xref: /linux/arch/arm/mach-exynos/mcpm-exynos.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * arch/arm/mach-exynos/mcpm-exynos.c
6  *
7  * Based on arch/arm/mach-vexpress/dcscb.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/arm-cci.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/of_address.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/soc/samsung/exynos-regs-pmu.h>
20 
21 #include <asm/cputype.h>
22 #include <asm/cp15.h>
23 #include <asm/mcpm.h>
24 #include <asm/smp_plat.h>
25 
26 #include "common.h"
27 
28 #define EXYNOS5420_CPUS_PER_CLUSTER	4
29 #define EXYNOS5420_NR_CLUSTERS		2
30 
31 #define EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN	BIT(9)
32 #define EXYNOS5420_USE_ARM_CORE_DOWN_STATE	BIT(29)
33 #define EXYNOS5420_USE_L2_COMMON_UP_STATE	BIT(30)
34 
35 static void __iomem *ns_sram_base_addr;
36 
37 /*
38  * The common v7_exit_coherency_flush API could not be used because of the
39  * Erratum 799270 workaround. This macro is the same as the common one (in
40  * arch/arm/include/asm/cacheflush.h) except for the erratum handling.
41  */
42 #define exynos_v7_exit_coherency_flush(level) \
43 	asm volatile( \
44 	"stmfd	sp!, {fp, ip}\n\t"\
45 	"mrc	p15, 0, r0, c1, c0, 0	@ get SCTLR\n\t" \
46 	"bic	r0, r0, #"__stringify(CR_C)"\n\t" \
47 	"mcr	p15, 0, r0, c1, c0, 0	@ set SCTLR\n\t" \
48 	"isb\n\t"\
49 	"bl	v7_flush_dcache_"__stringify(level)"\n\t" \
50 	"mrc	p15, 0, r0, c1, c0, 1	@ get ACTLR\n\t" \
51 	"bic	r0, r0, #(1 << 6)	@ disable local coherency\n\t" \
52 	/* Dummy Load of a device register to avoid Erratum 799270 */ \
53 	"ldr	r4, [%0]\n\t" \
54 	"and	r4, r4, #0\n\t" \
55 	"orr	r0, r0, r4\n\t" \
56 	"mcr	p15, 0, r0, c1, c0, 1	@ set ACTLR\n\t" \
57 	"isb\n\t" \
58 	"dsb\n\t" \
59 	"ldmfd	sp!, {fp, ip}" \
60 	: \
61 	: "Ir" (pmu_base_addr + S5P_INFORM0) \
62 	: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
63 	  "r9", "r10", "lr", "memory")
64 
65 static int exynos_cpu_powerup(unsigned int cpu, unsigned int cluster)
66 {
67 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
68 
69 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
70 	if (cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
71 		cluster >= EXYNOS5420_NR_CLUSTERS)
72 		return -EINVAL;
73 
74 	if (!exynos_cpu_power_state(cpunr)) {
75 		exynos_cpu_power_up(cpunr);
76 
77 		/*
78 		 * This assumes the cluster number of the big cores(Cortex A15)
79 		 * is 0 and the Little cores(Cortex A7) is 1.
80 		 * When the system was booted from the Little core,
81 		 * they should be reset during power up cpu.
82 		 */
83 		if (cluster &&
84 		    cluster == MPIDR_AFFINITY_LEVEL(cpu_logical_map(0), 1)) {
85 			/*
86 			 * Before we reset the Little cores, we should wait
87 			 * the SPARE2 register is set to 1 because the init
88 			 * codes of the iROM will set the register after
89 			 * initialization.
