xref: /linux/arch/arm/mach-versatile/spc.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Versatile Express Serial Power Controller (SPC) support
4  *
5  * Copyright (C) 2013 ARM Ltd.
6  *
7  * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
8  *          Achin Gupta           <achin.gupta@arm.com>
9  *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
10  */
11 
12 #include <linux/clk-provider.h>
13 #include <linux/clkdev.h>
14 #include <linux/cpu.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_opp.h>
21 #include <linux/slab.h>
22 #include <linux/semaphore.h>
23 
24 #include <asm/cacheflush.h>
25 
26 #include "spc.h"
27 
28 #define SPCLOG "vexpress-spc: "
29 
30 #define PERF_LVL_A15		0x00
31 #define PERF_REQ_A15		0x04
32 #define PERF_LVL_A7		0x08
33 #define PERF_REQ_A7		0x0c
34 #define COMMS			0x10
35 #define COMMS_REQ		0x14
36 #define PWC_STATUS		0x18
37 #define PWC_FLAG		0x1c
38 
39 /* SPC wake-up IRQs status and mask */
40 #define WAKE_INT_MASK		0x24
41 #define WAKE_INT_RAW		0x28
42 #define WAKE_INT_STAT		0x2c
43 /* SPC power down registers */
44 #define A15_PWRDN_EN		0x30
45 #define A7_PWRDN_EN		0x34
46 /* SPC per-CPU mailboxes */
47 #define A15_BX_ADDR0		0x68
48 #define A7_BX_ADDR0		0x78
49 
50 /* SPC CPU/cluster reset statue */
51 #define STANDBYWFI_STAT		0x3c
52 #define STANDBYWFI_STAT_A15_CPU_MASK(cpu)	(1 << (cpu))
53 #define STANDBYWFI_STAT_A7_CPU_MASK(cpu)	(1 << (3 + (cpu)))
54 
55 /* SPC system config interface registers */
56 #define SYSCFG_WDATA		0x70
57 #define SYSCFG_RDATA		0x74
58 
59 /* A15/A7 OPP virtual register base */
60 #define A15_PERFVAL_BASE	0xC10
61 #define A7_PERFVAL_BASE		0xC30
62 
63 /* Config interface control bits */
64 #define SYSCFG_START		BIT(31)
65 #define SYSCFG_SCC		(6 << 20)
66 #define SYSCFG_STAT		(14 << 20)
67 
68 /* wake-up interrupt masks */
69 #define GBL_WAKEUP_INT_MSK	(0x3 << 10)
70 
71 /* TC2 static dual-cluster configuration */
72 #define MAX_CLUSTERS		2
73 
74 /*
75  * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
76  * operation, the operation could start just before jiffie is about
77  * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
78  */
79 #define TIMEOUT_US	20000
80 
81 #define MAX_OPPS	8
82 #define CA15_DVFS	0
83 #define CA7_DVFS	1
84 #define SPC_SYS_CFG	2
85 #define STAT_COMPLETE(type)	((1 << 0) << (type << 2))
86 #define STAT_ERR(type)		((1 << 1) << (type << 2))
87 #define RESPONSE_MASK(type)	(STAT_COMPLETE(type) | STAT_ERR(type))
88 
89 struct ve_spc_opp {
90 	unsigned long freq;
91 	unsigned long u_volt;
92 };
93 
94 struct ve_spc_drvdata {
95 	void __iomem *baseaddr;
96 	/*
97 	 * A15s cluster identifier
98 	 * It corresponds to A15 processors MPIDR[15:8] bitfield
99 	 */
100 	u32 a15_clusid;
101 	uint32_t cur_rsp_mask;
102 	uint32_t cur_rsp_stat;
103 	struct semaphore sem;
104 	struct completion done;
105 	struct ve_spc_opp *opps[MAX_CLUSTERS];
106 	int num_opps[MAX_CLUSTERS];
107 };
108 
109 static struct ve_spc_drvdata *info;
110 
111 static inline bool cluster_is_a15(u32 cluster)
112 {
113 	return cluster == info->a15_clusid;
114 }
115 
116 /**
117  * ve_spc_global_wakeup_irq() - sets/clears global wakeup IRQs
118  *
119  * @set: if true, global wake-up IRQs are set, if false they are cleared
120  *
121  * Function to set/clear global wakeup IRQs. Not protected by locking since
122  * it might be used in code paths where normal cacheable locks are not
123  * working. Locking must be provided by the caller to ensure atomicity.
