xref: /linux/arch/arm/mach-omap2/omap-mpuss-lowpower.c (revision fd7d598270724cc787982ea48bbe17ad383a8b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * OMAP MPUSS low power code
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  *	Santosh Shilimkar <santosh.shilimkar@ti.com>
7  *
8  * OMAP4430 MPUSS mainly consists of dual Cortex-A9 with per-CPU
9  * Local timer and Watchdog, GIC, SCU, PL310 L2 cache controller,
10  * CPU0 and CPU1 LPRM modules.
11  * CPU0, CPU1 and MPUSS each have there own power domain and
12  * hence multiple low power combinations of MPUSS are possible.
13  *
14  * The CPU0 and CPU1 can't support Closed switch Retention (CSWR)
15  * because the mode is not supported by hw constraints of dormant
16  * mode. While waking up from the dormant mode, a reset  signal
17  * to the Cortex-A9 processor must be asserted by the external
18  * power controller.
19  *
20  * With architectural inputs and hardware recommendations, only
21  * below modes are supported from power gain vs latency point of view.
22  *
23  *	CPU0		CPU1		MPUSS
24  *	----------------------------------------------
25  *	ON		ON		ON
26  *	ON(Inactive)	OFF		ON(Inactive)
27  *	OFF		OFF		CSWR
28  *	OFF		OFF		OSWR
29  *	OFF		OFF		OFF(Device OFF *TBD)
30  *	----------------------------------------------
31  *
32  * Note: CPU0 is the master core and it is the last CPU to go down
33  * and first to wake-up when MPUSS low power states are excercised
34  */
35 
36 #include <linux/cpuidle.h>
37 #include <linux/kernel.h>
38 #include <linux/io.h>
39 #include <linux/errno.h>
40 #include <linux/linkage.h>
41 #include <linux/smp.h>
42 
43 #include <asm/cacheflush.h>
44 #include <asm/tlbflush.h>
45 #include <asm/smp_scu.h>
46 #include <asm/suspend.h>
47 #include <asm/virt.h>
48 #include <asm/hardware/cache-l2x0.h>
49 
50 #include "soc.h"
51 #include "common.h"
52 #include "omap44xx.h"
53 #include "omap4-sar-layout.h"
54 #include "pm.h"
55 #include "prcm_mpu44xx.h"
56 #include "prcm_mpu54xx.h"
57 #include "prminst44xx.h"
58 #include "prcm44xx.h"
59 #include "prm44xx.h"
60 #include "prm-regbits-44xx.h"
61 
62 static void __iomem *sar_base;
63 static u32 old_cpu1_ns_pa_addr;
64 
65 #if defined(CONFIG_PM) && defined(CONFIG_SMP)
66 
67 struct omap4_cpu_pm_info {
68 	struct powerdomain *pwrdm;
69 	void __iomem *scu_sar_addr;
70 	void __iomem *wkup_sar_addr;
71 	void __iomem *l2x0_sar_addr;
72 };
73 
74 /**
75  * struct cpu_pm_ops - CPU pm operations
76  * @finish_suspend:	CPU suspend finisher function pointer
77  * @resume:		CPU resume function pointer
78  * @scu_prepare:	CPU Snoop Control program function pointer
79  * @hotplug_restart:	CPU restart function pointer
80  *
81  * Structure holds functions pointer for CPU low power operations like
82  * suspend, resume and scu programming.
83  */
84 struct cpu_pm_ops {
85 	int (*finish_suspend)(unsigned long cpu_state);
86 	void (*resume)(void);
87 	void (*scu_prepare)(unsigned int cpu_id, unsigned int cpu_state);
88 	void (*hotplug_restart)(void);
89 };
90 
91 static DEFINE_PER_CPU(struct omap4_cpu_pm_info, omap4_pm_info);
92 static struct powerdomain *mpuss_pd;
93 static u32 cpu_context_offset;
94 
95 static int default_finish_suspend(unsigned long cpu_state)
96 {
97 	omap_do_wfi();
98 	return 0;
99 }
100 
101 static void dummy_cpu_resume(void)
102 {}
103 
104 static void dummy_scu_prepare(unsigned int cpu_id, unsigned int cpu_state)
105 {}
106 
107 static struct cpu_pm_ops omap_pm_ops = {
108 	.finish_suspend		= default_finish_suspend,
109 	.resume			= dummy_cpu_resume,
110 	.scu_prepare		= dummy_scu_prepare,
111 	.hotplug_restart	= dummy_cpu_resume,
112 };
113 
114 /*
115  * Program the wakeup routine address for the CPU0 and CPU1
116  * used for OFF or DORMANT wakeup.
