1# SPDX-License-Identifier: GPL-2.0 2comment "Processor Type" 3 4# Select CPU types depending on the architecture selected. This selects 5# which CPUs we support in the kernel image, and the compiler instruction 6# optimiser behaviour. 7 8# ARM7TDMI 9config CPU_ARM7TDMI 10 bool 11 depends on !MMU 12 select CPU_32v4T 13 select CPU_ABRT_LV4T 14 select CPU_CACHE_V4 15 select CPU_PABRT_LEGACY 16 help 17 A 32-bit RISC microprocessor based on the ARM7 processor core 18 which has no memory control unit and cache. 19 20 Say Y if you want support for the ARM7TDMI processor. 21 Otherwise, say N. 22 23# ARM720T 24config CPU_ARM720T 25 bool 26 select CPU_32v4T 27 select CPU_ABRT_LV4T 28 select CPU_CACHE_V4 29 select CPU_CACHE_VIVT 30 select CPU_COPY_V4WT if MMU 31 select CPU_CP15_MMU 32 select CPU_PABRT_LEGACY 33 select CPU_THUMB_CAPABLE 34 select CPU_TLB_V4WT if MMU 35 help 36 A 32-bit RISC processor with 8kByte Cache, Write Buffer and 37 MMU built around an ARM7TDMI core. 38 39 Say Y if you want support for the ARM720T processor. 40 Otherwise, say N. 41 42# ARM740T 43config CPU_ARM740T 44 bool 45 depends on !MMU 46 select CPU_32v4T 47 select CPU_ABRT_LV4T 48 select CPU_CACHE_V4 49 select CPU_CP15_MPU 50 select CPU_PABRT_LEGACY 51 select CPU_THUMB_CAPABLE 52 help 53 A 32-bit RISC processor with 8KB cache or 4KB variants, 54 write buffer and MPU(Protection Unit) built around 55 an ARM7TDMI core. 56 57 Say Y if you want support for the ARM740T processor. 58 Otherwise, say N. 59 60# ARM9TDMI 61config CPU_ARM9TDMI 62 bool 63 depends on !MMU 64 select CPU_32v4T 65 select CPU_ABRT_NOMMU 66 select CPU_CACHE_V4 67 select CPU_PABRT_LEGACY 68 help 69 A 32-bit RISC microprocessor based on the ARM9 processor core 70 which has no memory control unit and cache. 71 72 Say Y if you want support for the ARM9TDMI processor. 73 Otherwise, say N. 74 75# ARM920T 76config CPU_ARM920T 77 bool 78 select CPU_32v4T 79 select CPU_ABRT_EV4T 80 select CPU_CACHE_V4WT 81 select CPU_CACHE_VIVT 82 select CPU_COPY_V4WB if MMU 83 select CPU_CP15_MMU 84 select CPU_PABRT_LEGACY 85 select CPU_THUMB_CAPABLE 86 select CPU_TLB_V4WBI if MMU 87 help 88 The ARM920T is licensed to be produced by numerous vendors, 89 and is used in the Cirrus EP93xx and the Samsung S3C2410. 90 91 Say Y if you want support for the ARM920T processor. 92 Otherwise, say N. 93 94# ARM922T 95config CPU_ARM922T 96 bool 97 select CPU_32v4T 98 select CPU_ABRT_EV4T 99 select CPU_CACHE_V4WT 100 select CPU_CACHE_VIVT 101 select CPU_COPY_V4WB if MMU 102 select CPU_CP15_MMU 103 select CPU_PABRT_LEGACY 104 select CPU_THUMB_CAPABLE 105 select CPU_TLB_V4WBI if MMU 106 help 107 The ARM922T is a version of the ARM920T, but with smaller 108 instruction and data caches. It is used in Altera's 109 Excalibur XA device family and the ARM Integrator. 110 111 Say Y if you want support for the ARM922T processor. 112 Otherwise, say N. 113 114# ARM925T 115config CPU_ARM925T 116 bool 117 select CPU_32v4T 118 select CPU_ABRT_EV4T 119 select CPU_CACHE_V4WT 120 select CPU_CACHE_VIVT 121 select CPU_COPY_V4WB if MMU 122 select CPU_CP15_MMU 123 select CPU_PABRT_LEGACY 124 select CPU_THUMB_CAPABLE 125 select CPU_TLB_V4WBI if MMU 126 help 127 The ARM925T is a mix between the ARM920T and ARM926T, but with 128 different instruction and data caches. It is used in TI's OMAP 129 device family. 130 131 Say Y if you want support for the ARM925T processor. 132 Otherwise, say N. 133 134# ARM926T 135config CPU_ARM926T 136 bool 137 select CPU_32v5 138 select CPU_ABRT_EV5TJ 139 select CPU_CACHE_VIVT 140 select CPU_COPY_V4WB if MMU 141 select CPU_CP15_MMU 142 select CPU_PABRT_LEGACY 143 select CPU_THUMB_CAPABLE 144 select CPU_TLB_V4WBI if MMU 145 help 146 This is a variant of the ARM920. It has slightly different 147 instruction sequences for cache and TLB operations. Curiously, 148 there is no documentation on it at the ARM corporate website. 149 150 Say Y if you want support for the ARM926T processor. 151 Otherwise, say N. 152 153# FA526 154config CPU_FA526 155 bool 156 select CPU_32v4 157 select CPU_ABRT_EV4 158 select CPU_CACHE_FA 159 select CPU_CACHE_VIVT 160 select CPU_COPY_FA if MMU 161 select CPU_CP15_MMU 162 select CPU_PABRT_LEGACY 163 select CPU_TLB_FA if MMU 164 help 165 The FA526 is a version of the ARMv4 compatible processor with 166 Branch Target Buffer, Unified TLB and cache line size 16. 