1# SPDX-License-Identifier: GPL-2.0 2comment "Processor Type" 3 4# Select CPU types depending on the architecture selected. This selects 5# which CPUs we support in the kernel image, and the compiler instruction 6# optimiser behaviour. 7 8# ARM7TDMI 9config CPU_ARM7TDMI 10 bool 11 depends on !MMU 12 select CPU_32v4T 13 select CPU_ABRT_LV4T 14 select CPU_CACHE_V4 15 select CPU_PABRT_LEGACY 16 help 17 A 32-bit RISC microprocessor based on the ARM7 processor core 18 which has no memory control unit and cache. 19 20 Say Y if you want support for the ARM7TDMI processor. 21 Otherwise, say N. 22 23# ARM720T 24config CPU_ARM720T 25 bool 26 select CPU_32v4T 27 select CPU_ABRT_LV4T 28 select CPU_CACHE_V4 29 select CPU_CACHE_VIVT 30 select CPU_COPY_V4WT if MMU 31 select CPU_CP15_MMU 32 select CPU_PABRT_LEGACY 33 select CPU_THUMB_CAPABLE 34 select CPU_TLB_V4WT if MMU 35 help 36 A 32-bit RISC processor with 8kByte Cache, Write Buffer and 37 MMU built around an ARM7TDMI core. 38 39 Say Y if you want support for the ARM720T processor. 40 Otherwise, say N. 41 42# ARM740T 43config CPU_ARM740T 44 bool 45 depends on !MMU 46 select CPU_32v4T 47 select CPU_ABRT_LV4T 48 select CPU_CACHE_V4 49 select CPU_CP15_MPU 50 select CPU_PABRT_LEGACY 51 select CPU_THUMB_CAPABLE 52 help 53 A 32-bit RISC processor with 8KB cache or 4KB variants, 54 write buffer and MPU(Protection Unit) built around 55 an ARM7TDMI core. 56 57 Say Y if you want support for the ARM740T processor. 58 Otherwise, say N. 59 60# ARM9TDMI 61config CPU_ARM9TDMI 62 bool 63 depends on !MMU 64 select CPU_32v4T 65 select CPU_ABRT_NOMMU 66 select CPU_CACHE_V4 67 select CPU_PABRT_LEGACY 68 help 69 A 32-bit RISC microprocessor based on the ARM9 processor core 70 which has no memory control unit and cache. 71 72 Say Y if you want support for the ARM9TDMI processor. 73 Otherwise, say N. 74 75# ARM920T 76config CPU_ARM920T 77 bool 78 select CPU_32v4T 79 select CPU_ABRT_EV4T 80 select CPU_CACHE_V4WT 81 select CPU_CACHE_VIVT 82 select CPU_COPY_V4WB if MMU 83 select CPU_CP15_MMU 84 select CPU_PABRT_LEGACY 85 select CPU_THUMB_CAPABLE 86 select CPU_TLB_V4WBI if MMU 87 help 88 The ARM920T is licensed to be produced by numerous vendors, 89 and is used in the Cirrus EP93xx and the Samsung S3C2410. 90 91 Say Y if you want support for the ARM920T processor. 92 Otherwise, say N. 93 94# ARM922T 95config CPU_ARM922T 96 bool 97 select CPU_32v4T 98 select CPU_ABRT_EV4T 99 select CPU_CACHE_V4WT 100 select CPU_CACHE_VIVT 101 select CPU_COPY_V4WB if MMU 102 select CPU_CP15_MMU 103 select CPU_PABRT_LEGACY 104 select CPU_THUMB_CAPABLE 105 select CPU_TLB_V4WBI if MMU 106 help 107 The ARM922T is a version of the ARM920T, but with smaller 108 instruction and data caches. It is used in Altera's 109 Excalibur XA device family and Micrel's KS8695 Centaur. 110 111 Say Y if you want support for the ARM922T processor. 112 Otherwise, say N. 113 114# ARM925T 115config CPU_ARM925T 116 bool 117 select CPU_32v4T 118 select CPU_ABRT_EV4T 119 select CPU_CACHE_V4WT 120 select CPU_CACHE_VIVT 121 select CPU_COPY_V4WB if MMU 122 select CPU_CP15_MMU 123 select CPU_PABRT_LEGACY 124 select CPU_THUMB_CAPABLE 125 select CPU_TLB_V4WBI if MMU 126 help 127 The ARM925T is a mix between the ARM920T and ARM926T, but with 128 different instruction and data caches. It is used in TI's OMAP 129 device family. 130 131 Say Y if you want support for the ARM925T processor. 132 Otherwise, say N. 133 134# ARM926T 135config CPU_ARM926T 136 bool 137 select CPU_32v5 138 select CPU_ABRT_EV5TJ 139 select CPU_CACHE_VIVT 140 select CPU_COPY_V4WB if MMU 141 select CPU_CP15_MMU 142 select CPU_PABRT_LEGACY 143 select CPU_THUMB_CAPABLE 144 select CPU_TLB_V4WBI if MMU 145 help 146 This is a variant of the ARM920. It has slightly different 147 instruction sequences for cache and TLB operations. Curiously, 148 there is no documentation on it at the ARM corporate website. 149 150 Say Y if you want support for the ARM926T processor. 