	\
116 	if (do_flush)						\
117 		val = b15_rac_disable_and_flush();		\
118 	v7_flush_##name();					\
119 	if (!do_flush)						\
120 		bar;						\
121 	else							\
122 		__b15_rac_enable(val);				\
123 	spin_unlock(&rac_lock);					\
124 }
125 
126 #define nobarrier
127 
128 /* The readahead cache present in the Brahma-B15 CPU is a special piece of
129  * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
130  * is to prefetch instruction and/or data with a line size of either 64 bytes
131  * or 256 bytes. The rationale is that the data-bus of the CPU interface is
132  * optimized for 256-bytes transactions, and enabling the readahead cache
133  * provides a significant performance boost we want it enabled (typically
134  * twice the performance for a memcpy benchmark application).
135  *
136  * The readahead cache is transparent for Modified Virtual Addresses
137  * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
138  * DCCIMVAC.
139  *
140  * It is however not transparent for the following cache maintenance
141  * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
142  * what we are patching here with our BUILD_RAC_CACHE_OP here.
143  */
144 BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
145 
146 static void b15_rac_enable(void)
147 {
148 	unsigned int cpu;
149 	u32 enable = 0;
150 
151 	for_each_possible_cpu(cpu)
152 		enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
153 
154 	b15_rac_disable_and_flush();
155 	__b15_rac_enable(enable);
156 }
157 
158 static int b15_rac_reboot_notifier(struct notifier_block *nb,
159 				   unsigned long action,
160 				   void *data)
161 {
162 	/* During kexec, we are not yet migrated on the boot CPU, so we need to
163 	 * make sure we are SMP safe here. Once the RAC is disabled, flag it as
164 	 * suspended such that the hotplug notifier returns early.
165 	 */
166 	if (action == SYS_RESTART) {
167 		spin_lock(&rac_lock);
168 		b15_rac_disable_and_flush();
169 		clear_bit(RAC_ENABLED, &b15_rac_flags);
170 		set_bit(RAC_SUSPENDED, &b15_rac_flags);
171 		spin_unlock(&rac_lock);
172 	}
173 
174 	return NOTIFY_DONE;
175 }
176 
177 static struct notifier_block b15_rac_reboot_nb = {
178 	.notifier_call	= b15_rac_reboot_notifier,
179 };
180 
181 /* The CPU hotplug case is the most interesting one, we basically need to make
182  * sure that the RAC is disabled for the entire system prior to having a CPU
183  * die, in particular prior to this dying CPU having exited the coherency
184  * domain.
185  *
186  * Once this CPU is marked dead, we can safely re-enable the RAC for the
187  * remaining CPUs in the system which are still online.
188  *
189  * Offlining a CPU is the problematic case, onlining a CPU is not much of an
190  * issue since the CPU and its cache-level hierarchy will start filling with
191  * the RAC disabled, so L1 and L2 only.
192  *
193  * In this function, we should NOT have to verify any unsafe setting/condition
194  * b15_rac_base:
195  *
196  *   It is protected by the RAC_ENABLED flag which is cleared by default, and
197  *   being cleared when initial procedure is done. b15_rac_base had been set at
198  *   that time.
199  *
200  * RAC_ENABLED:
201  *   There is a small timing windows, in b15_rac_init(), between
202  *      cpuhp_setup_state_*()
203  *      ...
204  *      set RAC_ENABLED
205  *   However, there is no hotplug activity based on the Linux booting procedure.
206  *
207  * Since we have to disable RAC for all cores, we keep RAC on as long as as
208  * possible (disable it as late as possible) to gain the cache benefit.
209  *
210  * Thus, dying/dead states are chosen here
211  *
212  * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
213  * we would want to consider disabling it as early as possible to benefit the
214  * other active CPUs.
215  */
216 
217 /* Running on the dying CPU */
218 static int b15_rac_dying_cpu(unsigned int cpu)
219 {
220 	/* During kexec/reboot, the RAC is disabled via the reboot notifier
221 	 * return early here.
222 	 */
223 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
224 		return 0;
225 
226 	spin_lock(&rac_lock);
227 
228 	/* Indicate that we are starting a hotplug procedure */
229 	__clear_bit(RAC_ENABLED, &b15_rac_flags);
230 
231 	/* Disable the readahead cache and save its value to a global */
232 	rac_config0_reg = b15_rac_disable_and_flush();
233 
234 	spin_unlock(&rac_lock);
235 
236 	return 0;
237 }
238 
239 /* Running on a non-dying CPU */
240 static int b15_rac_dead_cpu(unsigned int cpu)
241 {
242 	/* During kexec/reboot, the RAC is disabled via the reboot notifier
243 	 * return early here.