167 168 Say Y if you want support for the FA526 processor. 169 Otherwise, say N. 170 171# ARM940T 172config CPU_ARM940T 173 bool 174 depends on !MMU 175 select CPU_32v4T 176 select CPU_ABRT_NOMMU 177 select CPU_CACHE_VIVT 178 select CPU_CP15_MPU 179 select CPU_PABRT_LEGACY 180 select CPU_THUMB_CAPABLE 181 help 182 ARM940T is a member of the ARM9TDMI family of general- 183 purpose microprocessors with MPU and separate 4KB 184 instruction and 4KB data cases, each with a 4-word line 185 length. 186 187 Say Y if you want support for the ARM940T processor. 188 Otherwise, say N. 189 190# ARM946E-S 191config CPU_ARM946E 192 bool 193 depends on !MMU 194 select CPU_32v5 195 select CPU_ABRT_NOMMU 196 select CPU_CACHE_VIVT 197 select CPU_CP15_MPU 198 select CPU_PABRT_LEGACY 199 select CPU_THUMB_CAPABLE 200 help 201 ARM946E-S is a member of the ARM9E-S family of high- 202 performance, 32-bit system-on-chip processor solutions. 203 The TCM and ARMv5TE 32-bit instruction set is supported. 204 205 Say Y if you want support for the ARM946E-S processor. 206 Otherwise, say N. 207 208# ARM1020 - needs validating 209config CPU_ARM1020 210 bool 211 select CPU_32v5 212 select CPU_ABRT_EV4T 213 select CPU_CACHE_V4WT 214 select CPU_CACHE_VIVT 215 select CPU_COPY_V4WB if MMU 216 select CPU_CP15_MMU 217 select CPU_PABRT_LEGACY 218 select CPU_THUMB_CAPABLE 219 select CPU_TLB_V4WBI if MMU 220 help 221 The ARM1020 is the 32K cached version of the ARM10 processor, 222 with an addition of a floating-point unit. 223 224 Say Y if you want support for the ARM1020 processor. 225 Otherwise, say N. 226 227# ARM1020E - needs validating 228config CPU_ARM1020E 229 bool 230 depends on n 231 select CPU_32v5 232 select CPU_ABRT_EV4T 233 select CPU_CACHE_V4WT 234 select CPU_CACHE_VIVT 235 select CPU_COPY_V4WB if MMU 236 select CPU_CP15_MMU 237 select CPU_PABRT_LEGACY 238 select CPU_THUMB_CAPABLE 239 select CPU_TLB_V4WBI if MMU 240 241# ARM1022E 242config CPU_ARM1022 243 bool 244 select CPU_32v5 245 select CPU_ABRT_EV4T 246 select CPU_CACHE_VIVT 247 select CPU_COPY_V4WB if MMU # can probably do better 248 select CPU_CP15_MMU 249 select CPU_PABRT_LEGACY 250 select CPU_THUMB_CAPABLE 251 select CPU_TLB_V4WBI if MMU 252 help 253 The ARM1022E is an implementation of the ARMv5TE architecture 254 based upon the ARM10 integer core with a 16KiB L1 Harvard cache, 255 embedded trace macrocell, and a floating-point unit. 256 257 Say Y if you want support for the ARM1022E processor. 258 Otherwise, say N. 259 260# ARM1026EJ-S 261config CPU_ARM1026 262 bool 263 select CPU_32v5 264 select CPU_ABRT_EV5T # But need Jazelle, but EV5TJ ignores bit 10 265 select CPU_CACHE_VIVT 266 select CPU_COPY_V4WB if MMU # can probably do better 267 select CPU_CP15_MMU 268 select CPU_PABRT_LEGACY 269 select CPU_THUMB_CAPABLE 270 select CPU_TLB_V4WBI if MMU 271 help 272 The ARM1026EJ-S is an implementation of the ARMv5TEJ architecture 273 based upon the ARM10 integer core. 274 275 Say Y if you want support for the ARM1026EJ-S processor. 276 Otherwise, say N. 277 278# SA110 279config CPU_SA110 280 bool 281 select CPU_32v3 if ARCH_RPC 282 select CPU_32v4 if !ARCH_RPC 283 select CPU_ABRT_EV4 284 select CPU_CACHE_V4WB 285 select CPU_CACHE_VIVT 286 select CPU_COPY_V4WB if MMU 287 select CPU_CP15_MMU 288 select CPU_PABRT_LEGACY 289 select CPU_TLB_V4WB if MMU 290 help 291 The Intel StrongARM(R) SA-110 is a 32-bit microprocessor and 292 is available at five speeds ranging from 100 MHz to 233 MHz. 293 More information is available at 294 <http://developer.intel.com/design/strong/sa110.htm>. 295 296 Say Y if you want support for the SA-110 processor. 