1 //kernel/linux-omap-fsample/arch/arm/mach-omap1/clock.c#2 - edit change 3808 (text) 2 /* 3 * linux/arch/arm/mach-omap1/clock.c 4 * 5 * Copyright (C) 2004 - 2005 Nokia corporation 6 * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> 7 * 8 * Modified to use omap shared clock framework by 9 * Tony Lindgren <tony@atomide.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 */ 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/errno.h> 19 #include <linux/err.h> 20 #include <linux/clk.h> 21 22 #include <asm/io.h> 23 24 #include <asm/arch/cpu.h> 25 #include <asm/arch/usb.h> 26 #include <asm/arch/clock.h> 27 #include <asm/arch/sram.h> 28 29 #include "clock.h" 30 31 __u32 arm_idlect1_mask; 32 33 /*------------------------------------------------------------------------- 34 * Omap1 specific clock functions 35 *-------------------------------------------------------------------------*/ 36 37 static void omap1_watchdog_recalc(struct clk * clk) 38 { 39 clk->rate = clk->parent->rate / 14; 40 } 41 42 static void omap1_uart_recalc(struct clk * clk) 43 { 44 unsigned int val = omap_readl(clk->enable_reg); 45 if (val & clk->enable_bit) 46 clk->rate = 48000000; 47 else 48 clk->rate = 12000000; 49 } 50 51 static int omap1_clk_enable_dsp_domain(struct clk *clk) 52 { 53 int retval; 54 55 retval = omap1_clk_enable(&api_ck.clk); 56 if (!retval) { 57 retval = omap1_clk_enable_generic(clk); 58 omap1_clk_disable(&api_ck.clk); 59 } 60 61 return retval; 62 } 63 64 static void omap1_clk_disable_dsp_domain(struct clk *clk) 65 { 66 if (omap1_clk_enable(&api_ck.clk) == 0) { 67 omap1_clk_disable_generic(clk); 68 omap1_clk_disable(&api_ck.clk); 69 } 70 } 71 72 static int omap1_clk_enable_uart_functional(struct clk *clk) 73 { 74 int ret; 75 struct uart_clk *uclk; 76 77 ret = omap1_clk_enable_generic(clk); 78 if (ret == 0) { 79 /* Set smart idle acknowledgement mode */ 80 uclk = (struct uart_clk *)clk; 81 omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8, 82 uclk->sysc_addr); 83 } 84 85 return ret; 86 } 87 88 static void omap1_clk_disable_uart_functional(struct clk *clk) 89 { 90 struct uart_clk *uclk; 91 92 /* Set force idle acknowledgement mode */ 93 uclk = (struct uart_clk *)clk; 94 omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr); 95 96 omap1_clk_disable_generic(clk); 97 } 98 99 static void omap1_clk_allow_idle(struct clk *clk) 100 { 101 struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; 102 103 if (!(clk->flags & CLOCK_IDLE_CONTROL)) 104 return; 105 106 if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count)) 107 arm_idlect1_mask |= 1 << iclk->idlect_shift; 108 } 109 110 static void omap1_clk_deny_idle(struct clk *clk) 111 { 112 struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; 113 114 if (!(clk->flags & CLOCK_IDLE_CONTROL)) 115 return; 116 117 if (iclk->no_idle_count++ == 0) 118 arm_idlect1_mask &= ~(1 << iclk->idlect_shift); 119 } 120 121 static __u16 verify_ckctl_value(__u16 newval) 122 { 123 /* This function checks for following limitations set 124 * by the hardware (all conditions must be true): 125 * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 126 * ARM_CK >= TC_CK 127 * DSP_CK >= TC_CK 128 * DSPMMU_CK >= TC_CK 129 * 130 * In addition following rules are enforced: 131 * LCD_CK <= TC_CK 132 * ARMPER_CK <= TC_CK 133 * 134 * However, maximum frequencies are not checked for! 135 */ 136 __u8 per_exp; 137 __u8 lcd_exp; 138 __u8 arm_exp; 139 __u8 dsp_exp; 140 __u8 tc_exp; 141 __u8 dspmmu_exp; 142 143 per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3; 144 lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3; 145 arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3; 146 dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3; 147 tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3; 148 dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3; 149 150 if (dspmmu_exp < dsp_exp) 151 dspmmu_exp = dsp_exp; 152 if (dspmmu_exp > dsp_exp+1) 153 dspmmu_exp = dsp_exp+1; 154 if (tc_exp < arm_exp) 155 tc_exp = arm_exp; 156 if (tc_exp < dspmmu_exp) 157 tc_exp = dspmmu_exp; 158 if (tc_exp > lcd_exp) 159 lcd_exp = tc_exp; 160 if (tc_exp > per_exp) 161 per_exp = tc_exp; 162 163 newval &= 0xf000; 164 newval |= per_exp << CKCTL_PERDIV_OFFSET; 165 newval |= lcd_exp << CKCTL_LCDDIV_OFFSET; 166 newval |= arm_exp << CKCTL_ARMDIV_OFFSET; 167 newval |= dsp_exp << CKCTL_DSPDIV_OFFSET; 168 newval |= tc_exp << CKCTL_TCDIV_OFFSET; 169 newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET; 170 171 return newval; 172 } 173 174 static int calc_dsor_exp(struct clk *clk, unsigned long rate) 175 { 176 /* Note: If target frequency is too low, this function will return 4, 177 * which is invalid value. Caller must check for this value and act 178 * accordingly. 179 * 180 * Note: This function does not check for following limitations set 181 * by the hardware (all conditions must be true): 182 * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 183 * ARM_CK >= TC_CK 184 * DSP_CK >= TC_CK 185 * DSPMMU_CK >= TC_CK 186 */ 187 unsigned long realrate; 188 struct clk * parent; 189 unsigned dsor_exp; 190 191 if (unlikely(!(clk->flags & RATE_CKCTL))) 192 return -EINVAL; 193 194 parent = clk->parent; 195 if (unlikely(parent == 0)) 196 return -EIO; 197 198 realrate = parent->rate; 199 for (dsor_exp=0; dsor_exp<4; dsor_exp++) { 200 if (realrate <= rate) 201 break; 202 203 realrate /= 2; 204 } 205 206 return dsor_exp; 207 } 208 209 static void omap1_ckctl_recalc(struct clk * clk) 210 { 211 int dsor; 212 213 /* Calculate divisor encoded as 2-bit exponent */ 214 dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset)); 215 216 if (unlikely(clk->rate == clk->parent->rate / dsor)) 217 return; /* No change, quick exit */ 218 clk->rate = clk->parent->rate / dsor; 219 220 if (unlikely(clk->flags & RATE_PROPAGATES)) 221 propagate_rate(clk); 222 } 223 224 static void omap1_ckctl_recalc_dsp_domain(struct clk * clk) 225 { 226 int dsor; 227 228 /* Calculate divisor encoded as 2-bit exponent 229 * 230 * The clock control bits are in DSP domain, 231 * so api_ck is needed for access. 232 * Note that DSP_CKCTL virt addr = phys addr, so 233 * we must use __raw_readw() instead of omap_readw(). 234 */ 235 omap1_clk_enable(&api_ck.clk); 236 dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset)); 237 omap1_clk_disable(&api_ck.clk); 238 239 if (unlikely(clk->rate == clk->parent->rate / dsor)) 240 return; /* No change, quick exit */ 241 clk->rate = clk->parent->rate / dsor; 242 243 if (unlikely(clk->flags & RATE_PROPAGATES)) 244 propagate_rate(clk); 245 } 246 247 /* MPU virtual clock functions */ 248 static int omap1_select_table_rate(struct clk * clk, unsigned long rate) 249 { 250 /* Find the highest supported frequency <= rate and switch to it */ 251 struct mpu_rate * ptr; 252 253 if (clk != &virtual_ck_mpu) 254 return -EINVAL; 255 256 for (ptr = rate_table; ptr->rate; ptr++) { 257 if (ptr->xtal != ck_ref.rate) 258 continue; 259 260 /* DPLL1 cannot be reprogrammed without risking system crash */ 261 if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate) 262 continue; 263 264 /* Can check only after xtal frequency check */ 265 if (ptr->rate <= rate) 266 break; 267 } 268 269 if (!ptr->rate) 270 return -EINVAL; 271 272 /* 273 * In most cases we