244 	 */
245 	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
246 		return 0;
247 
248 	spin_lock(&rac_lock);
249 
250 	/* And enable it */
251 	__b15_rac_enable(rac_config0_reg);
252 	__set_bit(RAC_ENABLED, &b15_rac_flags);
253 
254 	spin_unlock(&rac_lock);
255 
256 	return 0;
257 }
258 
259 static int b15_rac_suspend(void)
260 {
261 	/* Suspend the read-ahead cache oeprations, forcing our cache
262 	 * implementation to fallback to the regular ARMv7 calls.
263 	 *
264 	 * We are guaranteed to be running on the boot CPU at this point and
265 	 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
266 	 * here.
267 	 */
268 	rac_config0_reg = b15_rac_disable_and_flush();
269 	set_bit(RAC_SUSPENDED, &b15_rac_flags);
270 
271 	return 0;
272 }
273 
274 static void b15_rac_resume(void)
275 {
276 	/* Coming out of a S3 suspend/resume cycle, the read-ahead cache
277 	 * register RAC_CONFIG0_REG will be restored to its default value, make
278 	 * sure we re-enable it and set the enable flag, we are also guaranteed
279 	 * to run on the boot CPU, so not racy again.
280 	 */
281 	__b15_rac_enable(rac_config0_reg);
282 	clear_bit(RAC_SUSPENDED, &b15_rac_flags);
283 }
284 
285 static struct syscore_ops b15_rac_syscore_ops = {
286 	.suspend	= b15_rac_suspend,
287 	.resume		= b15_rac_resume,
288 };
289 
290 static int __init b15_rac_init(void)
291 {
292 	struct device_node *dn, *cpu_dn;
293 	int ret = 0, cpu;
294 	u32 reg, en_mask = 0;
295 
296 	dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
297 	if (!dn)
298 		return -ENODEV;
299 
300 	if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
301 		goto out;
302 
303 	b15_rac_base = of_iomap(dn, 0);
304 	if (!b15_rac_base) {
305 		pr_err("failed to remap BIU control base\n");
306 		ret = -ENOMEM;
307 		goto out;
308 	}
309 
310 	cpu_dn = of_get_cpu_node(0, NULL);
311 	if (!cpu_dn) {
312 		ret = -ENODEV;
313 		goto out;
314 	}
315 
316 	if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
317 		rac_flush_offset = B15_RAC_FLUSH_REG;
318 	else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
319 		rac_flush_offset = B53_RAC_FLUSH_REG;
320 	else {
321 		pr_err("Unsupported CPU\n");
322 		of_node_put(cpu_dn);
323 		ret = -EINVAL;
324 		goto out;
325 	}
326 	of_node_put(cpu_dn);
327 
328 	ret = register_reboot_notifier(&b15_rac_reboot_nb);
329 	if (ret) {
330 		pr_err("failed to register reboot notifier\n");
331 		iounmap(b15_rac_base);
332 		goto out;
333 	}
334 
335 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
336 		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
337 					"arm/cache-b15-rac:dead",
338 					NULL, b15_rac_dead_cpu);
339 		if (ret)
340 			goto out_unmap;
341 
342 		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
343 					"arm/cache-b15-rac:dying",
344 					NULL, b15_rac_dying_cpu);
345 		if (ret)
346 			goto out_cpu_dead;
347 	}
348 
349 	if (IS_ENABLED(CONFIG_PM_SLEEP))
350 		register_syscore_ops(&b15_rac_syscore_ops);
351 
352 	spin_lock(&rac_lock);
353 	reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
354 	for_each_possible_cpu(cpu)
355 		en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
356 	WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
357 
358 	b15_rac_enable();
359 	set_bit(RAC_ENABLED, &b15_rac_flags);
360 	spin_unlock(&rac_lock);
361 
362 	pr_info("%pOF: Broadcom Brahma-B15 readahead cache\n", dn);
363 
364 	goto out;
365 
366 out_cpu_dead:
367 	cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
368 out_unmap:
369 	unregister_reboot_notifier(&b15_rac_reboot_nb);
370 	iounmap(b15_rac_base);
371 out:
372 	of_node_put(dn);
373 	return ret;
374 }
375 arch_initcall(b15_rac_init);
376