297 Otherwise, say N. 298 299# SA1100 300config CPU_SA1100 301 bool 302 select CPU_32v4 303 select CPU_ABRT_EV4 304 select CPU_CACHE_V4WB 305 select CPU_CACHE_VIVT 306 select CPU_CP15_MMU 307 select CPU_PABRT_LEGACY 308 select CPU_TLB_V4WB if MMU 309 310# XScale 311config CPU_XSCALE 312 bool 313 select CPU_32v5 314 select CPU_ABRT_EV5T 315 select CPU_CACHE_VIVT 316 select CPU_CP15_MMU 317 select CPU_PABRT_LEGACY 318 select CPU_THUMB_CAPABLE 319 select CPU_TLB_V4WBI if MMU 320 321# XScale Core Version 3 322config CPU_XSC3 323 bool 324 select CPU_32v5 325 select CPU_ABRT_EV5T 326 select CPU_CACHE_VIVT 327 select CPU_CP15_MMU 328 select CPU_PABRT_LEGACY 329 select CPU_THUMB_CAPABLE 330 select CPU_TLB_V4WBI if MMU 331 select IO_36 332 333# Marvell PJ1 (Mohawk) 334config CPU_MOHAWK 335 bool 336 select CPU_32v5 337 select CPU_ABRT_EV5T 338 select CPU_CACHE_VIVT 339 select CPU_COPY_V4WB if MMU 340 select CPU_CP15_MMU 341 select CPU_PABRT_LEGACY 342 select CPU_THUMB_CAPABLE 343 select CPU_TLB_V4WBI if MMU 344 345# Feroceon 346config CPU_FEROCEON 347 bool 348 select CPU_32v5 349 select CPU_ABRT_EV5T 350 select CPU_CACHE_VIVT 351 select CPU_COPY_FEROCEON if MMU 352 select CPU_CP15_MMU 353 select CPU_PABRT_LEGACY 354 select CPU_THUMB_CAPABLE 355 select CPU_TLB_FEROCEON if MMU 356 357config CPU_FEROCEON_OLD_ID 358 bool "Accept early Feroceon cores with an ARM926 ID" 359 depends on CPU_FEROCEON && !CPU_ARM926T 360 default y 361 help 362 This enables the usage of some old Feroceon cores 363 for which the CPU ID is equal to the ARM926 ID. 364 Relevant for Feroceon-1850 and early Feroceon-2850. 365 366# Marvell PJ4 367config CPU_PJ4 368 bool 369 select ARM_THUMBEE 370 select CPU_V7 371 372config CPU_PJ4B 373 bool 374 select CPU_V7 375 376# ARMv6 377config CPU_V6 378 bool 379 select CPU_32v6 380 select CPU_ABRT_EV6 381 select CPU_CACHE_V6 382 select CPU_CACHE_VIPT 383 select CPU_COPY_V6 if MMU 384 select CPU_CP15_MMU 385 select CPU_HAS_ASID if MMU 386 select CPU_PABRT_V6 387 select CPU_THUMB_CAPABLE 388 select CPU_TLB_V6 if MMU 389 select SMP_ON_UP if SMP 390 391# ARMv6k 392config CPU_V6K 393 bool 394 select CPU_32v6 395 select CPU_32v6K 396 select CPU_ABRT_EV6 397 select CPU_CACHE_V6 398 select CPU_CACHE_VIPT 399 select CPU_COPY_V6 if MMU 400 select CPU_CP15_MMU 401 select CPU_HAS_ASID if MMU 402 select CPU_PABRT_V6 403 select CPU_THUMB_CAPABLE 404 select CPU_TLB_V6 if MMU 405 406# ARMv7 407config CPU_V7 408 bool 409 select CPU_32v6K 410 select CPU_32v7 411 select CPU_ABRT_EV7 412 select CPU_CACHE_V7 413 select CPU_CACHE_VIPT 414 select CPU_COPY_V6 if MMU 415 select CPU_CP15_MMU if MMU 416 select CPU_CP15_MPU if !MMU 417 select CPU_HAS_ASID if MMU 418 select CPU_PABRT_V7 419 select CPU_SPECTRE if MMU 420 select CPU_THUMB_CAPABLE 421 select CPU_TLB_V7 if MMU 422 423# ARMv7M 424config CPU_V7M 425 bool 426 select CPU_32v7M 427 select CPU_ABRT_NOMMU 428 select CPU_CACHE_V7M 429 select CPU_CACHE_NOP 430 select CPU_PABRT_LEGACY 431 select CPU_THUMBONLY 432 433config CPU_THUMBONLY 434 bool 435 select CPU_THUMB_CAPABLE 436 # There are no CPUs available with MMU that don't implement an ARM ISA: 437 depends on !MMU 438 help 439 Select this if your CPU doesn't support the 32 bit ARM instructions. 440 441config CPU_THUMB_CAPABLE 442 bool 443 help 444 Select this if your CPU can support Thumb mode. 445 446# Figure out what processor architecture version we should be using. 447# This defines the compiler instruction set which depends on the machine type. 448config CPU_32v3 449 bool 450 select CPU_USE_DOMAINS if MMU 451 select NEED_KUSER_HELPERS 452 select TLS_REG_EMUL if SMP || !MMU 453 select CPU_NO_EFFICIENT_FFS 454 455config CPU_32v4 456 bool 457 select CPU_USE_DOMAINS if MMU 458 select NEED_KUSER_HELPERS 459 select TLS_REG_EMUL if SMP || !MMU 460 select CPU_NO_EFFICIENT_FFS 461 462config CPU_32v4T 463 bool 464 select CPU_USE_DOMAINS if MMU 465 select NEED_KUSER_HELPERS 466 select TLS_REG_EMUL if SMP || !MMU 467 select CPU_NO_EFFICIENT_FFS 468 469config CPU_32v5 470 bool 471 select CPU_USE_DOMAINS if MMU 472 select NEED_KUSER_HELPERS 473 select TLS_REG_EMUL if SMP || !MMU 474 475config CPU_32v6 476 bool 477 select TLS_REG_EMUL if !CPU_32v6K && !MMU 478 479config CPU_32v6K 480 bool 481 482config CPU_32v7 483 bool 484 485config CPU_32v7M 486 bool 487 488# The abort model 489config CPU_ABRT_NOMMU 490 bool 491 492config CPU_ABRT_EV4 493 bool 494 495config CPU_ABRT_EV4T 496 bool 497 498config CPU_ABRT_LV4T 499 bool 500 501config CPU_ABRT_EV5T 502 bool 503 504config CPU_ABRT_EV5TJ 505 bool 506 507config CPU_ABRT_EV6 508 bool 509 510config CPU_ABRT_EV7 511 bool 512 513config CPU_PABRT_LEGACY 514 bool 515 516config CPU_PABRT_V6 517 bool 518 519config CPU_PABRT_V7 520 bool 521 522# The cache model 523config CPU_CACHE_V4 524 bool 525 526config CPU_CACHE_V4WT 