1 /* 2 * OMAP2+ common Power & Reset Management (PRM) IP block functions 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Tero Kristo <t-kristo@ti.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * For historical purposes, the API used to configure the PRM 13 * interrupt handler refers to it as the "PRCM interrupt." The 14 * underlying registers are located in the PRM on OMAP3/4. 15 * 16 * XXX This code should eventually be moved to a PRM driver. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/init.h> 22 #include <linux/io.h> 23 #include <linux/irq.h> 24 #include <linux/interrupt.h> 25 #include <linux/slab.h> 26 27 #include <plat/common.h> 28 #include <plat/prcm.h> 29 #include <plat/irqs.h> 30 31 #include "prm2xxx_3xxx.h" 32 #include "prm44xx.h" 33 34 /* 35 * OMAP_PRCM_MAX_NR_PENDING_REG: maximum number of PRM_IRQ*_MPU regs 36 * XXX this is technically not needed, since 37 * omap_prcm_register_chain_handler() could allocate this based on the 38 * actual amount of memory needed for the SoC 39 */ 40 #define OMAP_PRCM_MAX_NR_PENDING_REG 2 41 42 /* 43 * prcm_irq_chips: an array of all of the "generic IRQ chips" in use 44 * by the PRCM interrupt handler code. There will be one 'chip' per 45 * PRM_{IRQSTATUS,IRQENABLE}_MPU register pair. (So OMAP3 will have 46 * one "chip" and OMAP4 will have two.) 47 */ 48 static struct irq_chip_generic **prcm_irq_chips; 49 50 /* 51 * prcm_irq_setup: the PRCM IRQ parameters for the hardware the code 52 * is currently running on. Defined and passed by initialization code 53 * that calls omap_prcm_register_chain_handler(). 54 */ 55 static struct omap_prcm_irq_setup *prcm_irq_setup; 56 57 /* Private functions */ 58 59 /* 60 * Move priority events from events to priority_events array 61 */ 62 static void omap_prcm_events_filter_priority(unsigned long *events, 63 unsigned long *priority_events) 64 { 65 int i; 66 67 for (i = 0; i < prcm_irq_setup->nr_regs; i++) { 68 priority_events[i] = 69 events[i] & prcm_irq_setup->priority_mask[i]; 70 events[i] ^= priority_events[i]; 71 } 72 } 73 74 /* 75 * PRCM Interrupt Handler 76 * 77 * This is a common handler for the OMAP PRCM interrupts. Pending 78 * interrupts are detected by a call to prcm_pending_events and 79 * dispatched accordingly. Clearing of the wakeup events should be 80 * done by the SoC specific individual handlers. 81 */ 82 static void omap_prcm_irq_handler(unsigned int irq, struct irq_desc *desc) 83 { 84 unsigned long pending[OMAP_PRCM_MAX_NR_PENDING_REG]; 85 unsigned long priority_pending[OMAP_PRCM_MAX_NR_PENDING_REG]; 86 struct irq_chip *chip = irq_desc_get_chip(desc); 87 unsigned int virtirq; 88 int nr_irq = prcm_irq_setup->nr_regs * 32; 89 90 /* 91 * If we are suspended, mask all interrupts from PRCM level, 92 * this does not ack them, and they will be pending until we 93 * re-enable the interrupts, at which point the 94 * omap_prcm_irq_handler will be executed again. The 95 * _save_and_clear_irqen() function must ensure that the PRM 96 * write to disable all IRQs has reached the PRM before 97 * returning, or spurious PRCM interrupts may occur during 98 * suspend. 99 */ 100 if (prcm_irq_setup->suspended) { 101 prcm_irq_setup->save_and_clear_irqen(prcm_irq_setup->saved_mask); 102 prcm_irq_setup->suspend_save_flag = true; 103 } 104 105 /* 106 * Loop until all pending irqs are handled, since 107 * generic_handle_irq() can cause new irqs to come 108 */ 109 while (!prcm_irq_setup->suspended) { 110 prcm_irq_setup->read_pending_irqs(pending); 111 112 /* No bit set, then all IRQs are handled */ 113 if (find_first_bit(pending, nr_irq) >= nr_irq) 114 break; 115 116 omap_prcm_events_filter_priority(pending, priority_pending); 117 118 /* 119 * Loop