117  */
118 static inline void set_cpu_wakeup_addr(unsigned int cpu_id, u32 addr)
119 {
120 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
121 
122 	if (pm_info->wkup_sar_addr)
123 		writel_relaxed(addr, pm_info->wkup_sar_addr);
124 }
125 
126 /*
127  * Store the SCU power status value to scratchpad memory
128  */
129 static void scu_pwrst_prepare(unsigned int cpu_id, unsigned int cpu_state)
130 {
131 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
132 	u32 scu_pwr_st;
133 
134 	switch (cpu_state) {
135 	case PWRDM_POWER_RET:
136 		scu_pwr_st = SCU_PM_DORMANT;
137 		break;
138 	case PWRDM_POWER_OFF:
139 		scu_pwr_st = SCU_PM_POWEROFF;
140 		break;
141 	case PWRDM_POWER_ON:
142 	case PWRDM_POWER_INACTIVE:
143 	default:
144 		scu_pwr_st = SCU_PM_NORMAL;
145 		break;
146 	}
147 
148 	if (pm_info->scu_sar_addr)
149 		writel_relaxed(scu_pwr_st, pm_info->scu_sar_addr);
150 }
151 
152 /* Helper functions for MPUSS OSWR */
153 static inline void mpuss_clear_prev_logic_pwrst(void)
154 {
155 	u32 reg;
156 
157 	reg = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
158 		OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
159 	omap4_prminst_write_inst_reg(reg, OMAP4430_PRM_PARTITION,
160 		OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
161 }
162 
163 static inline void cpu_clear_prev_logic_pwrst(unsigned int cpu_id)
164 {
165 	u32 reg;
166 
167 	if (cpu_id) {
168 		reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU1_INST,
169 					cpu_context_offset);
170 		omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU1_INST,
171 					cpu_context_offset);
172 	} else {
173 		reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU0_INST,
174 					cpu_context_offset);
175 		omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU0_INST,
176 					cpu_context_offset);
177 	}
178 }
179 
180 /*
181  * Store the CPU cluster state for L2X0 low power operations.
182  */
183 static void l2x0_pwrst_prepare(unsigned int cpu_id, unsigned int save_state)
184 {
185 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
186 
187 	if (pm_info->l2x0_sar_addr)
188 		writel_relaxed(save_state, pm_info->l2x0_sar_addr);
189 }
190 
191 /*
192  * Save the L2X0 AUXCTRL and POR value to SAR memory. Its used to
193  * in every restore MPUSS OFF path.
194  */
195 #ifdef CONFIG_CACHE_L2X0
196 static void __init save_l2x0_context(void)
197 {
198 	void __iomem *l2x0_base = omap4_get_l2cache_base();
199 
200 	if (l2x0_base && sar_base) {
201 		writel_relaxed(l2x0_saved_regs.aux_ctrl,
202 			       sar_base + L2X0_AUXCTRL_OFFSET);
203 		writel_relaxed(l2x0_saved_regs.prefetch_ctrl,
204 			       sar_base + L2X0_PREFETCH_CTRL_OFFSET);
205 	}
206 }
207 #else
208 static void __init save_l2x0_context(void)
209 {}
210 #endif
211 
212 /**
213  * omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function
214  * The purpose of this function is to manage low power programming
215  * of OMAP4 MPUSS subsystem
216  * @cpu : CPU ID
217  * @power_state: Low power state.
218  * @rcuidle: RCU needs to be idled
219  *
220  * MPUSS states for the context save:
221  * save_state =
222  *	0 - Nothing lost and no need to save: MPUSS INACTIVE
223  *	1 - CPUx L1 and logic lost: MPUSS CSWR
224  *	2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR
225  *	3 - CPUx L1 and logic lost + GIC + L2 lost: DEVICE OFF
226  */
227 __cpuidle int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state,
228 				   bool rcuidle)
229 {
230 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
231 	unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET;
232 
233 	if (omap_rev() == OMAP4430_REV_ES1_0)
234 		return -ENXIO;
235 
236 	switch (power_state) {
237 	case PWRDM_POWER_ON:
238 	case PWRDM_POWER_INACTIVE:
239 		save_state = 0;
240 		break;
241 	case PWRDM_POWER_OFF:
242 		cpu_logic_state = PWRDM_POWER_OFF;
243 		save_state = 1;
244 		break;
245 	case PWRDM_POWER_RET:
246 		if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE))
247 			save_state = 0;
248 		break;
249 	default:
250 		/*
251 		 * CPUx CSWR is invalid hardware state. Also CPUx OSWR
252 		 * doesn't make much scense, since logic is lost and $L1
253 		 * needs to be cleaned because of coherency. This makes
254 		 * CPUx OSWR equivalent to CPUX OFF and hence not supported
255 		 */
256 		WARN_ON(1);
257 		return -ENXIO;
258 	}
259 
260 	pwrdm_pre_transition(NULL);
261 
262 	/*
263 	 * Check MPUSS next state and save interrupt controller if needed.