151 Otherwise, say N. 152 153# FA526 154config CPU_FA526 155 bool 156 select CPU_32v4 157 select CPU_ABRT_EV4 158 select CPU_CACHE_FA 159 select CPU_CACHE_VIVT 160 select CPU_COPY_FA if MMU 161 select CPU_CP15_MMU 162 select CPU_PABRT_LEGACY 163 select CPU_TLB_FA if MMU 164 help 165 The FA526 is a version of the ARMv4 compatible processor with 166 Branch Target Buffer, Unified TLB and cache line size 16. 167 168 Say Y if you want support for the FA526 processor. 169 Otherwise, say N. 170 171# ARM940T 172config CPU_ARM940T 173 bool 174 depends on !MMU 175 select CPU_32v4T 176 select CPU_ABRT_NOMMU 177 select CPU_CACHE_VIVT 178 select CPU_CP15_MPU 179 select CPU_PABRT_LEGACY 180 select CPU_THUMB_CAPABLE 181 help 182 ARM940T is a member of the ARM9TDMI family of general- 183 purpose microprocessors with MPU and separate 4KB 184 instruction and 4KB data cases, each with a 4-word line 185 length. 186 187 Say Y if you want support for the ARM940T processor. 188 Otherwise, say N. 189 190# ARM946E-S 191config CPU_ARM946E 192 bool 193 depends on !MMU 194 select CPU_32v5 195 select CPU_ABRT_NOMMU 196 select CPU_CACHE_VIVT 197 select CPU_CP15_MPU 198 select CPU_PABRT_LEGACY 199 select CPU_THUMB_CAPABLE 200 help 201 ARM946E-S is a member of the ARM9E-S family of high- 202 performance, 32-bit system-on-chip processor solutions. 203 The TCM and ARMv5TE 32-bit instruction set is supported. 204 205 Say Y if you want support for the ARM946E-S processor. 206 Otherwise, say N. 207 208# ARM1020 - needs validating 209config CPU_ARM1020 210 bool 211 select CPU_32v5 212 select CPU_ABRT_EV4T 213 select CPU_CACHE_V4WT 214 select CPU_CACHE_VIVT 215 select CPU_COPY_V4WB if MMU 216 select CPU_CP15_MMU 217 select CPU_PABRT_LEGACY 218 select CPU_THUMB_CAPABLE 219 select CPU_TLB_V4WBI if MMU 220 help 221 The ARM1020 is the 32K cached version of the ARM10 processor, 222 with an addition of a floating-point unit. 223 224 Say Y if you want support for the ARM1020 processor. 225 Otherwise, say N. 226 227# ARM1020E - needs validating 228config CPU_ARM1020E 229 bool 230 depends on n 231 select CPU_32v5 232 select CPU_ABRT_EV4T 233 select CPU_CACHE_V4WT 234 select CPU_CACHE_VIVT 235 select CPU_COPY_V4WB if MMU 236 select CPU_CP15_MMU 237 select CPU_PABRT_LEGACY 238 select CPU_THUMB_CAPABLE 239 select CPU_TLB_V4WBI if MMU 240 241# ARM1022E 242config CPU_ARM1022 243 bool 244 select CPU_32v5 245 select CPU_ABRT_EV4T 246 select CPU_CACHE_VIVT 247 select CPU_COPY_V4WB if MMU # can probably do better 248 select CPU_CP15_MMU 249 select CPU_PABRT_LEGACY 250 select CPU_THUMB_CAPABLE 251 select CPU_TLB_V4WBI if MMU 252 help 253 The ARM1022E is an implementation of the ARMv5TE architecture 254 based upon the ARM10 integer core with a 16KiB L1 Harvard cache, 255 embedded trace macrocell, and a floating-point unit. 256 257 Say Y if you want support for the ARM1022E processor. 258 Otherwise, say N. 259 260# ARM1026EJ-S 261config CPU_ARM1026 262 bool 263 select CPU_32v5 264 select CPU_ABRT_EV5T # But need Jazelle, but EV5TJ ignores bit 10 265 select CPU_CACHE_VIVT 266 select CPU_COPY_V4WB if MMU # can probably do better 267 select CPU_CP15_MMU 268 select CPU_PABRT_LEGACY 269 select CPU_THUMB_CAPABLE 270 select CPU_TLB_V4WBI if MMU 271 help 272 The ARM1026EJ-S is an implementation of the ARMv5TEJ architecture 273 based upon the ARM10 integer core. 274 275 Say Y if you want support for the ARM1026EJ-S processor. 276 Otherwise, say N. 277 278# SA110 279config CPU_SA110 280 bool 281 select CPU_32v3 if ARCH_RPC 282 select CPU_32v4 if !ARCH_RPC 283 select CPU_ABRT_EV4 284 select CPU_CACHE_V4WB 285 select CPU_CACHE_VIVT 286 select CPU_COPY_V4WB if MMU 287 select CPU_CP15_MMU 288 select CPU_PABRT_LEGACY 289 select CPU_TLB_V4WB if MMU 290 help 291 The Intel StrongARM(R) SA-110 is a 32-bit microprocessor and 292 is available at five speeds ranging from 100 MHz to 233 MHz. 293 More information is available at 294 <http://developer.intel.com/design/strong/sa110.htm>. 295 296 Say Y if you want support for the SA-110 processor. 