on all currently pending irqs so that new irqs 120 * cannot starve previously pending irqs 121 */ 122 123 /* Serve priority events first */ 124 for_each_set_bit(virtirq, priority_pending, nr_irq) 125 generic_handle_irq(prcm_irq_setup->base_irq + virtirq); 126 127 /* Serve normal events next */ 128 for_each_set_bit(virtirq, pending, nr_irq) 129 generic_handle_irq(prcm_irq_setup->base_irq + virtirq); 130 } 131 if (chip->irq_ack) 132 chip->irq_ack(&desc->irq_data); 133 if (chip->irq_eoi) 134 chip->irq_eoi(&desc->irq_data); 135 chip->irq_unmask(&desc->irq_data); 136 137 prcm_irq_setup->ocp_barrier(); /* avoid spurious IRQs */ 138 } 139 140 /* Public functions */ 141 142 /** 143 * omap_prcm_event_to_irq - given a PRCM event name, returns the 144 * corresponding IRQ on which the handler should be registered 145 * @name: name of the PRCM interrupt bit to look up - see struct omap_prcm_irq 146 * 147 * Returns the Linux internal IRQ ID corresponding to @name upon success, 148 * or -ENOENT upon failure. 149 */ 150 int omap_prcm_event_to_irq(const char *name) 151 { 152 int i; 153 154 if (!prcm_irq_setup || !name) 155 return -ENOENT; 156 157 for (i = 0; i < prcm_irq_setup->nr_irqs; i++) 158 if (!strcmp(prcm_irq_setup->irqs[i].name, name)) 159 return prcm_irq_setup->base_irq + 160 prcm_irq_setup->irqs[i].offset; 161 162 return -ENOENT; 163 } 164 165 /** 166 * omap_prcm_irq_cleanup - reverses memory allocated and other steps 167 * done by omap_prcm_register_chain_handler() 168 * 169 * No return value. 170 */ 171 void omap_prcm_irq_cleanup(void) 172 { 173 int i; 174 175 if (!prcm_irq_setup) { 176 pr_err("PRCM: IRQ handler not initialized; cannot cleanup\n"); 177 return; 178 } 179 180 if (prcm_irq_chips) { 181 for (i = 0; i < prcm_irq_setup->nr_regs; i++) { 182 if (prcm_irq_chips[i]) 183 irq_remove_generic_chip(prcm_irq_chips[i], 184 0xffffffff, 0, 0); 185 prcm_irq_chips[i] = NULL; 186 } 187 kfree(prcm_irq_chips); 188 prcm_irq_chips = NULL; 189 } 190 191 kfree(prcm_irq_setup->saved_mask); 192 prcm_irq_setup->saved_mask = NULL; 193 194 kfree(prcm_irq_setup->priority_mask); 195 prcm_irq_setup->priority_mask = NULL; 196 197 irq_set_chained_handler(prcm_irq_setup->irq, NULL); 198 199 if (prcm_irq_setup->base_irq > 0) 200 irq_free_descs(prcm_irq_setup->base_irq, 201 prcm_irq_setup->nr_regs * 32); 202 prcm_irq_setup->base_irq = 0; 203 } 204 205 void omap_prcm_irq_prepare(void) 206 { 207 prcm_irq_setup->suspended = true; 208 } 209 210 void omap_prcm_irq_complete(void) 211 { 212 prcm_irq_setup->suspended = false; 213 214 /* If we have not saved the masks, do not attempt to restore */ 215 if (!prcm_irq_setup->suspend_save_flag) 216 return; 217 218 prcm_irq_setup->suspend_save_flag = false; 219 220 /* 221 * Re-enable all masked PRCM irq sources, this causes the PRCM 222 * interrupt to fire immediately if the events were masked 223 * previously in the chain handler 224 */ 225 prcm_irq_setup->restore_irqen(prcm_irq_setup->saved_mask); 226 } 227 228 /** 229 * omap_prcm_register_chain_handler - initializes the prcm chained interrupt 230 * handler based on provided parameters 231 * @irq_setup: hardware data about the underlying PRM/PRCM 232 * 233 * Set up the PRCM chained interrupt handler on the PRCM IRQ. Sets up 234 * one generic IRQ chip per PRM interrupt status/enable register pair. 235 * Returns 0 upon success, -EINVAL if called twice or if invalid 236 * arguments are passed, or -ENOMEM on any other error. 