should not need to reprogram DPLL. 274 * Reprogramming the DPLL is tricky, it must be done from SRAM. 275 * (on 730, bit 13 must always be 1) 276 */ 277 if (cpu_is_omap730()) 278 omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val | 0x2000); 279 else 280 omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val); 281 282 ck_dpll1.rate = ptr->pll_rate; 283 propagate_rate(&ck_dpll1); 284 return 0; 285 } 286 287 static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate) 288 { 289 int ret = -EINVAL; 290 int dsor_exp; 291 __u16 regval; 292 293 if (clk->flags & RATE_CKCTL) { 294 dsor_exp = calc_dsor_exp(clk, rate); 295 if (dsor_exp > 3) 296 dsor_exp = -EINVAL; 297 if (dsor_exp < 0) 298 return dsor_exp; 299 300 regval = __raw_readw(DSP_CKCTL); 301 regval &= ~(3 << clk->rate_offset); 302 regval |= dsor_exp << clk->rate_offset; 303 __raw_writew(regval, DSP_CKCTL); 304 clk->rate = clk->parent->rate / (1 << dsor_exp); 305 ret = 0; 306 } 307 308 if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) 309 propagate_rate(clk); 310 311 return ret; 312 } 313 314 static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate) 315 { 316 /* Find the highest supported frequency <= rate */ 317 struct mpu_rate * ptr; 318 long highest_rate; 319 320 if (clk != &virtual_ck_mpu) 321 return -EINVAL; 322 323 highest_rate = -EINVAL; 324 325 for (ptr = rate_table; ptr->rate; ptr++) { 326 if (ptr->xtal != ck_ref.rate) 327 continue; 328 329 highest_rate = ptr->rate; 330 331 /* Can check only after xtal frequency check */ 332 if (ptr->rate <= rate) 333 break; 334 } 335 336 return highest_rate; 337 } 338 339 static unsigned calc_ext_dsor(unsigned long rate) 340 { 341 unsigned dsor; 342 343 /* MCLK and BCLK divisor selection is not linear: 344 * freq = 96MHz / dsor 345 * 346 * RATIO_SEL range: dsor <-> RATIO_SEL 347 * 0..6: (RATIO_SEL+2) <-> (dsor-2) 348 * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6) 349 * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9 350 * can not be used. 351 */ 352 for (dsor = 2; dsor < 96; ++dsor) { 353 if ((dsor & 1) && dsor > 8) 354 continue; 355 if (rate >= 96000000 / dsor) 356 break; 357 } 358 return dsor; 359 } 360 361 /* Only needed on 1510 */ 362 static int omap1_set_uart_rate(struct clk * clk, unsigned long rate) 363 { 364 unsigned int val; 365 366 val = omap_readl(clk->enable_reg); 367 if (rate == 12000000) 368 val &= ~(1 << clk->enable_bit); 369 else if (rate == 48000000) 370 val |= (1 << clk->enable_bit); 371 else 372 return -EINVAL; 373 omap_writel(val, clk->enable_reg); 374 clk->rate = rate; 375 376 return 0; 377 } 378 379 /* External clock (MCLK & BCLK) functions */ 380 static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate) 381 { 382 unsigned dsor; 383 __u16 ratio_bits; 384 385 dsor = calc_ext_dsor(rate); 386 clk->rate = 96000000 / dsor; 387 if (dsor > 8) 388 ratio_bits = ((dsor - 8) / 2 + 6) << 2; 389 else 390 ratio_bits = (dsor - 2) << 2; 391 392 ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd; 393 omap_writew(ratio_bits, clk->enable_reg); 394 395 return 0; 396 } 397 398 static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate) 399 { 400 return 96000000 / calc_ext_dsor(rate); 401 } 402 403 static void omap1_init_ext_clk(struct clk * clk) 404 { 405 unsigned dsor; 406 __u16 ratio_bits; 407 408 /* Determine current rate and ensure clock is based on 96MHz APLL */ 409 ratio_bits = omap_readw(clk->enable_reg) & ~1; 410 omap_writew(ratio_bits, clk->enable_reg); 411 412 ratio_bits = (ratio_bits & 0xfc) >> 2; 413 if (ratio_bits > 6) 414 dsor = (ratio_bits - 6) * 2 + 8; 415 else 416 dsor = ratio_bits + 2; 417 418 clk-> rate = 96000000 / dsor; 419 } 420 421 static int omap1_clk_enable(struct clk *clk) 422 { 423 int ret = 0; 424 if (clk->usecount++ == 0) { 425 if (likely(clk->parent)) { 426 ret = omap1_clk_enable(clk->parent); 427 428 if (unlikely(ret != 0)) { 429 clk->usecount--; 430 return ret; 431 } 432 433 if (clk->flags & CLOCK_NO_IDLE_PARENT) 434 if (!cpu_is_omap24xx()) 435 omap1_clk_deny_idle(clk->parent); 436 } 437 438 ret = clk->enable(clk); 439 440 if (unlikely(ret != 0) && clk->parent) { 441 omap1_clk_disable(clk->parent); 442 clk->usecount--; 443 } 444 } 445 446 return ret; 447 } 448 449 static void omap1_clk_disable(struct clk *clk) 450 { 451 if (clk->usecount > 0 && !(--clk->usecount)) { 452 clk->disable(clk); 453 if (likely(clk->parent)) { 454 omap1_clk_disable(clk->parent); 455 if (clk->flags & CLOCK_NO_IDLE_PARENT) 456 if (!cpu_is_omap24xx()) 457 omap1_clk_allow_idle(clk->parent); 458 } 459 } 460 } 461 462 static int omap1_clk_enable_generic(struct clk *clk) 463 { 464 __u16 regval16; 465 __u32 regval32; 466 467 if (clk->flags & ALWAYS_ENABLED) 468 return 0; 469 470 if (unlikely(clk->enable_reg == 0)) { 471 printk(KERN_ERR "clock.c: Enable for %s without enable code\n", 472 clk->name); 473 return 0; 474 } 475 476 if (clk->flags & ENABLE_REG_32BIT) { 477 if (clk->flags & VIRTUAL_IO_ADDRESS) { 478 regval32 = __raw_readl(clk->enable_reg); 479 regval32 |= (1 << clk->enable_bit); 480 __raw_writel(regval32, clk->enable_reg); 481 } else { 482 regval32 = omap_readl(clk->enable_reg); 483 regval32 |= (1 << clk->enable_bit); 484 omap_writel(regval32, clk->enable_reg); 485 } 486 } else { 487 if (clk->flags & VIRTUAL_IO_ADDRESS) { 488 regval16 = __raw_readw(clk->enable_reg); 489 regval16 |= (1 << clk->enable_bit); 490 __raw_writew(regval16, clk->enable_reg); 491 } else { 492 regval16 = omap_readw(clk->enable_reg); 493 regval16 |= (1 << clk->enable_bit); 494 omap_writew(regval16, clk->enable_reg); 495 } 496 } 497 498 return 0; 499 } 500 501 static void omap1_clk_disable_generic(struct clk *clk) 502 { 503 __u16 regval16; 504 __u32 regval32; 505 506 if (clk->enable_reg == 0) 507 return; 508 509 if (clk->flags & ENABLE_REG_32BIT) { 510 if (clk->flags & VIRTUAL_IO_ADDRESS) { 511 regval32 = __raw_readl(clk->enable_reg); 512 regval32 &= ~(1 << clk->enable_bit); 513 __raw_writel(regval32, clk->enable_reg); 514 } else { 515 regval32 = omap_readl(clk->enable_reg); 516 regval32 &= ~(1 << clk->enable_bit); 517 omap_writel(regval32, clk->enable_reg); 518 } 519 } else { 520 if (clk->flags & VIRTUAL_IO_ADDRESS) { 521 regval16 = __raw_readw(clk->enable_reg); 522 regval16 &= ~(1 << clk->enable_bit); 523 __raw_writew(regval16, clk->enable_reg); 524 } else { 525 regval16 = omap_readw(clk->enable_reg); 526 regval16 &= ~(1 << clk->enable_bit); 527 omap_writew(regval16, clk->enable_reg); 528 } 529 } 530 } 531 532 static long omap1_clk_round_rate(struct clk *clk, unsigned long rate) 533 { 534 int dsor_exp; 535 536 if (clk->flags & RATE_FIXED) 537 return clk->rate; 538 539 if (clk->flags & RATE_CKCTL) { 540 dsor_exp = calc_dsor_exp(clk, rate); 541 if (dsor_exp < 0) 542 return dsor_exp; 543 if (dsor_exp > 3) 544 dsor_exp = 3; 545 return clk->parent->rate / (1 << dsor_exp); 546 } 547 548 if(clk->round_rate != 0) 549 return clk->round_rate(clk, rate); 550 551 return clk->rate; 552 } 553 554 static int omap1_clk_set_rate(struct clk *clk, unsigned long rate) 555 { 556 int ret = -EINVAL; 557 int dsor_exp; 558 __u16 regval; 559 560 if (clk->set_rate) 561 ret = clk->set_rate(clk, rate); 562 else if (clk->flags & RATE_CKCTL) { 563 dsor_exp = calc_dsor_exp(clk, rate); 564 if (dsor_exp > 3) 565 dsor_exp = -EINVAL; 566 