297 Otherwise, say N. 298 299# SA1100 300config CPU_SA1100 301 bool 302 select CPU_32v4 303 select CPU_ABRT_EV4 304 select CPU_CACHE_V4WB 305 select CPU_CACHE_VIVT 306 select CPU_CP15_MMU 307 select CPU_PABRT_LEGACY 308 select CPU_TLB_V4WB if MMU 309 310# XScale 311config CPU_XSCALE 312 bool 313 select CPU_32v5 314 select CPU_ABRT_EV5T 315 select CPU_CACHE_VIVT 316 select CPU_CP15_MMU 317 select CPU_PABRT_LEGACY 318 select CPU_THUMB_CAPABLE 319 select CPU_TLB_V4WBI if MMU 320 321# XScale Core Version 3 322config CPU_XSC3 323 bool 324 select CPU_32v5 325 select CPU_ABRT_EV5T 326 select CPU_CACHE_VIVT 327 select CPU_CP15_MMU 328 select CPU_PABRT_LEGACY 329 select CPU_THUMB_CAPABLE 330 select CPU_TLB_V4WBI if MMU 331 select IO_36 332 333# Marvell PJ1 (Mohawk) 334config CPU_MOHAWK 335 bool 336 select CPU_32v5 337 select CPU_ABRT_EV5T 338 select CPU_CACHE_VIVT 339 select CPU_COPY_V4WB if MMU 340 select CPU_CP15_MMU 341 select CPU_PABRT_LEGACY 342 select CPU_THUMB_CAPABLE 343 select CPU_TLB_V4WBI if MMU 344 345# Feroceon 346config CPU_FEROCEON 347 bool 348 select CPU_32v5 349 select CPU_ABRT_EV5T 350 select CPU_CACHE_VIVT 351 select CPU_COPY_FEROCEON if MMU 352 select CPU_CP15_MMU 353 select CPU_PABRT_LEGACY 354 select CPU_THUMB_CAPABLE 355 select CPU_TLB_FEROCEON if MMU 356 357config CPU_FEROCEON_OLD_ID 358 bool "Accept early Feroceon cores with an ARM926 ID" 359 depends on CPU_FEROCEON && !CPU_ARM926T 360 default y 361 help 362 This enables the usage of some old Feroceon cores 363 for which the CPU ID is equal to the ARM926 ID. 364 Relevant for Feroceon-1850 and early Feroceon-2850. 365 366# Marvell PJ4 367config CPU_PJ4 368 bool 369 select ARM_THUMBEE 370 select CPU_V7 371 372config CPU_PJ4B 373 bool 374 select CPU_V7 375 376# ARMv6 377config CPU_V6 378 bool 379 select CPU_32v6 380 select CPU_ABRT_EV6 381 select CPU_CACHE_V6 382 select CPU_CACHE_VIPT 383 select CPU_COPY_V6 if MMU 384 select CPU_CP15_MMU 385 select CPU_HAS_ASID if MMU 386 select CPU_PABRT_V6 387 select CPU_THUMB_CAPABLE 388 select CPU_TLB_V6 if MMU 389 390# ARMv6k 391config CPU_V6K 392 bool 393 select CPU_32v6 394 select CPU_32v6K 395 select CPU_ABRT_EV6 396 select CPU_CACHE_V6 397 select CPU_CACHE_VIPT 398 select CPU_COPY_V6 if MMU 399 select CPU_CP15_MMU 400 select CPU_HAS_ASID if MMU 401 select CPU_PABRT_V6 402 select CPU_THUMB_CAPABLE 403 select CPU_TLB_V6 if MMU 404 405# ARMv7 406config CPU_V7 407 bool 408 select CPU_32v6K 409 select CPU_32v7 410 select CPU_ABRT_EV7 411 select CPU_CACHE_V7 412 select CPU_CACHE_VIPT 413 select CPU_COPY_V6 if MMU 414 select CPU_CP15_MMU if MMU 415 select CPU_CP15_MPU if !MMU 416 select CPU_HAS_ASID if MMU 417 select CPU_PABRT_V7 418 select CPU_SPECTRE if MMU 419 select CPU_THUMB_CAPABLE 420 select CPU_TLB_V7 if MMU 421 422# ARMv7M 423config CPU_V7M 424 bool 425 select CPU_32v7M 426 select CPU_ABRT_NOMMU 427 select CPU_CACHE_V7M 428 select CPU_CACHE_NOP 429 select CPU_PABRT_LEGACY 430 select CPU_THUMBONLY 431 432config CPU_THUMBONLY 433 bool 434 select CPU_THUMB_CAPABLE 435 # There are no CPUs available with MMU that don't implement an ARM ISA: 436 depends on !MMU 437 help 438 Select this if your CPU doesn't support the 32 bit ARM instructions. 439 440config CPU_THUMB_CAPABLE 441 bool 442 help 443 Select this if your CPU can support Thumb mode. 444 445# Figure out what processor architecture version we should be using. 446# This defines the compiler instruction set which depends on the machine type. 447config CPU_32v3 448 bool 449 select CPU_USE_DOMAINS if MMU 450 select NEED_KUSER_HELPERS 451 select TLS_REG_EMUL if SMP || !MMU 452 select CPU_NO_EFFICIENT_FFS 453 454config CPU_32v4 455 bool 456 select CPU_USE_DOMAINS if MMU 457 select NEED_KUSER_HELPERS 458 select TLS_REG_EMUL if SMP || !MMU 459 select CPU_NO_EFFICIENT_FFS 460 461config CPU_32v4T 462 bool 463 select CPU_USE_DOMAINS if MMU 464 select NEED_KUSER_HELPERS 465 select TLS_REG_EMUL if SMP || !MMU 466 select CPU_NO_EFFICIENT_FFS 467 468config CPU_32v5 469 bool 470 select CPU_USE_DOMAINS if MMU 471 select NEED_KUSER_HELPERS 472 select TLS_REG_EMUL if SMP || !MMU 473 474config CPU_32v6 475 bool 476 select TLS_REG_EMUL if !CPU_32v6K && !MMU 477 478config CPU_32v6K 479 bool 480 481config CPU_32v7 482 bool 483 484config CPU_32v7M 485 bool 486 487# The abort model 488config CPU_ABRT_NOMMU 489 bool 490 491config CPU_ABRT_EV4 492 bool 493 494config CPU_ABRT_EV4T 495 