237 */ 238 int omap_prcm_register_chain_handler(struct omap_prcm_irq_setup *irq_setup) 239 { 240 int nr_regs; 241 u32 mask[OMAP_PRCM_MAX_NR_PENDING_REG]; 242 int offset, i; 243 struct irq_chip_generic *gc; 244 struct irq_chip_type *ct; 245 246 if (!irq_setup) 247 return -EINVAL; 248 249 nr_regs = irq_setup->nr_regs; 250 251 if (prcm_irq_setup) { 252 pr_err("PRCM: already initialized; won't reinitialize\n"); 253 return -EINVAL; 254 } 255 256 if (nr_regs > OMAP_PRCM_MAX_NR_PENDING_REG) { 257 pr_err("PRCM: nr_regs too large\n"); 258 return -EINVAL; 259 } 260 261 prcm_irq_setup = irq_setup; 262 263 prcm_irq_chips = kzalloc(sizeof(void *) * nr_regs, GFP_KERNEL); 264 prcm_irq_setup->saved_mask = kzalloc(sizeof(u32) * nr_regs, GFP_KERNEL); 265 prcm_irq_setup->priority_mask = kzalloc(sizeof(u32) * nr_regs, 266 GFP_KERNEL); 267 268 if (!prcm_irq_chips || !prcm_irq_setup->saved_mask || 269 !prcm_irq_setup->priority_mask) { 270 pr_err("PRCM: kzalloc failed\n"); 271 goto err; 272 } 273 274 memset(mask, 0, sizeof(mask)); 275 276 for (i = 0; i < irq_setup->nr_irqs; i++) { 277 offset = irq_setup->irqs[i].offset; 278 mask[offset >> 5] |= 1 << (offset & 0x1f); 279 if (irq_setup->irqs[i].priority) 280 irq_setup->priority_mask[offset >> 5] |= 281 1 << (offset & 0x1f); 282 } 283 284 irq_set_chained_handler(irq_setup->irq, omap_prcm_irq_handler); 285 286 irq_setup->base_irq = irq_alloc_descs(-1, 0, irq_setup->nr_regs * 32, 287 0); 288 289 if (irq_setup->base_irq < 0) { 290 pr_err("PRCM: failed to allocate irq descs: %d\n", 291 irq_setup->base_irq); 292 goto err; 293 } 294 295 for (i = 0; i < irq_setup->nr_regs; i++) { 296 gc = irq_alloc_generic_chip("PRCM", 1, 297 irq_setup->base_irq + i * 32, prm_base, 298 handle_level_irq); 299 300 if (!gc) { 301 pr_err("PRCM: failed to allocate generic chip\n"); 302 goto err; 303 } 304 ct = gc->chip_types; 305 ct->chip.irq_ack = irq_gc_ack_set_bit; 306 ct->chip.irq_mask = irq_gc_mask_clr_bit; 307 ct->chip.irq_unmask = irq_gc_mask_set_bit; 308 309 ct->regs.ack = irq_setup->ack + i * 4; 310 ct->regs.mask = irq_setup->mask + i * 4; 311 312 irq_setup_generic_chip(gc, mask[i], 0, IRQ_NOREQUEST, 0); 313 prcm_irq_chips[i] = gc; 314 } 315 316 return 0; 317 318 err: 319 omap_prcm_irq_cleanup(); 320 return -ENOMEM; 321 } 322 323 /* 324 * Stubbed functions so that common files continue to build when 325 * custom builds are used 326 * XXX These are temporary and should be removed at the earliest possible 327 * opportunity 328 */ 329 u32 __weak omap2_prm_read_mod_reg(s16 module, u16 idx) 330 { 331 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 332 return 0; 333 } 334 335 void __weak omap2_prm_write_mod_reg(u32 val, s16 module, u16 idx) 336 { 337 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 338 } 339 340 u32 __weak omap2_prm_rmw_mod_reg_bits(u32 mask, u32 bits, 341 s16 module, s16 idx) 342 { 343 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 344 return 0; 345 } 346 347 u32 __weak omap2_prm_set_mod_reg_bits(u32 bits, s16 module, s16 idx) 348 { 349 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 350 return 0; 351 } 352 353 u32 __weak omap2_prm_clear_mod_reg_bits(u32 bits, s16 module, s16 idx) 354 { 355 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 356 return 0; 357 } 358 359 u32 __weak omap2_prm_read_mod_bits_shift(s16 domain, s16 idx, u32 mask) 360 { 361 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 362 return 0; 363 } 364 365 int __weak omap2_prm_is_hardreset_asserted(s16 prm_mod, u8 shift) 366 { 367 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 368 return 0; 369 } 370 371 int __weak omap2_prm_assert_hardreset(s16 prm_mod, u8 shift) 372 { 373 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 374 return 0; 375 } 376 377 int __weak omap2_prm_deassert_hardreset(s16 prm_mod, u8 rst_shift, 378 u8 st_shift) 379 { 380 WARN(1, "prm: omap2xxx/omap3xxx specific function called on non-omap2xxx/3xxx\n"); 381 return 0; 382 } 383 384