1 /* 2 * OMAP4 SMP source file. It contains platform specific fucntions 3 * needed for the linux smp kernel. 4 * 5 * Copyright (C) 2009 Texas Instruments, Inc. 6 * 7 * Author: 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 * 10 * Platform file needed for the OMAP4 SMP. This file is based on arm 11 * realview smp platform. 12 * * Copyright (c) 2002 ARM Limited. 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/smp.h> 21 #include <linux/io.h> 22 23 #include <asm/cacheflush.h> 24 #include <asm/hardware/gic.h> 25 #include <asm/smp_scu.h> 26 27 #include <mach/hardware.h> 28 #include <mach/omap-secure.h> 29 #include <mach/omap-wakeupgen.h> 30 #include <asm/cputype.h> 31 32 #include "iomap.h" 33 #include "common.h" 34 #include "clockdomain.h" 35 36 #define CPU_MASK 0xff0ffff0 37 #define CPU_CORTEX_A9 0x410FC090 38 #define CPU_CORTEX_A15 0x410FC0F0 39 40 #define OMAP5_CORE_COUNT 0x2 41 42 /* SCU base address */ 43 static void __iomem *scu_base; 44 45 static DEFINE_SPINLOCK(boot_lock); 46 47 void __iomem *omap4_get_scu_base(void) 48 { 49 return scu_base; 50 } 51 52 void __cpuinit platform_secondary_init(unsigned int cpu) 53 { 54 /* 55 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device. 56 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA 57 * init and for CPU1, a secure PPA API provided. CPU0 must be ON 58 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+. 59 * OMAP443X GP devices- SMP bit isn't accessible. 60 * OMAP446X GP devices - SMP bit access is enabled on both CPUs. 61 */ 62 if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP)) 63 omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX, 64 4, 0, 0, 0, 0, 0); 65 66 /* 67 * If any interrupts are already enabled for the primary 68 * core (e.g. timer irq), then they will not have been enabled 69 * for us: do so 70 */ 71 gic_secondary_init(0); 72 73 /* 74 * Synchronise with the boot thread. 75 */ 76 spin_lock(&boot_lock); 77 spin_unlock(&boot_lock); 78 } 79 80 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) 81 { 82 static struct clockdomain *cpu1_clkdm; 83 static bool booted; 84 void __iomem *base = omap_get_wakeupgen_base(); 85 86 /* 87 * Set synchronisation state between this boot processor 88 * and the secondary one 89 */ 90 spin_lock(&boot_lock); 91 92 /* 93 * Update the AuxCoreBoot0 with boot state for secondary core. 94 * omap_secondary_startup() routine will hold the secondary core till 95 * the AuxCoreBoot1 register is updated with cpu state 96 * A barrier is added to ensure that write buffer is drained 97 */ 98 if (omap_secure_apis_support()) 99 omap_modify_auxcoreboot0(0x200, 0xfffffdff); 100 else 101 __raw_writel(0x20, base + OMAP_AUX_CORE_BOOT_0); 102 103 flush_cache_all(); 104 smp_wmb(); 105 106 if (!cpu1_clkdm) 107 cpu1_clkdm = clkdm_lookup("mpu1_clkdm"); 108 109 /* 110 * The SGI(Software Generated Interrupts) are not wakeup capable 111 * from low power states. This is known limitation on OMAP4 and 112 * needs to be worked around by using software forced clockdomain 113 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to 114 * software force wakeup. The clockdomain is then put back to 115 * hardware supervised mode. 116 * More details can be found in OMAP4430 TRM - Version J 117 * Section : 118 * 4.3.4.2 Power States of CPU0 and CPU1 119 */ 120 if (booted) { 121 clkdm_wakeup(cpu1_clkdm); 122 clkdm_allow_idle(cpu1_clkdm); 123 } else { 124 dsb_sev(); 125 booted = true; 126 } 127 128 gic_raise_softirq(cpumask_of(cpu), 0); 129 130 /* 131 * Now the secondary core is starting up let it run its 132 * calibrations, then wait for it to finish 133 */ 134 spin_unlock(&boot_lock); 135 136 return 0; 137 } 138 139 static void __init wakeup_secondary(void) 140 { 141 void __iomem *base = omap_get_wakeupgen_base(); 142 /* 143 * Write the address of secondary startup routine into the 144 * AuxCoreBoot1 where ROM code will jump and start executing 145 * on secondary core once out of WFE 146 * A barrier is added to ensure that write buffer is drained 147 */ 148 if (omap_secure_apis_support()) 149 omap_auxcoreboot_addr(virt_to_phys(omap_secondary_startup)); 150 else 151 __raw_writel(virt_to_phys(omap5_secondary_startup), 152 base + OMAP_AUX_CORE_BOOT_1); 153 154 smp_wmb(); 155 156 /* 157 * Send a 'sev' to wake the secondary core from WFE. 158 * Drain the outstanding writes to memory 159 */ 160 dsb_sev(); 161 mb(); 162 } 163 164 /* 165 * Initialise the CPU possible map early - this describes the CPUs 166 * which may be present or become present in the system. 167 */ 168 void __init smp_init_cpus(void) 169 { 170 unsigned int i = 0, ncores = 1, cpu_id; 171 172 /* Use ARM cpuid check here, as SoC detection will not work so early */ 173 cpu_id = read_cpuid(CPUID_ID) & CPU_MASK; 174 if (cpu_id == CPU_CORTEX_A9) { 175 /* 176 * Currently we can't call ioremap here because 177 * SoC detection won't work until after init_early. 178 */ 179 scu_base = OMAP2_L4_IO_ADDRESS(OMAP44XX_SCU_BASE); 180 BUG_ON(!scu_base); 181 ncores = scu_get_core_count(scu_base); 182 } else if (cpu_id == CPU_CORTEX_A15) { 183 ncores = OMAP5_CORE_COUNT; 184 } 185 186 /* sanity check */ 187 if (ncores > nr_cpu_ids) { 188 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", 189 ncores, nr_cpu_ids); 190 ncores = nr_cpu_ids; 191 } 192 193 for (i = 0; i < ncores; i++) 194 set_cpu_possible(i, true); 195 196 set_smp_cross_call(gic_raise_softirq); 197 } 198 199 void __init platform_smp_prepare_cpus(unsigned int max_cpus) 200 { 201 202 /* 203 * Initialise the SCU and wake up the secondary core using 204 * wakeup_secondary(). 205 */ 206 if (scu_base) 207 scu_enable(scu_base); 208 wakeup_secondary(); 209 } 210