bool 496 497config CPU_ABRT_LV4T 498 bool 499 500config CPU_ABRT_EV5T 501 bool 502 503config CPU_ABRT_EV5TJ 504 bool 505 506config CPU_ABRT_EV6 507 bool 508 509config CPU_ABRT_EV7 510 bool 511 512config CPU_PABRT_LEGACY 513 bool 514 515config CPU_PABRT_V6 516 bool 517 518config CPU_PABRT_V7 519 bool 520 521# The cache model 522config CPU_CACHE_V4 523 bool 524 525config CPU_CACHE_V4WT 526 bool 527 528config CPU_CACHE_V4WB 529 bool 530 531config CPU_CACHE_V6 532 bool 533 534config CPU_CACHE_V7 535 bool 536 537config CPU_CACHE_NOP 538 bool 539 540config CPU_CACHE_VIVT 541 bool 542 543config CPU_CACHE_VIPT 544 bool 545 546config CPU_CACHE_FA 547 bool 548 549config CPU_CACHE_V7M 550 bool 551 552if MMU 553# The copy-page model 554config CPU_COPY_V4WT 555 bool 556 557config CPU_COPY_V4WB 558 bool 559 560config CPU_COPY_FEROCEON 561 bool 562 563config CPU_COPY_FA 564 bool 565 566config CPU_COPY_V6 567 bool 568 569# This selects the TLB model 570config CPU_TLB_V4WT 571 bool 572 help 573 ARM Architecture Version 4 TLB with writethrough cache. 574 575config CPU_TLB_V4WB 576 bool 577 help 578 ARM Architecture Version 4 TLB with writeback cache. 579 580config CPU_TLB_V4WBI 581 bool 582 help 583 ARM Architecture Version 4 TLB with writeback cache and invalidate 584 instruction cache entry. 585 586config CPU_TLB_FEROCEON 587 bool 588 help 589 Feroceon TLB (v4wbi with non-outer-cachable page table walks). 590 591config CPU_TLB_FA 592 bool 593 help 594 Faraday ARM FA526 architecture, unified TLB with writeback cache 595 and invalidate instruction cache entry. Branch target buffer is 596 also supported. 597 598config CPU_TLB_V6 599 bool 600 601config CPU_TLB_V7 602 bool 603 604config VERIFY_PERMISSION_FAULT 605 bool 606endif 607 608config CPU_HAS_ASID 609 bool 610 help 611 This indicates whether the CPU has the ASID register; used to 612 tag TLB and possibly cache entries. 613 614config CPU_CP15 615 bool 616 help 617 Processor has the CP15 register. 618 619config CPU_CP15_MMU 620 bool 621 select CPU_CP15 622 help 623 Processor has the CP15 register, which has MMU related registers. 624 625config CPU_CP15_MPU 626 bool 627 select CPU_CP15 628 help 629 Processor has the CP15 register, which has MPU related registers. 630 631config CPU_USE_DOMAINS 632 bool 633 help 634 This option enables or disables the use of domain switching 635 via the set_fs() function. 636 637config CPU_V7M_NUM_IRQ 638 int "Number of external interrupts connected to the NVIC" 639 depends on CPU_V7M 640 default 90 if ARCH_STM32 641 default 38 if ARCH_EFM32 642 default 112 if SOC_VF610 643 default 240 644 help 645 This option indicates the number of interrupts connected to the NVIC. 646 The value can be larger than the real number of interrupts supported 647 by the system, but must not be lower. 648 The default value is 240, corresponding to the maximum number of 649 interrupts supported by the NVIC on Cortex-M family. 650 651 If unsure, keep default value. 652 653# 654# CPU supports 36-bit I/O 655# 656config IO_36 657 bool 658 659comment "Processor Features" 660 661config ARM_LPAE 662 bool "Support for the Large Physical Address Extension" 663 depends on MMU && CPU_32v7 && !CPU_32v6 && !CPU_32v5 && \ 664 !CPU_32v4 && !CPU_32v3 665 select PHYS_ADDR_T_64BIT 666 help 667 Say Y if you have an ARMv7 processor supporting the LPAE page 668 table format and you would like to access memory beyond the 669 4GB limit. The resulting kernel image will not run on 670 processors without the LPA extension. 671 672 If unsure, say N. 673 674config ARM_PV_FIXUP 675 def_bool y 676 depends on ARM_LPAE && ARM_PATCH_PHYS_VIRT && ARCH_KEYSTONE 677 678config ARM_THUMB 679 bool "Support Thumb user binaries" if !CPU_THUMBONLY && EXPERT 680 depends on CPU_THUMB_CAPABLE 681 default y 682 help 683 Say Y if you want to include kernel support for running user space 684 Thumb binaries. 685 686 The Thumb instruction set is a compressed form of the standard ARM 687 instruction set resulting in smaller binaries at the expense of 688 slightly less efficient code. 689 690 If this option is disabled, and you run userspace that switches to 691 Thumb mode, signal handling will not work correctly, resulting in 692 segmentation faults or illegal instruction aborts. 