if (dsor_exp < 0) 567 return dsor_exp; 568 569 regval = omap_readw(ARM_CKCTL); 570 regval &= ~(3 << clk->rate_offset); 571 regval |= dsor_exp << clk->rate_offset; 572 regval = verify_ckctl_value(regval); 573 omap_writew(regval, ARM_CKCTL); 574 clk->rate = clk->parent->rate / (1 << dsor_exp); 575 ret = 0; 576 } 577 578 if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) 579 propagate_rate(clk); 580 581 return ret; 582 } 583 584 /*------------------------------------------------------------------------- 585 * Omap1 clock reset and init functions 586 *-------------------------------------------------------------------------*/ 587 588 #ifdef CONFIG_OMAP_RESET_CLOCKS 589 /* 590 * Resets some clocks that may be left on from bootloader, 591 * but leaves serial clocks on. See also omap_late_clk_reset(). 592 */ 593 static inline void omap1_early_clk_reset(void) 594 { 595 //omap_writel(0x3 << 29, MOD_CONF_CTRL_0); 596 } 597 598 static int __init omap1_late_clk_reset(void) 599 { 600 /* Turn off all unused clocks */ 601 struct clk *p; 602 __u32 regval32; 603 604 /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */ 605 regval32 = omap_readw(SOFT_REQ_REG) & (1 << 4); 606 omap_writew(regval32, SOFT_REQ_REG); 607 omap_writew(0, SOFT_REQ_REG2); 608 609 list_for_each_entry(p, &clocks, node) { 610 if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) || 611 p->enable_reg == 0) 612 continue; 613 614 /* Clocks in the DSP domain need api_ck. Just assume bootloader 615 * has not enabled any DSP clocks */ 616 if ((u32)p->enable_reg == DSP_IDLECT2) { 617 printk(KERN_INFO "Skipping reset check for DSP domain " 618 "clock \"%s\"\n", p->name); 619 continue; 620 } 621 622 /* Is the clock already disabled? */ 623 if (p->flags & ENABLE_REG_32BIT) { 624 if (p->flags & VIRTUAL_IO_ADDRESS) 625 regval32 = __raw_readl(p->enable_reg); 626 else 627 regval32 = omap_readl(p->enable_reg); 628 } else { 629 if (p->flags & VIRTUAL_IO_ADDRESS) 630 regval32 = __raw_readw(p->enable_reg); 631 else 632 regval32 = omap_readw(p->enable_reg); 633 } 634 635 if ((regval32 & (1 << p->enable_bit)) == 0) 636 continue; 637 638 /* FIXME: This clock seems to be necessary but no-one 639 * has asked for its activation. */ 640 if (p == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera 641 || p == &ck_dpll1out.clk // FIX: SoSSI, SSR 642 || p == &arm_gpio_ck // FIX: GPIO code for 1510 643 ) { 644 printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n", 645 p->name); 646 continue; 647 } 648 649 printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name); 650 p->disable(p); 651 printk(" done\n"); 652 } 653 654 return 0; 655 } 656 late_initcall(omap1_late_clk_reset); 657 658 #else 659 #define omap1_early_clk_reset() {} 660 #endif 661 662 static struct clk_functions omap1_clk_functions = { 663 .clk_enable = omap1_clk_enable, 664 .clk_disable = omap1_clk_disable, 665 .clk_round_rate = omap1_clk_round_rate, 666 .clk_set_rate = omap1_clk_set_rate, 667 }; 668 669 int __init omap1_clk_init(void) 670 { 671 struct clk ** clkp; 672 const struct omap_clock_config *info; 673 int crystal_type = 0; /* Default 12 MHz */ 674 675 omap1_early_clk_reset(); 676 clk_init(&omap1_clk_functions); 677 678 /* By default all idlect1 clocks are allowed to idle */ 679 arm_idlect1_mask = ~0; 680 681 for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) { 682 if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) { 683 clk_register(*clkp); 684 continue; 685 } 686 687 if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) { 688 clk_register(*clkp); 689 continue; 690 } 691 692 if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) { 