527 bool 528 529config CPU_CACHE_V4WB 530 bool 531 532config CPU_CACHE_V6 533 bool 534 535config CPU_CACHE_V7 536 bool 537 538config CPU_CACHE_NOP 539 bool 540 541config CPU_CACHE_VIVT 542 bool 543 544config CPU_CACHE_VIPT 545 bool 546 547config CPU_CACHE_FA 548 bool 549 550config CPU_CACHE_V7M 551 bool 552 553if MMU 554# The copy-page model 555config CPU_COPY_V4WT 556 bool 557 558config CPU_COPY_V4WB 559 bool 560 561config CPU_COPY_FEROCEON 562 bool 563 564config CPU_COPY_FA 565 bool 566 567config CPU_COPY_V6 568 bool 569 570# This selects the TLB model 571config CPU_TLB_V4WT 572 bool 573 help 574 ARM Architecture Version 4 TLB with writethrough cache. 575 576config CPU_TLB_V4WB 577 bool 578 help 579 ARM Architecture Version 4 TLB with writeback cache. 580 581config CPU_TLB_V4WBI 582 bool 583 help 584 ARM Architecture Version 4 TLB with writeback cache and invalidate 585 instruction cache entry. 586 587config CPU_TLB_FEROCEON 588 bool 589 help 590 Feroceon TLB (v4wbi with non-outer-cachable page table walks). 591 592config CPU_TLB_FA 593 bool 594 help 595 Faraday ARM FA526 architecture, unified TLB with writeback cache 596 and invalidate instruction cache entry. Branch target buffer is 597 also supported. 598 599config CPU_TLB_V6 600 bool 601 602config CPU_TLB_V7 603 bool 604 605endif 606 607config CPU_HAS_ASID 608 bool 609 help 610 This indicates whether the CPU has the ASID register; used to 611 tag TLB and possibly cache entries. 612 613config CPU_CP15 614 bool 615 help 616 Processor has the CP15 register. 617 618config CPU_CP15_MMU 619 bool 620 select CPU_CP15 621 help 622 Processor has the CP15 register, which has MMU related registers. 623 624config CPU_CP15_MPU 625 bool 626 select CPU_CP15 627 help 628 Processor has the CP15 register, which has MPU related registers. 629 630config CPU_USE_DOMAINS 631 bool 632 help 633 This option enables or disables the use of domain switching 634 via the set_fs() function. 635 636config CPU_V7M_NUM_IRQ 637 int "Number of external interrupts connected to the NVIC" 638 depends on CPU_V7M 639 default 90 if ARCH_STM32 640 default 112 if SOC_VF610 641 default 240 642 help 643 This option indicates the number of interrupts connected to the NVIC. 644 The value can be larger than the real number of interrupts supported 645 by the system, but must not be lower. 646 The default value is 240, corresponding to the maximum number of 647 interrupts supported by the NVIC on Cortex-M family. 648 649 If unsure, keep default value. 650 651# 652# CPU supports 36-bit I/O 653# 654config IO_36 655 bool 656 657comment "Processor Features" 658 659config ARM_LPAE 660 bool "Support for the Large Physical Address Extension" 661 depends on MMU && CPU_32v7 && !CPU_32v6 && !CPU_32v5 && \ 662 !CPU_32v4 && !CPU_32v3 663 select PHYS_ADDR_T_64BIT 664 select SWIOTLB 665 help 666 Say Y if you have an ARMv7 processor supporting the LPAE page 667 table format and you would like to access memory beyond the 668 4GB limit. The resulting kernel image will not run on 669 processors without the LPA extension. 670 671 If unsure, say N. 672 673config ARM_PV_FIXUP 674 def_bool y 675 depends on ARM_LPAE && ARM_PATCH_PHYS_VIRT && ARCH_KEYSTONE 676 677config ARM_THUMB 678 bool "Support Thumb user binaries" if !CPU_THUMBONLY && EXPERT 679 depends on CPU_THUMB_CAPABLE && !CPU_32v4 680 default y 681 help 682 Say Y if you want to include kernel support for running user space 683 Thumb binaries. 684 685 The Thumb instruction set is a compressed form of the standard ARM 686 instruction set resulting in smaller binaries at the expense of 687 slightly less efficient code. 688 689 If this option is disabled, and you run userspace that switches to 690 Thumb mode, signal handling will not work correctly, resulting in 691 segmentation faults or illegal instruction aborts. 692 693 If you don't know what this all is, saying Y is a safe choice. 694 695config ARM_THUMBEE 696 bool "Enable ThumbEE CPU extension" 697 depends on CPU_V7 698 help 699 Say Y here if you have a CPU with the ThumbEE extension and code to 700 make use of it. Say N for code that can run on CPUs without ThumbEE. 701 702config ARM_VIRT_EXT 703 bool 704 default y if CPU_V7 705 help 706 Enable the kernel to make use of the ARM Virtualization 707 Extensions to install hypervisors without run-time firmware 708 assistance. 