693 694 If you don't know what this all is, saying Y is a safe choice. 695 696config ARM_THUMBEE 697 bool "Enable ThumbEE CPU extension" 698 depends on CPU_V7 699 help 700 Say Y here if you have a CPU with the ThumbEE extension and code to 701 make use of it. Say N for code that can run on CPUs without ThumbEE. 702 703config ARM_VIRT_EXT 704 bool 705 depends on MMU 706 default y if CPU_V7 707 help 708 Enable the kernel to make use of the ARM Virtualization 709 Extensions to install hypervisors without run-time firmware 710 assistance. 711 712 A compliant bootloader is required in order to make maximum 713 use of this feature. Refer to Documentation/arm/Booting for 714 details. 715 716config SWP_EMULATE 717 bool "Emulate SWP/SWPB instructions" if !SMP 718 depends on CPU_V7 719 default y if SMP 720 select HAVE_PROC_CPU if PROC_FS 721 help 722 ARMv6 architecture deprecates use of the SWP/SWPB instructions. 723 ARMv7 multiprocessing extensions introduce the ability to disable 724 these instructions, triggering an undefined instruction exception 725 when executed. Say Y here to enable software emulation of these 726 instructions for userspace (not kernel) using LDREX/STREX. 727 Also creates /proc/cpu/swp_emulation for statistics. 728 729 In some older versions of glibc [<=2.8] SWP is used during futex 730 trylock() operations with the assumption that the code will not 731 be preempted. This invalid assumption may be more likely to fail 732 with SWP emulation enabled, leading to deadlock of the user 733 application. 734 735 NOTE: when accessing uncached shared regions, LDREX/STREX rely 736 on an external transaction monitoring block called a global 737 monitor to maintain update atomicity. If your system does not 738 implement a global monitor, this option can cause programs that 739 perform SWP operations to uncached memory to deadlock. 740 741 If unsure, say Y. 742 743config CPU_BIG_ENDIAN 744 bool "Build big-endian kernel" 745 depends on ARCH_SUPPORTS_BIG_ENDIAN 746 help 747 Say Y if you plan on running a kernel in big-endian mode. 748 Note that your board must be properly built and your board 749 port must properly enable any big-endian related features 750 of your chipset/board/processor. 751 752config CPU_ENDIAN_BE8 753 bool 754 depends on CPU_BIG_ENDIAN 755 default CPU_V6 || CPU_V6K || CPU_V7 756 help 757 Support for the BE-8 (big-endian) mode on ARMv6 and ARMv7 processors. 758 759config CPU_ENDIAN_BE32 760 bool 761 depends on CPU_BIG_ENDIAN 762 default !CPU_ENDIAN_BE8 763 help 764 Support for the BE-32 (big-endian) mode on pre-ARMv6 processors. 765 766config CPU_HIGH_VECTOR 767 depends on !MMU && CPU_CP15 && !CPU_ARM740T 768 bool "Select the High exception vector" 769 help 770 Say Y here to select high exception vector(0xFFFF0000~). 771 The exception vector can vary depending on the platform 772 design in nommu mode. If your platform needs to select 773 high exception vector, say Y. 774 Otherwise or if you are unsure, say N, and the low exception 775 vector (0x00000000~) will be used. 776 777config CPU_ICACHE_DISABLE 778 bool "Disable I-Cache (I-bit)" 779 depends on (CPU_CP15 && !(CPU_ARM720T || CPU_ARM740T || CPU_XSCALE || CPU_XSC3)) || CPU_V7M 780 help 781 Say Y here to disable the processor instruction cache. Unless 782 you have a reason not to or are unsure, say N. 783 784config CPU_DCACHE_DISABLE 785 bool "Disable D-Cache (C-bit)" 786 depends on (CPU_CP15 && !SMP) || CPU_V7M 787 help 788 Say Y here to disable the processor data cache. Unless 789 you have a reason not to or are unsure, say N. 790 791config CPU_DCACHE_SIZE 792 hex 793 depends on CPU_ARM740T || CPU_ARM946E 794 default 0x00001000 if CPU_ARM740T 795 default 0x00002000 # default size for ARM946E-S 796 help 797 Some cores are synthesizable to have various sized cache. For 798 ARM946E-S case, it can vary from 0KB to 1MB. 799 To support such cache operations, it is efficient to know the size 800 before compile time. 801 If your SoC is configured to have a different size, define the value 802 here with proper conditions. 