693 clk_register(*clkp); 694 continue; 695 } 696 697 if (((*clkp)->flags &CLOCK_IN_OMAP310) && cpu_is_omap310()) { 698 clk_register(*clkp); 699 continue; 700 } 701 } 702 703 info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config); 704 if (info != NULL) { 705 if (!cpu_is_omap1510()) 706 crystal_type = info->system_clock_type; 707 } 708 709 #if defined(CONFIG_ARCH_OMAP730) 710 ck_ref.rate = 13000000; 711 #elif defined(CONFIG_ARCH_OMAP16XX) 712 if (crystal_type == 2) 713 ck_ref.rate = 19200000; 714 #endif 715 716 printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n", 717 omap_readw(ARM_SYSST), omap_readw(DPLL_CTL), 718 omap_readw(ARM_CKCTL)); 719 720 /* We want to be in syncronous scalable mode */ 721 omap_writew(0x1000, ARM_SYSST); 722 723 #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER 724 /* Use values set by bootloader. Determine PLL rate and recalculate 725 * dependent clocks as if kernel had changed PLL or divisors. 726 */ 727 { 728 unsigned pll_ctl_val = omap_readw(DPLL_CTL); 729 730 ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */ 731 if (pll_ctl_val & 0x10) { 732 /* PLL enabled, apply multiplier and divisor */ 733 if (pll_ctl_val & 0xf80) 734 ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7; 735 ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1; 736 } else { 737 /* PLL disabled, apply bypass divisor */ 738 switch (pll_ctl_val & 0xc) { 739 case 0: 740 break; 741 case 0x4: 742 ck_dpll1.rate /= 2; 743 break; 744 default: 745 ck_dpll1.rate /= 4; 746 break; 747 } 748 } 749 } 750 propagate_rate(&ck_dpll1); 751 #else 752 /* Find the highest supported frequency and enable it */ 753 if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) { 754 printk(KERN_ERR "System frequencies not set. Check your config.\n"); 755 /* Guess sane values (60MHz) */ 756 omap_writew(0x2290, DPLL_CTL); 757 omap_writew(cpu_is_omap730() ? 0x3005 : 0x1005, ARM_CKCTL); 758 ck_dpll1.rate = 60000000; 759 propagate_rate(&ck_dpll1); 760 } 761 #endif 762 /* Cache rates for clocks connected to ck_ref (not dpll1) */ 763 propagate_rate(&ck_ref); 764 printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): " 765 "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n", 766 ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10, 767 ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10, 768 arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10); 769 770 #if defined(CONFIG_MACH_OMAP_PERSEUS2) || defined(CONFIG_MACH_OMAP_FSAMPLE) 771 /* Select slicer output as OMAP input clock */ 772 omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL); 773 #endif 774 775 /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */ 776 /* (on 730, bit 13 must not be cleared) */ 777 if (cpu_is_omap730()) 778 omap_writew(omap_readw(ARM_CKCTL) & 0x2fff, ARM_CKCTL); 779 else 780 omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL); 781 782 /* Put DSP/MPUI into reset until needed */ 783 omap_writew(0, ARM_RSTCT1); 784 omap_writew(1, ARM_RSTCT2); 785 omap_writew(0x400, ARM_IDLECT1); 786 787 /* 788 * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8) 789 * of the ARM_IDLECT2 register must be set to zero. The power-on 790 * default value of this bit is one. 791 */ 792 omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */ 793 794 /* 795 * Only enable those clocks we will need, let the drivers 796 * enable other clocks as necessary 797 */ 798 clk_enable(&armper_ck.clk); 799 clk_enable(&armxor_ck.clk); 800 clk_enable(&armtim_ck.clk); /* This should be done by timer code */ 801 802 if (cpu_is_omap15xx()) 803 clk_enable(&arm_gpio_ck); 804 805 return 0; 806 } 807 808