709 710 A compliant bootloader is required in order to make maximum 711 use of this feature. Refer to Documentation/arm/booting.rst for 712 details. 713 714config SWP_EMULATE 715 bool "Emulate SWP/SWPB instructions" if !SMP 716 depends on CPU_V7 717 default y if SMP 718 select HAVE_PROC_CPU if PROC_FS 719 help 720 ARMv6 architecture deprecates use of the SWP/SWPB instructions. 721 ARMv7 multiprocessing extensions introduce the ability to disable 722 these instructions, triggering an undefined instruction exception 723 when executed. Say Y here to enable software emulation of these 724 instructions for userspace (not kernel) using LDREX/STREX. 725 Also creates /proc/cpu/swp_emulation for statistics. 726 727 In some older versions of glibc [<=2.8] SWP is used during futex 728 trylock() operations with the assumption that the code will not 729 be preempted. This invalid assumption may be more likely to fail 730 with SWP emulation enabled, leading to deadlock of the user 731 application. 732 733 NOTE: when accessing uncached shared regions, LDREX/STREX rely 734 on an external transaction monitoring block called a global 735 monitor to maintain update atomicity. If your system does not 736 implement a global monitor, this option can cause programs that 737 perform SWP operations to uncached memory to deadlock. 738 739 If unsure, say Y. 740 741choice 742 prompt "CPU Endianess" 743 default CPU_LITTLE_ENDIAN 744 745config CPU_LITTLE_ENDIAN 746 bool "Built little-endian kernel" 747 help 748 Say Y if you plan on running a kernel in little-endian mode. 749 This is the default and is used in practically all modern user 750 space builds. 751 752config CPU_BIG_ENDIAN 753 bool "Build big-endian kernel" 754 depends on !LD_IS_LLD 755 help 756 Say Y if you plan on running a kernel in big-endian mode. 757 This works on many machines using ARMv6 or newer processors 758 but requires big-endian user space. 759 760 The only ARMv5 platform with big-endian support is 761 Intel IXP4xx. 762 763endchoice 764 765config CPU_ENDIAN_BE8 766 bool 767 depends on CPU_BIG_ENDIAN 768 default CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M 769 help 770 Support for the BE-8 (big-endian) mode on ARMv6 and ARMv7 processors. 771 772config CPU_ENDIAN_BE32 773 bool 774 depends on CPU_BIG_ENDIAN 775 default !CPU_ENDIAN_BE8 776 help 777 Support for the BE-32 (big-endian) mode on pre-ARMv6 processors. 778 779config CPU_HIGH_VECTOR 780 depends on !MMU && CPU_CP15 && !CPU_ARM740T 781 bool "Select the High exception vector" 782 help 783 Say Y here to select high exception vector(0xFFFF0000~). 784 The exception vector can vary depending on the platform 785 design in nommu mode. If your platform needs to select 786 high exception vector, say Y. 787 Otherwise or if you are unsure, say N, and the low exception 788 vector (0x00000000~) will be used. 789 790config CPU_ICACHE_DISABLE 791 bool "Disable I-Cache (I-bit)" 792 depends on (CPU_CP15 && !(CPU_ARM720T || CPU_ARM740T || CPU_XSCALE || CPU_XSC3)) || CPU_V7M 793 help 794 Say Y here to disable the processor instruction cache. Unless 795 you have a reason not to or are unsure, say N. 796 797config CPU_ICACHE_MISMATCH_WORKAROUND 798 bool "Workaround for I-Cache line size mismatch between CPU cores" 799 depends on SMP && CPU_V7 800 help 801 Some big.LITTLE systems have I-Cache line size mismatch between 802 LITTLE and big cores. Say Y here to enable a workaround for 803 proper I-Cache support on such systems. If unsure, say N. 804 805config CPU_DCACHE_DISABLE 806 bool "Disable D-Cache (C-bit)" 807 depends on (CPU_CP15 && !SMP) || CPU_V7M 808 help 809 Say Y here to disable the processor data cache. Unless 810 you have a reason not to or are unsure, say N. 811 812config CPU_DCACHE_SIZE 813 hex 814 depends on CPU_ARM740T || CPU_ARM946E 815 default 0x00001000 if CPU_ARM740T 816 default 0x00002000 # default size for ARM946E-S 817 help 818 Some cores are synthesizable to have various sized cache. For 819 ARM946E-S case, it can vary from 0KB to 1MB. 820 To support such cache operations, it is efficient to know the size 821 before compile time. 822 If your SoC is configured to have a different size, define the value 823 here with proper conditions. 