803 804config CPU_DCACHE_WRITETHROUGH 805 bool "Force write through D-cache" 806 depends on (CPU_ARM740T || CPU_ARM920T || CPU_ARM922T || CPU_ARM925T || CPU_ARM926T || CPU_ARM940T || CPU_ARM946E || CPU_ARM1020 || CPU_FA526) && !CPU_DCACHE_DISABLE 807 default y if CPU_ARM925T 808 help 809 Say Y here to use the data cache in writethrough mode. Unless you 810 specifically require this or are unsure, say N. 811 812config CPU_CACHE_ROUND_ROBIN 813 bool "Round robin I and D cache replacement algorithm" 814 depends on (CPU_ARM926T || CPU_ARM946E || CPU_ARM1020) && (!CPU_ICACHE_DISABLE || !CPU_DCACHE_DISABLE) 815 help 816 Say Y here to use the predictable round-robin cache replacement 817 policy. Unless you specifically require this or are unsure, say N. 818 819config CPU_BPREDICT_DISABLE 820 bool "Disable branch prediction" 821 depends on CPU_ARM1020 || CPU_V6 || CPU_V6K || CPU_MOHAWK || CPU_XSC3 || CPU_V7 || CPU_FA526 || CPU_V7M 822 help 823 Say Y here to disable branch prediction. If unsure, say N. 824 825config CPU_SPECTRE 826 bool 827 828config HARDEN_BRANCH_PREDICTOR 829 bool "Harden the branch predictor against aliasing attacks" if EXPERT 830 depends on CPU_SPECTRE 831 default y 832 help 833 Speculation attacks against some high-performance processors rely 834 on being able to manipulate the branch predictor for a victim 835 context by executing aliasing branches in the attacker context. 836 Such attacks can be partially mitigated against by clearing 837 internal branch predictor state and limiting the prediction 838 logic in some situations. 839 840 This config option will take CPU-specific actions to harden 841 the branch predictor against aliasing attacks and may rely on 842 specific instruction sequences or control bits being set by 843 the system firmware. 844 845 If unsure, say Y. 846 847config TLS_REG_EMUL 848 bool 849 select NEED_KUSER_HELPERS 850 help 851 An SMP system using a pre-ARMv6 processor (there are apparently 852 a few prototypes like that in existence) and therefore access to 853 that required register must be emulated. 854 855config NEED_KUSER_HELPERS 856 bool 857 858config KUSER_HELPERS 859 bool "Enable kuser helpers in vector page" if !NEED_KUSER_HELPERS 860 depends on MMU 861 default y 862 help 863 Warning: disabling this option may break user programs. 864 865 Provide kuser helpers in the vector page. The kernel provides 866 helper code to userspace in read only form at a fixed location 867 in the high vector page to allow userspace to be independent of 868 the CPU type fitted to the system. This permits binaries to be 869 run on ARMv4 through to ARMv7 without modification. 870 871 See Documentation/arm/kernel_user_helpers.txt for details. 872 873 However, the fixed address nature of these helpers can be used 874 by ROP (return orientated programming) authors when creating 875 exploits. 876 877 If all of the binaries and libraries which run on your platform 878 are built specifically for your platform, and make no use of 879 these helpers, then you can turn this option off to hinder 880 such exploits. However, in that case, if a binary or library 881 relying on those helpers is run, it will receive a SIGILL signal, 882 which will terminate the program. 883 884 Say N here only if you are absolutely certain that you do not 885 need these helpers; otherwise, the safe option is to say Y. 886 887config VDSO 888 bool "Enable VDSO for acceleration of some system calls" 889 depends on AEABI && MMU && CPU_V7 890 default y if ARM_ARCH_TIMER 891 select GENERIC_TIME_VSYSCALL 892 help 893 Place in the process address space an ELF shared object 894 providing fast implementations of gettimeofday and 895 clock_gettime. Systems that implement the ARM architected 896 timer will receive maximum benefit. 