124  */
125 void ve_spc_global_wakeup_irq(bool set)
126 {
127 	u32 reg;
128 
129 	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
130 
131 	if (set)
132 		reg |= GBL_WAKEUP_INT_MSK;
133 	else
134 		reg &= ~GBL_WAKEUP_INT_MSK;
135 
136 	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
137 }
138 
139 /**
140  * ve_spc_cpu_wakeup_irq() - sets/clears per-CPU wake-up IRQs
141  *
142  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
143  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
144  * @set: if true, wake-up IRQs are set, if false they are cleared
145  *
146  * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
147  * it might be used in code paths where normal cacheable locks are not
148  * working. Locking must be provided by the caller to ensure atomicity.
149  */
150 void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
151 {
152 	u32 mask, reg;
153 
154 	if (cluster >= MAX_CLUSTERS)
155 		return;
156 
157 	mask = BIT(cpu);
158 
159 	if (!cluster_is_a15(cluster))
160 		mask <<= 4;
161 
162 	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
163 
164 	if (set)
165 		reg |= mask;
166 	else
167 		reg &= ~mask;
168 
169 	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
170 }
171 
172 /**
173  * ve_spc_set_resume_addr() - set the jump address used for warm boot
174  *
175  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
176  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
177  * @addr: physical resume address
178  */
179 void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
180 {
181 	void __iomem *baseaddr;
182 
183 	if (cluster >= MAX_CLUSTERS)
184 		return;
185 
186 	if (cluster_is_a15(cluster))
187 		baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
188 	else
189 		baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
190 
191 	writel_relaxed(addr, baseaddr);
192 }
193 
194 /**
195  * ve_spc_powerdown() - enables/disables cluster powerdown
196  *
197  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
198  * @enable: if true enables powerdown, if false disables it
199  *
200  * Function to enable/disable cluster powerdown. Not protected by locking
201  * since it might be used in code paths where normal cacheable locks are not
202  * working. Locking must be provided by the caller to ensure atomicity.
203  */
204 void ve_spc_powerdown(u32 cluster, bool enable)
205 {
206 	u32 pwdrn_reg;
207 
208 	if (cluster >= MAX_CLUSTERS)
209 		return;
210 
211 	pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
212 	writel_relaxed(enable, info->baseaddr + pwdrn_reg);
213 }
214 
215 static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
216 {
217 	return cluster_is_a15(cluster) ?
218 		  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
219 		: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
220 }
221 
222 /**
223  * ve_spc_cpu_in_wfi() - Checks if the specified CPU is in WFI or not
224  *
225  * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
226  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
227  *
228  * @return: non-zero if and only if the specified CPU is in WFI
229  *
230  * Take care when interpreting the result of this function: a CPU might
231  * be in WFI temporarily due to idle, and is not necessarily safely
232  * parked.
233  */
234 int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
235 {
236 	int ret;
237 	u32 mask = standbywfi_cpu_mask(cpu, cluster);
238 
239 	if (cluster >= MAX_CLUSTERS)
240 		return 1;
241 
242 	ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
243 
244 	pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
245 		 __func__, STANDBYWFI_STAT, ret, mask);
246 
247 	return ret & mask;
248 }
249 
250 static int ve_spc_get_performance(int cluster, u32 *freq)
251 {
252 	struct ve_spc_opp *opps = info->opps[cluster];
253 	u32 perf_cfg_reg = 0;
254 	u32 perf;
255 
256 	perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
257 
258 	perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
259 	if (perf >= info->num_opps[cluster])
260 		return -EINVAL;
261 
262 	opps += perf;
263 	*freq = opps->freq;
264 
265 	return 0;
266 }
267 
268 /* find closest match to given frequency in OPP table */
269 static int ve_spc_round_performance(int cluster, u32 freq)
270 {
271 	int idx, max_opp = info->num_opps[cluster];
272 	struct ve_spc_opp *opps = info->opps[cluster];
273 	u32 fmin = 0, fmax = ~0, ftmp;
274 
275 	freq /= 1000; /* OPP entries in kHz */
276 	for (idx = 0; idx < max_opp; idx++, opps++) {
277 		ftmp = opps->freq;
278 		if (ftmp >= freq) {
279 			if (ftmp <= fmax)
280 				fmax = ftmp;
281 		} else {
282 			if (ftmp >= fmin)
283 				fmin = ftmp;
284 		}
285 	}
286 	if (fmax != ~0)
287 		return fmax * 1000;
288 	else
289 		return fmin * 1000;
290 }
291 
292 static int ve_spc_find_performance_index(int cluster, u32 freq)