824 825config CPU_DCACHE_WRITETHROUGH 826 bool "Force write through D-cache" 827 depends on (CPU_ARM740T || CPU_ARM920T || CPU_ARM922T || CPU_ARM925T || CPU_ARM926T || CPU_ARM940T || CPU_ARM946E || CPU_ARM1020 || CPU_FA526) && !CPU_DCACHE_DISABLE 828 default y if CPU_ARM925T 829 help 830 Say Y here to use the data cache in writethrough mode. Unless you 831 specifically require this or are unsure, say N. 832 833config CPU_CACHE_ROUND_ROBIN 834 bool "Round robin I and D cache replacement algorithm" 835 depends on (CPU_ARM926T || CPU_ARM946E || CPU_ARM1020) && (!CPU_ICACHE_DISABLE || !CPU_DCACHE_DISABLE) 836 help 837 Say Y here to use the predictable round-robin cache replacement 838 policy. Unless you specifically require this or are unsure, say N. 839 840config CPU_BPREDICT_DISABLE 841 bool "Disable branch prediction" 842 depends on CPU_ARM1020 || CPU_V6 || CPU_V6K || CPU_MOHAWK || CPU_XSC3 || CPU_V7 || CPU_FA526 || CPU_V7M 843 help 844 Say Y here to disable branch prediction. If unsure, say N. 845 846config CPU_SPECTRE 847 bool 848 select GENERIC_CPU_VULNERABILITIES 849 850config HARDEN_BRANCH_PREDICTOR 851 bool "Harden the branch predictor against aliasing attacks" if EXPERT 852 depends on CPU_SPECTRE 853 default y 854 help 855 Speculation attacks against some high-performance processors rely 856 on being able to manipulate the branch predictor for a victim 857 context by executing aliasing branches in the attacker context. 858 Such attacks can be partially mitigated against by clearing 859 internal branch predictor state and limiting the prediction 860 logic in some situations. 861 862 This config option will take CPU-specific actions to harden 863 the branch predictor against aliasing attacks and may rely on 864 specific instruction sequences or control bits being set by 865 the system firmware. 866 867 If unsure, say Y. 868 869config HARDEN_BRANCH_HISTORY 870 bool "Harden Spectre style attacks against branch history" if EXPERT 871 depends on CPU_SPECTRE 872 default y 873 help 874 Speculation attacks against some high-performance processors can 875 make use of branch history to influence future speculation. When 876 taking an exception, a sequence of branches overwrites the branch 877 history, or branch history is invalidated. 878 879config TLS_REG_EMUL 880 bool 881 select NEED_KUSER_HELPERS 882 help 883 An SMP system using a pre-ARMv6 processor (there are apparently 884 a few prototypes like that in existence) and therefore access to 885 that required register must be emulated. 886 887config NEED_KUSER_HELPERS 888 bool 889 890config KUSER_HELPERS 891 bool "Enable kuser helpers in vector page" if !NEED_KUSER_HELPERS 892 depends on MMU 893 default y 894 help 895 Warning: disabling this option may break user programs. 896 897 Provide kuser helpers in the vector page. The kernel provides 898 helper code to userspace in read only form at a fixed location 899 in the high vector page to allow userspace to be independent of 900 the CPU type fitted to the system. This permits binaries to be 901 run on ARMv4 through to ARMv7 without modification. 902 903 See Documentation/arm/kernel_user_helpers.rst for details. 904 905 However, the fixed address nature of these helpers can be used 906 by ROP (return orientated programming) authors when creating 907 exploits. 908 909 If all of the binaries and libraries which run on your platform 910 are built specifically for your platform, and make no use of 911 these helpers, then you can turn this option off to hinder 912 such exploits. However, in that case, if a binary or library 913 relying on those helpers is run, it will receive a SIGILL signal, 914 which will terminate the program. 915 916 Say N here only if you are absolutely certain that you do not 917 need these helpers; otherwise, the safe option is to say Y. 918 919config VDSO 920 bool "Enable VDSO for acceleration of some system calls" 921 depends on AEABI && MMU && CPU_V7 922 default y if ARM_ARCH_TIMER 923 select HAVE_GENERIC_VDSO 924 select GENERIC_TIME_VSYSCALL 925 select GENERIC_VDSO_32 926 select GENERIC_GETTIMEOFDAY 927 help 928 Place in the process address space an ELF shared object 929 providing fast implementations of gettimeofday and 930 clock_gettime. Systems that implement the ARM architected 931 timer will receive maximum benefit. 