264 	 * In MPUSS OSWR or device OFF, interrupt controller  contest is lost.
265 	 */
266 	mpuss_clear_prev_logic_pwrst();
267 	if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) &&
268 		(pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF))
269 		save_state = 2;
270 
271 	cpu_clear_prev_logic_pwrst(cpu);
272 	pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
273 	pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state);
274 
275 	if (rcuidle)
276 		ct_cpuidle_enter();
277 
278 	set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume));
279 	omap_pm_ops.scu_prepare(cpu, power_state);
280 	l2x0_pwrst_prepare(cpu, save_state);
281 
282 	/*
283 	 * Call low level function  with targeted low power state.
284 	 */
285 	if (save_state)
286 		cpu_suspend(save_state, omap_pm_ops.finish_suspend);
287 	else
288 		omap_pm_ops.finish_suspend(save_state);
289 
290 	if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu)
291 		gic_dist_enable();
292 
293 	if (rcuidle)
294 		ct_cpuidle_exit();
295 
296 	/*
297 	 * Restore the CPUx power state to ON otherwise CPUx
298 	 * power domain can transitions to programmed low power
299 	 * state while doing WFI outside the low powe code. On
300 	 * secure devices, CPUx does WFI which can result in
301 	 * domain transition
302 	 */
303 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
304 
305 	pwrdm_post_transition(NULL);
306 
307 	return 0;
308 }
309 
310 /**
311  * omap4_hotplug_cpu: OMAP4 CPU hotplug entry
312  * @cpu : CPU ID
313  * @power_state: CPU low power state.
314  */
315 int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state)
316 {
317 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
318 	unsigned int cpu_state = 0;
319 
320 	if (omap_rev() == OMAP4430_REV_ES1_0)
321 		return -ENXIO;
322 
323 	/* Use the achievable power state for the domain */
324 	power_state = pwrdm_get_valid_lp_state(pm_info->pwrdm,
325 					       false, power_state);
326 
327 	if (power_state == PWRDM_POWER_OFF)
328 		cpu_state = 1;
329 
330 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
331 	pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
332 	set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.hotplug_restart));
333 	omap_pm_ops.scu_prepare(cpu, power_state);
334 
335 	/*
336 	 * CPU never retuns back if targeted power state is OFF mode.
337 	 * CPU ONLINE follows normal CPU ONLINE ptah via
338 	 * omap4_secondary_startup().
339 	 */
340 	omap_pm_ops.finish_suspend(cpu_state);
341 
342 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
343 	return 0;
344 }
345 
346 
347 /*
348  * Enable Mercury Fast HG retention mode by default.
349  */
350 static void enable_mercury_retention_mode(void)
351 {
352 	u32 reg;
353 
354 	reg = omap4_prcm_mpu_read_inst_reg(OMAP54XX_PRCM_MPU_DEVICE_INST,
355 				  OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
356 	/* Enable HG_EN, HG_RAMPUP = fast mode */
357 	reg |= BIT(24) | BIT(25);
358 	omap4_prcm_mpu_write_inst_reg(reg, OMAP54XX_PRCM_MPU_DEVICE_INST,
359 				      OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
360 }
361 
362 /*
363  * Initialise OMAP4 MPUSS
364  */
365 int __init omap4_mpuss_init(void)
366 {
367 	struct omap4_cpu_pm_info *pm_info;
368 
369 	if (omap_rev() == OMAP4430_REV_ES1_0) {
370 		WARN(1, "Power Management not supported on OMAP4430 ES1.0\n");
371 		return -ENODEV;
372 	}
373 
374 	/* Initilaise per CPU PM information */
375 	pm_info = &per_cpu(omap4_pm_info, 0x0);
376 	if (sar_base) {
377 		pm_info->scu_sar_addr = sar_base + SCU_OFFSET0;
378 		if (cpu_is_omap44xx())
379 			pm_info->wkup_sar_addr = sar_base +
380 				CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
381 		else
382 			pm_info->wkup_sar_addr = sar_base +
383 				OMAP5_CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
384 		pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET0;
385 	}