897 898 You must have glibc 2.22 or later for programs to seamlessly 899 take advantage of this. 900 901config DMA_CACHE_RWFO 902 bool "Enable read/write for ownership DMA cache maintenance" 903 depends on CPU_V6K && SMP 904 default y 905 help 906 The Snoop Control Unit on ARM11MPCore does not detect the 907 cache maintenance operations and the dma_{map,unmap}_area() 908 functions may leave stale cache entries on other CPUs. By 909 enabling this option, Read or Write For Ownership in the ARMv6 910 DMA cache maintenance functions is performed. These LDR/STR 911 instructions change the cache line state to shared or modified 912 so that the cache operation has the desired effect. 913 914 Note that the workaround is only valid on processors that do 915 not perform speculative loads into the D-cache. For such 916 processors, if cache maintenance operations are not broadcast 917 in hardware, other workarounds are needed (e.g. cache 918 maintenance broadcasting in software via FIQ). 919 920config OUTER_CACHE 921 bool 922 923config OUTER_CACHE_SYNC 924 bool 925 select ARM_HEAVY_MB 926 help 927 The outer cache has a outer_cache_fns.sync function pointer 928 that can be used to drain the write buffer of the outer cache. 929 930config CACHE_B15_RAC 931 bool "Enable the Broadcom Brahma-B15 read-ahead cache controller" 932 depends on ARCH_BRCMSTB 933 default y 934 help 935 This option enables the Broadcom Brahma-B15 read-ahead cache 936 controller. If disabled, the read-ahead cache remains off. 937 938config CACHE_FEROCEON_L2 939 bool "Enable the Feroceon L2 cache controller" 940 depends on ARCH_MV78XX0 || ARCH_MVEBU 941 default y 942 select OUTER_CACHE 943 help 944 This option enables the Feroceon L2 cache controller. 945 946config CACHE_FEROCEON_L2_WRITETHROUGH 947 bool "Force Feroceon L2 cache write through" 948 depends on CACHE_FEROCEON_L2 949 help 950 Say Y here to use the Feroceon L2 cache in writethrough mode. 951 Unless you specifically require this, say N for writeback mode. 952 953config MIGHT_HAVE_CACHE_L2X0 954 bool 955 help 956 This option should be selected by machines which have a L2x0 957 or PL310 cache controller, but where its use is optional. 958 959 The only effect of this option is to make CACHE_L2X0 and 960 related options available to the user for configuration. 961 962 Boards or SoCs which always require the cache controller 963 support to be present should select CACHE_L2X0 directly 964 instead of this option, thus preventing the user from 965 inadvertently configuring a broken kernel. 966 967config CACHE_L2X0 968 bool "Enable the L2x0 outer cache controller" if MIGHT_HAVE_CACHE_L2X0 969 default MIGHT_HAVE_CACHE_L2X0 970 select OUTER_CACHE 971 select OUTER_CACHE_SYNC 972 help 973 This option enables the L2x0 PrimeCell. 974 975config CACHE_L2X0_PMU 976 bool "L2x0 performance monitor support" if CACHE_L2X0 977 depends on PERF_EVENTS 978 help 979 This option enables support for the performance monitoring features 980 of the L220 and PL310 outer cache controllers. 981 982if CACHE_L2X0 983 984config PL310_ERRATA_588369 985 bool "PL310 errata: Clean & Invalidate maintenance operations do not invalidate clean lines" 986 help 987 The PL310 L2 cache controller implements three types of Clean & 988 Invalidate maintenance operations: by Physical Address 989 (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC). 990 They are architecturally defined to behave as the execution of a 991 clean operation followed immediately by an invalidate operation, 992 both performing to the same memory location. This functionality 993 is not correctly implemented in PL310 prior to r2p0 (fixed in r2p0) 994 as clean lines are not invalidated as a result of these operations. 995 996config PL310_ERRATA_727915 997 bool "PL310 errata: Background Clean & Invalidate by Way operation can cause data corruption" 998 help 999 PL310 implements the Clean & Invalidate by Way L2 cache maintenance 1000 operation (offset 0x7FC). This operation runs in background so that 1001 PL310 can handle normal accesses while it is in progress. Under very 1002 rare circumstances, due to this erratum, write data can be lost when 1003 PL310 treats a cacheable write transaction during a Clean & 1004 Invalidate by Way operation. Revisions prior to r3p1 are affected by 1005 this errata (fixed in r3p1). 1006 1007config PL310_ERRATA_753970 1008 bool "PL310 errata: cache sync operation may be faulty" 1009 help 1010 This option enables the workaround for the 753970 PL310 (r3p0) erratum. 