293 {
294 	int idx, max_opp = info->num_opps[cluster];
295 	struct ve_spc_opp *opps = info->opps[cluster];
296 
297 	for (idx = 0; idx < max_opp; idx++, opps++)
298 		if (opps->freq == freq)
299 			break;
300 	return (idx == max_opp) ? -EINVAL : idx;
301 }
302 
303 static int ve_spc_waitforcompletion(int req_type)
304 {
305 	int ret = wait_for_completion_interruptible_timeout(
306 			&info->done, usecs_to_jiffies(TIMEOUT_US));
307 	if (ret == 0)
308 		ret = -ETIMEDOUT;
309 	else if (ret > 0)
310 		ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
311 	return ret;
312 }
313 
314 static int ve_spc_set_performance(int cluster, u32 freq)
315 {
316 	u32 perf_cfg_reg;
317 	int ret, perf, req_type;
318 
319 	if (cluster_is_a15(cluster)) {
320 		req_type = CA15_DVFS;
321 		perf_cfg_reg = PERF_LVL_A15;
322 	} else {
323 		req_type = CA7_DVFS;
324 		perf_cfg_reg = PERF_LVL_A7;
325 	}
326 
327 	perf = ve_spc_find_performance_index(cluster, freq);
328 
329 	if (perf < 0)
330 		return perf;
331 
332 	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
333 		return -ETIME;
334 
335 	init_completion(&info->done);
336 	info->cur_rsp_mask = RESPONSE_MASK(req_type);
337 
338 	writel(perf, info->baseaddr + perf_cfg_reg);
339 	ret = ve_spc_waitforcompletion(req_type);
340 
341 	info->cur_rsp_mask = 0;
342 	up(&info->sem);
343 
344 	return ret;
345 }
346 
347 static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
348 {
349 	int ret;
350 
351 	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
352 		return -ETIME;
353 
354 	init_completion(&info->done);
355 	info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
356 
357 	/* Set the control value */
358 	writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
359 	ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
360 
361 	if (ret == 0)
362 		*data = readl(info->baseaddr + SYSCFG_RDATA);
363 
364 	info->cur_rsp_mask = 0;
365 	up(&info->sem);
366 
367 	return ret;
368 }
369 
370 static irqreturn_t ve_spc_irq_handler(int irq, void *data)
371 {
372 	struct ve_spc_drvdata *drv_data = data;
373 	uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
374 
375 	if (info->cur_rsp_mask & status) {
376 		info->cur_rsp_stat = status;
377 		complete(&drv_data->done);
378 	}
379 
380 	return IRQ_HANDLED;
381 }
382 
383 /*
384  *  +--------------------------+
385  *  | 31      20 | 19        0 |
386  *  +--------------------------+
387  *  |   m_volt   |  freq(kHz)  |
388  *  +--------------------------+
389  */
390 #define MULT_FACTOR	20
391 #define VOLT_SHIFT	20
392 #define FREQ_MASK	(0xFFFFF)
393 static int ve_spc_populate_opps(uint32_t cluster)
394 {
395 	uint32_t data = 0, off, ret, idx;
396 	struct ve_spc_opp *opps;
397 
398 	opps = kcalloc(MAX_OPPS, sizeof(*opps), GFP_KERNEL);
399 	if (!opps)
400 		return -ENOMEM;
401 
402 	info->opps[cluster] = opps;
403 
404 	off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
405 	for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
406 		ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
407 		if (!ret) {
408 			opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
409 			opps->u_volt = (data >> VOLT_SHIFT) * 1000;
410 		} else {
411 			break;
412 		}
413 	}
414 	info->num_opps[cluster] = idx;
415 
416 	return ret;
417 }
418 
419 static int ve_init_opp_table(struct device *cpu_dev)
420 {
421 	int cluster;
422 	int idx, ret = 0, max_opp;
423 	struct ve_spc_opp *opps;
424 
425 	cluster = topology_physical_package_id(cpu_dev->id);
426 	cluster = cluster < 0 ? 0 : cluster;
427 
428 	max_opp = info->num_opps[cluster];
429 	opps = info->opps[cluster];
430 
431 	for (idx = 0; idx < max_opp; idx++, opps++) {
432 		ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
433 		if (ret) {
434 			dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
435 				 opps->freq, opps->u_volt);
436 			return ret;
437 		}
438 	}
439 	return ret;
440 }
441 
442 int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
443 {
444 	int ret;
445 	info = kzalloc(sizeof(*info), GFP_KERNEL);
446 	if (!info)
447 		return -ENOMEM;
448 
449 	info->baseaddr = baseaddr;
450 	info->a15_clusid = a15_clusid;
451 
452 	if (irq <= 0) {
453 		pr_err(SPCLOG "Invalid IRQ %d\n", irq);
454 		kfree(info);
455 		return -EINVAL;
456 	}
457 
458 	init_completion(&info->done);
459 
460 	readl_relaxed(info->baseaddr + PWC_STATUS);
461 
462 	ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
463 				| IRQF_ONESHOT, "vexpress-spc", info);
464 	if (ret) {
465 		pr_err(SPCLOG "IRQ %d request failed\n", irq);
466 		kfree(info);
467 		return -ENODEV;
468 	}
469 
470 	sema_init(&info->sem, 1);
471 	/*
472 	 * Multi-cluster systems may need this data when non-coherent, during
473 	 * cluster power-up/power-down. Make sure driver info reaches main
474 	 * memory.