386 	pm_info->pwrdm = pwrdm_lookup("cpu0_pwrdm");
387 	if (!pm_info->pwrdm) {
388 		pr_err("Lookup failed for CPU0 pwrdm\n");
389 		return -ENODEV;
390 	}
391 
392 	/* Clear CPU previous power domain state */
393 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
394 	cpu_clear_prev_logic_pwrst(0);
395 
396 	/* Initialise CPU0 power domain state to ON */
397 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
398 
399 	pm_info = &per_cpu(omap4_pm_info, 0x1);
400 	if (sar_base) {
401 		pm_info->scu_sar_addr = sar_base + SCU_OFFSET1;
402 		if (cpu_is_omap44xx())
403 			pm_info->wkup_sar_addr = sar_base +
404 				CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
405 		else
406 			pm_info->wkup_sar_addr = sar_base +
407 				OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
408 		pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET1;
409 	}
410 
411 	pm_info->pwrdm = pwrdm_lookup("cpu1_pwrdm");
412 	if (!pm_info->pwrdm) {
413 		pr_err("Lookup failed for CPU1 pwrdm\n");
414 		return -ENODEV;
415 	}
416 
417 	/* Clear CPU previous power domain state */
418 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
419 	cpu_clear_prev_logic_pwrst(1);
420 
421 	/* Initialise CPU1 power domain state to ON */
422 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
423 
424 	mpuss_pd = pwrdm_lookup("mpu_pwrdm");
425 	if (!mpuss_pd) {
426 		pr_err("Failed to lookup MPUSS power domain\n");
427 		return -ENODEV;
428 	}
429 	pwrdm_clear_all_prev_pwrst(mpuss_pd);
430 	mpuss_clear_prev_logic_pwrst();
431 
432 	if (sar_base) {
433 		/* Save device type on scratchpad for low level code to use */
434 		writel_relaxed((omap_type() != OMAP2_DEVICE_TYPE_GP) ? 1 : 0,
435 			       sar_base + OMAP_TYPE_OFFSET);
436 		save_l2x0_context();
437 	}
438 
439 	if (cpu_is_omap44xx()) {
440 		omap_pm_ops.finish_suspend = omap4_finish_suspend;
441 		omap_pm_ops.resume = omap4_cpu_resume;
442 		omap_pm_ops.scu_prepare = scu_pwrst_prepare;
443 		omap_pm_ops.hotplug_restart = omap4_secondary_startup;
444 		cpu_context_offset = OMAP4_RM_CPU0_CPU0_CONTEXT_OFFSET;
445 	} else if (soc_is_omap54xx() || soc_is_dra7xx()) {
446 		cpu_context_offset = OMAP54XX_RM_CPU0_CPU0_CONTEXT_OFFSET;
447 		enable_mercury_retention_mode();
448 	}
449 
450 	if (cpu_is_omap446x())
451 		omap_pm_ops.hotplug_restart = omap4460_secondary_startup;
452 
453 	return 0;
454 }
455 
456 #endif
457 
458 u32 omap4_get_cpu1_ns_pa_addr(void)
459 {
460 	return old_cpu1_ns_pa_addr;
461 }
462 
463 /*
464  * For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to
465  * current kernel's secondary_startup() early before
466  * clockdomains_init(). Otherwise clockdomain_init() can
467  * wake CPU1 and cause a hang.
468  */
469 void __init omap4_mpuss_early_init(void)
470 {
471 	unsigned long startup_pa;
472 	void __iomem *ns_pa_addr;
473 
474 	if (!(soc_is_omap44xx() || soc_is_omap54xx()))
475 		return;
476 
477 	sar_base = omap4_get_sar_ram_base();
478 
479 	/* Save old NS_PA_ADDR for validity checks later on */
480 	if (soc_is_omap44xx())
481 		ns_pa_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
482 	else
483 		ns_pa_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
484 	old_cpu1_ns_pa_addr = readl_relaxed(ns_pa_addr);
485 
486 	if (soc_is_omap443x())
487 		startup_pa = __pa_symbol(omap4_secondary_startup);
488 	else if (soc_is_omap446x())
489 		startup_pa = __pa_symbol(omap4460_secondary_startup);
490 	else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
491 		startup_pa = __pa_symbol(omap5_secondary_hyp_startup);
492 	else
493 		startup_pa = __pa_symbol(omap5_secondary_startup);
494 
495 	if (soc_is_omap44xx())
496 		writel_relaxed(startup_pa, sar_base +
497 			       CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
498 	else
499 		writel_relaxed(startup_pa, sar_base +
500 			       OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
501 }
502