1011 1012 Under some condition the effect of cache sync operation on 1013 the store buffer still remains when the operation completes. 1014 This means that the store buffer is always asked to drain and 1015 this prevents it from merging any further writes. The workaround 1016 is to replace the normal offset of cache sync operation (0x730) 1017 by another offset targeting an unmapped PL310 register 0x740. 1018 This has the same effect as the cache sync operation: store buffer 1019 drain and waiting for all buffers empty. 1020 1021config PL310_ERRATA_769419 1022 bool "PL310 errata: no automatic Store Buffer drain" 1023 help 1024 On revisions of the PL310 prior to r3p2, the Store Buffer does 1025 not automatically drain. This can cause normal, non-cacheable 1026 writes to be retained when the memory system is idle, leading 1027 to suboptimal I/O performance for drivers using coherent DMA. 1028 This option adds a write barrier to the cpu_idle loop so that, 1029 on systems with an outer cache, the store buffer is drained 1030 explicitly. 1031 1032endif 1033 1034config CACHE_TAUROS2 1035 bool "Enable the Tauros2 L2 cache controller" 1036 depends on (ARCH_DOVE || ARCH_MMP || CPU_PJ4) 1037 default y 1038 select OUTER_CACHE 1039 help 1040 This option enables the Tauros2 L2 cache controller (as 1041 found on PJ1/PJ4). 1042 1043config CACHE_UNIPHIER 1044 bool "Enable the UniPhier outer cache controller" 1045 depends on ARCH_UNIPHIER 1046 select ARM_L1_CACHE_SHIFT_7 1047 select OUTER_CACHE 1048 select OUTER_CACHE_SYNC 1049 help 1050 This option enables the UniPhier outer cache (system cache) 1051 controller. 1052 1053config CACHE_XSC3L2 1054 bool "Enable the L2 cache on XScale3" 1055 depends on CPU_XSC3 1056 default y 1057 select OUTER_CACHE 1058 help 1059 This option enables the L2 cache on XScale3. 1060 1061config ARM_L1_CACHE_SHIFT_6 1062 bool 1063 default y if CPU_V7 1064 help 1065 Setting ARM L1 cache line size to 64 Bytes. 1066 1067config ARM_L1_CACHE_SHIFT_7 1068 bool 1069 help 1070 Setting ARM L1 cache line size to 128 Bytes. 1071 1072config ARM_L1_CACHE_SHIFT 1073 int 1074 default 7 if ARM_L1_CACHE_SHIFT_7 1075 default 6 if ARM_L1_CACHE_SHIFT_6 1076 default 5 1077 1078config ARM_DMA_MEM_BUFFERABLE 1079 bool "Use non-cacheable memory for DMA" if (CPU_V6 || CPU_V6K || CPU_V7M) && !CPU_V7 1080 default y if CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M 1081 help 1082 Historically, the kernel has used strongly ordered mappings to 1083 provide DMA coherent memory. With the advent of ARMv7, mapping 1084 memory with differing types results in unpredictable behaviour, 1085 so on these CPUs, this option is forced on. 1086 1087 Multiple mappings with differing attributes is also unpredictable 1088 on ARMv6 CPUs, but since they do not have aggressive speculative 1089 prefetch, no harm appears to occur. 1090 1091 However, drivers may be missing the necessary barriers for ARMv6, 1092 and therefore turning this on may result in unpredictable driver 1093 behaviour. Therefore, we offer this as an option. 1094 1095 On some of the beefier ARMv7-M machines (with DMA and write 1096 buffers) you likely want this enabled, while those that 1097 didn't need it until now also won't need it in the future. 1098 1099 You are recommended say 'Y' here and debug any affected drivers. 1100 1101config ARM_HEAVY_MB 1102 bool 1103 1104config ARCH_SUPPORTS_BIG_ENDIAN 1105 bool 1106 help 1107 This option specifies the architecture can support big endian 1108 operation. 1109 1110config DEBUG_ALIGN_RODATA 1111 bool "Make rodata strictly non-executable" 1112 depends on STRICT_KERNEL_RWX 1113 default y 1114 help 1115 If this is set, rodata will be made explicitly non-executable. This 1116 provides protection on the rare chance that attackers might find and 1117 use ROP gadgets that exist in the rodata section. This adds an 1118 additional section-aligned split of rodata from kernel text so it 1119 can be made explicitly non-executable. This padding may waste memory 1120 space to gain the additional protection. 1121