90 			 */
91 			while (!pmu_raw_readl(S5P_PMU_SPARE2))
92 				udelay(10);
93 
94 			pmu_raw_writel(EXYNOS5420_KFC_CORE_RESET(cpu),
95 					EXYNOS_SWRESET);
96 		}
97 	}
98 
99 	return 0;
100 }
101 
102 static int exynos_cluster_powerup(unsigned int cluster)
103 {
104 	pr_debug("%s: cluster %u\n", __func__, cluster);
105 	if (cluster >= EXYNOS5420_NR_CLUSTERS)
106 		return -EINVAL;
107 
108 	exynos_cluster_power_up(cluster);
109 	return 0;
110 }
111 
112 static void exynos_cpu_powerdown_prepare(unsigned int cpu, unsigned int cluster)
113 {
114 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
115 
116 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
117 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
118 			cluster >= EXYNOS5420_NR_CLUSTERS);
119 	exynos_cpu_power_down(cpunr);
120 }
121 
122 static void exynos_cluster_powerdown_prepare(unsigned int cluster)
123 {
124 	pr_debug("%s: cluster %u\n", __func__, cluster);
125 	BUG_ON(cluster >= EXYNOS5420_NR_CLUSTERS);
126 	exynos_cluster_power_down(cluster);
127 }
128 
129 static void exynos_cpu_cache_disable(void)
130 {
131 	/* Disable and flush the local CPU cache. */
132 	exynos_v7_exit_coherency_flush(louis);
133 }
134 
135 static void exynos_cluster_cache_disable(void)
136 {
137 	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
138 		/*
139 		 * On the Cortex-A15 we need to disable
140 		 * L2 prefetching before flushing the cache.
141 		 */
142 		asm volatile(
143 		"mcr	p15, 1, %0, c15, c0, 3\n\t"
144 		"isb\n\t"
145 		"dsb"
146 		: : "r" (0x400));
147 	}
148 
149 	/* Flush all cache levels for this cluster. */
150 	exynos_v7_exit_coherency_flush(all);
151 
152 	/*
153 	 * Disable cluster-level coherency by masking
154 	 * incoming snoops and DVM messages:
155 	 */
156 	cci_disable_port_by_cpu(read_cpuid_mpidr());
157 }
158 
159 static int exynos_wait_for_powerdown(unsigned int cpu, unsigned int cluster)
160 {
161 	unsigned int tries = 100;
162 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
163 
164 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
165 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
166 			cluster >= EXYNOS5420_NR_CLUSTERS);
167 
168 	/* Wait for the core state to be OFF */
169 	while (tries--) {
170 		if ((exynos_cpu_power_state(cpunr) == 0))
171 			return 0; /* success: the CPU is halted */
172 
173 		/* Otherwise, wait and retry: */
174 		msleep(1);
175 	}
176 
177 	return -ETIMEDOUT; /* timeout */
178 }
179 
180 static void exynos_cpu_is_up(unsigned int cpu, unsigned int cluster)
181 {
182 	/* especially when resuming: make sure power control is set */
183 	exynos_cpu_powerup(cpu, cluster);
184 }
185 
186 static const struct mcpm_platform_ops exynos_power_ops = {
187 	.cpu_powerup		= exynos_cpu_powerup,
188 	.cluster_powerup	= exynos_cluster_powerup,
189 	.cpu_powerdown_prepare	= exynos_cpu_powerdown_prepare,
190 	.cluster_powerdown_prepare = exynos_cluster_powerdown_prepare,
191 	.cpu_cache_disable	= exynos_cpu_cache_disable,
192 	.cluster_cache_disable	= exynos_cluster_cache_disable,
193 	.wait_for_powerdown	= exynos_wait_for_powerdown,
194 	.cpu_is_up		= exynos_cpu_is_up,
195 };
196 
197 /*
198  * Enable cluster-level coherency, in preparation for turning on the MMU.