932 933 You must have glibc 2.22 or later for programs to seamlessly 934 take advantage of this. 935 936config DMA_CACHE_RWFO 937 bool "Enable read/write for ownership DMA cache maintenance" 938 depends on CPU_V6K && SMP 939 default y 940 help 941 The Snoop Control Unit on ARM11MPCore does not detect the 942 cache maintenance operations and the dma_{map,unmap}_area() 943 functions may leave stale cache entries on other CPUs. By 944 enabling this option, Read or Write For Ownership in the ARMv6 945 DMA cache maintenance functions is performed. These LDR/STR 946 instructions change the cache line state to shared or modified 947 so that the cache operation has the desired effect. 948 949 Note that the workaround is only valid on processors that do 950 not perform speculative loads into the D-cache. For such 951 processors, if cache maintenance operations are not broadcast 952 in hardware, other workarounds are needed (e.g. cache 953 maintenance broadcasting in software via FIQ). 954 955config OUTER_CACHE 956 bool 957 958config OUTER_CACHE_SYNC 959 bool 960 select ARM_HEAVY_MB 961 help 962 The outer cache has a outer_cache_fns.sync function pointer 963 that can be used to drain the write buffer of the outer cache. 964 965config CACHE_B15_RAC 966 bool "Enable the Broadcom Brahma-B15 read-ahead cache controller" 967 depends on ARCH_BRCMSTB 968 default y 969 help 970 This option enables the Broadcom Brahma-B15 read-ahead cache 971 controller. If disabled, the read-ahead cache remains off. 972 973config CACHE_FEROCEON_L2 974 bool "Enable the Feroceon L2 cache controller" 975 depends on ARCH_MV78XX0 || ARCH_MVEBU 976 default y 977 select OUTER_CACHE 978 help 979 This option enables the Feroceon L2 cache controller. 980 981config CACHE_FEROCEON_L2_WRITETHROUGH 982 bool "Force Feroceon L2 cache write through" 983 depends on CACHE_FEROCEON_L2 984 help 985 Say Y here to use the Feroceon L2 cache in writethrough mode. 986 Unless you specifically require this, say N for writeback mode. 987 988config MIGHT_HAVE_CACHE_L2X0 989 bool 990 help 991 This option should be selected by machines which have a L2x0 992 or PL310 cache controller, but where its use is optional. 993 994 The only effect of this option is to make CACHE_L2X0 and 995 related options available to the user for configuration. 996 997 Boards or SoCs which always require the cache controller 998 support to be present should select CACHE_L2X0 directly 999 instead of this option, thus preventing the user from 1000 inadvertently configuring a broken kernel. 1001 1002config CACHE_L2X0 1003 bool "Enable the L2x0 outer cache controller" if MIGHT_HAVE_CACHE_L2X0 1004 default MIGHT_HAVE_CACHE_L2X0 1005 select OUTER_CACHE 1006 select OUTER_CACHE_SYNC 1007 help 1008 This option enables the L2x0 PrimeCell. 1009 1010config CACHE_L2X0_PMU 1011 bool "L2x0 performance monitor support" if CACHE_L2X0 1012 depends on PERF_EVENTS 1013 help 1014 This option enables support for the performance monitoring features 1015 of the L220 and PL310 outer cache controllers. 1016 1017if CACHE_L2X0 1018 1019config PL310_ERRATA_588369 1020 bool "PL310 errata: Clean & Invalidate maintenance operations do not invalidate clean lines" 1021 help 1022 The PL310 L2 cache controller implements three types of Clean & 1023 Invalidate maintenance operations: by Physical Address 1024 (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC). 1025 They are architecturally defined to behave as the execution of a 1026 clean operation followed immediately by an invalidate operation, 1027 both performing to the same memory location. This functionality 1028 is not correctly implemented in PL310 prior to r2p0 (fixed in r2p0) 1029 as clean lines are not invalidated as a result of these operations. 1030 1031config PL310_ERRATA_727915 1032 bool "PL310 errata: Background Clean & Invalidate by Way operation can cause data corruption" 1033 help 1034 PL310 implements the Clean & Invalidate by Way L2 cache maintenance 1035 operation (offset 0x7FC). This operation runs in background so that 1036 PL310 can handle normal accesses while it is in progress. Under very 1037 rare circumstances, due to this erratum, write data can be lost when 1038 PL310 treats a cacheable write transaction during a Clean & 1039 Invalidate by Way operation. Revisions prior to r3p1 are affected by 1040 this errata (fixed in r3p1). 