475 	 */
476 	sync_cache_w(info);
477 	sync_cache_w(&info);
478 
479 	return 0;
480 }
481 
482 struct clk_spc {
483 	struct clk_hw hw;
484 	int cluster;
485 };
486 
487 #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
488 static unsigned long spc_recalc_rate(struct clk_hw *hw,
489 		unsigned long parent_rate)
490 {
491 	struct clk_spc *spc = to_clk_spc(hw);
492 	u32 freq;
493 
494 	if (ve_spc_get_performance(spc->cluster, &freq))
495 		return -EIO;
496 
497 	return freq * 1000;
498 }
499 
500 static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
501 		unsigned long *parent_rate)
502 {
503 	struct clk_spc *spc = to_clk_spc(hw);
504 
505 	return ve_spc_round_performance(spc->cluster, drate);
506 }
507 
508 static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
509 		unsigned long parent_rate)
510 {
511 	struct clk_spc *spc = to_clk_spc(hw);
512 
513 	return ve_spc_set_performance(spc->cluster, rate / 1000);
514 }
515 
516 static struct clk_ops clk_spc_ops = {
517 	.recalc_rate = spc_recalc_rate,
518 	.round_rate = spc_round_rate,
519 	.set_rate = spc_set_rate,
520 };
521 
522 static struct clk *ve_spc_clk_register(struct device *cpu_dev)
523 {
524 	struct clk_init_data init;
525 	struct clk_spc *spc;
526 
527 	spc = kzalloc(sizeof(*spc), GFP_KERNEL);
528 	if (!spc)
529 		return ERR_PTR(-ENOMEM);
530 
531 	spc->hw.init = &init;
532 	spc->cluster = topology_physical_package_id(cpu_dev->id);
533 
534 	spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
535 
536 	init.name = dev_name(cpu_dev);
537 	init.ops = &clk_spc_ops;
538 	init.flags = CLK_GET_RATE_NOCACHE;
539 	init.num_parents = 0;
540 
541 	return devm_clk_register(cpu_dev, &spc->hw);
542 }
543 
544 static int __init ve_spc_clk_init(void)
545 {
546 	int cpu, cluster;
547 	struct clk *clk;
548 	bool init_opp_table[MAX_CLUSTERS] = { false };
549 
550 	if (!info)
551 		return 0; /* Continue only if SPC is initialised */
552 
553 	if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
554 		pr_err("failed to build OPP table\n");
555 		return -ENODEV;
556 	}
557 
558 	for_each_possible_cpu(cpu) {
559 		struct device *cpu_dev = get_cpu_device(cpu);
560 		if (!cpu_dev) {
561 			pr_warn("failed to get cpu%d device\n", cpu);
562 			continue;
563 		}
564 		clk = ve_spc_clk_register(cpu_dev);
565 		if (IS_ERR(clk)) {
566 			pr_warn("failed to register cpu%d clock\n", cpu);
567 			continue;
568 		}
569 		if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
570 			pr_warn("failed to register cpu%d clock lookup\n", cpu);
571 			continue;
572 		}
573 
574 		cluster = topology_physical_package_id(cpu_dev->id);
575 		if (cluster < 0 || init_opp_table[cluster])
576 			continue;
577 
578 		if (ve_init_opp_table(cpu_dev))
579 			pr_warn("failed to initialise cpu%d opp table\n", cpu);
580 		else if (dev_pm_opp_set_sharing_cpus(cpu_dev,
581 			 topology_core_cpumask(cpu_dev->id)))
582 			pr_warn("failed to mark OPPs shared for cpu%d\n", cpu);
583 		else
584 			init_opp_table[cluster] = true;
585 	}
586 
587 	platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
588 	return 0;
589 }
590 device_initcall(ve_spc_clk_init);
591