199  */
200 static void __naked exynos_pm_power_up_setup(unsigned int affinity_level)
201 {
202 	asm volatile ("\n"
203 	"cmp	r0, #1\n"
204 	"bxne	lr\n"
205 	"b	cci_enable_port_for_self");
206 }
207 
208 static const struct of_device_id exynos_dt_mcpm_match[] = {
209 	{ .compatible = "samsung,exynos5420" },
210 	{ .compatible = "samsung,exynos5800" },
211 	{},
212 };
213 
214 static void exynos_mcpm_setup_entry_point(void)
215 {
216 	/*
217 	 * U-Boot SPL is hardcoded to jump to the start of ns_sram_base_addr
218 	 * as part of secondary_cpu_start().  Let's redirect it to the
219 	 * mcpm_entry_point(). This is done during both secondary boot-up as
220 	 * well as system resume.
221 	 */
222 	__raw_writel(0xe59f0000, ns_sram_base_addr);     /* ldr r0, [pc, #0] */
223 	__raw_writel(0xe12fff10, ns_sram_base_addr + 4); /* bx  r0 */
224 	__raw_writel(virt_to_phys(mcpm_entry_point), ns_sram_base_addr + 8);
225 }
226 
227 static struct syscore_ops exynos_mcpm_syscore_ops = {
228 	.resume	= exynos_mcpm_setup_entry_point,
229 };
230 
231 static int __init exynos_mcpm_init(void)
232 {
233 	struct device_node *node;
234 	unsigned int value, i;
235 	int ret;
236 
237 	node = of_find_matching_node(NULL, exynos_dt_mcpm_match);
238 	if (!node)
239 		return -ENODEV;
240 	of_node_put(node);
241 
242 	if (!cci_probed())
243 		return -ENODEV;
244 
245 	node = of_find_compatible_node(NULL, NULL,
246 			"samsung,exynos4210-sysram-ns");
247 	if (!node)
248 		return -ENODEV;
249 
250 	ns_sram_base_addr = of_iomap(node, 0);
251 	of_node_put(node);
252 	if (!ns_sram_base_addr) {
253 		pr_err("failed to map non-secure iRAM base address\n");
254 		return -ENOMEM;
255 	}
256 
257 	/*
258 	 * To increase the stability of KFC reset we need to program
259 	 * the PMU SPARE3 register
260 	 */
261 	pmu_raw_writel(EXYNOS5420_SWRESET_KFC_SEL, S5P_PMU_SPARE3);
262 
263 	ret = mcpm_platform_register(&exynos_power_ops);
264 	if (!ret)
265 		ret = mcpm_sync_init(exynos_pm_power_up_setup);
266 	if (!ret)
267 		ret = mcpm_loopback(exynos_cluster_cache_disable); /* turn on the CCI */
268 	if (ret) {
269 		iounmap(ns_sram_base_addr);
270 		return ret;
271 	}
272 
273 	mcpm_smp_set_ops();
274 
275 	pr_info("Exynos MCPM support installed\n");
276 
277 	/*
278 	 * On Exynos5420/5800 for the A15 and A7 clusters:
279 	 *
280 	 * EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN ensures that all the cores
281 	 * in a cluster are turned off before turning off the cluster L2.
282 	 *
283 	 * EXYNOS5420_USE_ARM_CORE_DOWN_STATE ensures that a cores is powered
284 	 * off before waking it up.
285 	 *
286 	 * EXYNOS5420_USE_L2_COMMON_UP_STATE ensures that cluster L2 will be
287 	 * turned on before the first man is powered up.
288 	 */
289 	for (i = 0; i < EXYNOS5420_NR_CLUSTERS; i++) {
290 		value = pmu_raw_readl(EXYNOS_COMMON_OPTION(i));
291 		value |= EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN |
292 			 EXYNOS5420_USE_ARM_CORE_DOWN_STATE    |
293 			 EXYNOS5420_USE_L2_COMMON_UP_STATE;
294 		pmu_raw_writel(value, EXYNOS_COMMON_OPTION(i));
295 	}
296 
297 	exynos_mcpm_setup_entry_point();
298 
299 	register_syscore_ops(&exynos_mcpm_syscore_ops);
300 
301 	return ret;
302 }
303 
304 early_initcall(exynos_mcpm_init);
305