1041 1042config PL310_ERRATA_753970 1043 bool "PL310 errata: cache sync operation may be faulty" 1044 help 1045 This option enables the workaround for the 753970 PL310 (r3p0) erratum. 1046 1047 Under some condition the effect of cache sync operation on 1048 the store buffer still remains when the operation completes. 1049 This means that the store buffer is always asked to drain and 1050 this prevents it from merging any further writes. The workaround 1051 is to replace the normal offset of cache sync operation (0x730) 1052 by another offset targeting an unmapped PL310 register 0x740. 1053 This has the same effect as the cache sync operation: store buffer 1054 drain and waiting for all buffers empty. 1055 1056config PL310_ERRATA_769419 1057 bool "PL310 errata: no automatic Store Buffer drain" 1058 help 1059 On revisions of the PL310 prior to r3p2, the Store Buffer does 1060 not automatically drain. This can cause normal, non-cacheable 1061 writes to be retained when the memory system is idle, leading 1062 to suboptimal I/O performance for drivers using coherent DMA. 1063 This option adds a write barrier to the cpu_idle loop so that, 1064 on systems with an outer cache, the store buffer is drained 1065 explicitly. 1066 1067endif 1068 1069config CACHE_TAUROS2 1070 bool "Enable the Tauros2 L2 cache controller" 1071 depends on (CPU_MOHAWK || CPU_PJ4) 1072 default y 1073 select OUTER_CACHE 1074 help 1075 This option enables the Tauros2 L2 cache controller (as 1076 found on PJ1/PJ4). 1077 1078config CACHE_UNIPHIER 1079 bool "Enable the UniPhier outer cache controller" 1080 depends on ARCH_UNIPHIER 1081 select ARM_L1_CACHE_SHIFT_7 1082 select OUTER_CACHE 1083 select OUTER_CACHE_SYNC 1084 help 1085 This option enables the UniPhier outer cache (system cache) 1086 controller. 1087 1088config CACHE_XSC3L2 1089 bool "Enable the L2 cache on XScale3" 1090 depends on CPU_XSC3 1091 default y 1092 select OUTER_CACHE 1093 help 1094 This option enables the L2 cache on XScale3. 1095 1096config ARM_L1_CACHE_SHIFT_6 1097 bool 1098 default y if CPU_V7 1099 help 1100 Setting ARM L1 cache line size to 64 Bytes. 1101 1102config ARM_L1_CACHE_SHIFT_7 1103 bool 1104 help 1105 Setting ARM L1 cache line size to 128 Bytes. 1106 1107config ARM_L1_CACHE_SHIFT 1108 int 1109 default 7 if ARM_L1_CACHE_SHIFT_7 1110 default 6 if ARM_L1_CACHE_SHIFT_6 1111 default 5 1112 1113config ARM_DMA_MEM_BUFFERABLE 1114 bool "Use non-cacheable memory for DMA" if (CPU_V6 || CPU_V6K || CPU_V7M) && !CPU_V7 1115 default y if CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M 1116 help 1117 Historically, the kernel has used strongly ordered mappings to 1118 provide DMA coherent memory. With the advent of ARMv7, mapping 1119 memory with differing types results in unpredictable behaviour, 1120 so on these CPUs, this option is forced on. 1121 1122 Multiple mappings with differing attributes is also unpredictable 1123 on ARMv6 CPUs, but since they do not have aggressive speculative 1124 prefetch, no harm appears to occur. 1125 1126 However, drivers may be missing the necessary barriers for ARMv6, 1127 and therefore turning this on may result in unpredictable driver 1128 behaviour. Therefore, we offer this as an option. 1129 1130 On some of the beefier ARMv7-M machines (with DMA and write 1131 buffers) you likely want this enabled, while those that 1132 didn't need it until now also won't need it in the future. 1133 1134 You are recommended say 'Y' here and debug any affected drivers. 1135 1136config ARM_HEAVY_MB 1137 bool 1138 1139config DEBUG_ALIGN_RODATA 1140 bool "Make rodata strictly non-executable" 1141 depends on STRICT_KERNEL_RWX 1142 default y 1143 help 1144 If this is set, rodata will be made explicitly non-executable. This 1145 provides protection on the rare chance that attackers might find and 1146 use ROP gadgets that exist in the rodata section. This adds an 1147 additional section-aligned split of rodata from kernel text so it 1148 can be made explicitly non-executable. This padding may waste memory 1149 space to gain the additional protection. 1150