xref: /linux/arch/arm/mach-exynos/mcpm-exynos.c (revision 05244d166739ae273fdc7a2151bdef61df49ca7d)
1 /*
2  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * arch/arm/mach-exynos/mcpm-exynos.c
6  *
7  * Based on arch/arm/mach-vexpress/dcscb.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/arm-cci.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/of_address.h>
18 
19 #include <asm/cputype.h>
20 #include <asm/cp15.h>
21 #include <asm/mcpm.h>
22 
23 #include "regs-pmu.h"
24 #include "common.h"
25 
26 #define EXYNOS5420_CPUS_PER_CLUSTER	4
27 #define EXYNOS5420_NR_CLUSTERS		2
28 
29 #define EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN	BIT(9)
30 #define EXYNOS5420_USE_ARM_CORE_DOWN_STATE	BIT(29)
31 #define EXYNOS5420_USE_L2_COMMON_UP_STATE	BIT(30)
32 
33 /*
34  * The common v7_exit_coherency_flush API could not be used because of the
35  * Erratum 799270 workaround. This macro is the same as the common one (in
36  * arch/arm/include/asm/cacheflush.h) except for the erratum handling.
37  */
38 #define exynos_v7_exit_coherency_flush(level) \
39 	asm volatile( \
40 	"stmfd	sp!, {fp, ip}\n\t"\
41 	"mrc	p15, 0, r0, c1, c0, 0	@ get SCTLR\n\t" \
42 	"bic	r0, r0, #"__stringify(CR_C)"\n\t" \
43 	"mcr	p15, 0, r0, c1, c0, 0	@ set SCTLR\n\t" \
44 	"isb\n\t"\
45 	"bl	v7_flush_dcache_"__stringify(level)"\n\t" \
46 	"mrc	p15, 0, r0, c1, c0, 1	@ get ACTLR\n\t" \
47 	"bic	r0, r0, #(1 << 6)	@ disable local coherency\n\t" \
48 	/* Dummy Load of a device register to avoid Erratum 799270 */ \
49 	"ldr	r4, [%0]\n\t" \
50 	"and	r4, r4, #0\n\t" \
51 	"orr	r0, r0, r4\n\t" \
52 	"mcr	p15, 0, r0, c1, c0, 1	@ set ACTLR\n\t" \
53 	"isb\n\t" \
54 	"dsb\n\t" \
55 	"ldmfd	sp!, {fp, ip}" \
56 	: \
57 	: "Ir" (pmu_base_addr + S5P_INFORM0) \
58 	: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
59 	  "r9", "r10", "lr", "memory")
60 
61 /*
62  * We can't use regular spinlocks. In the switcher case, it is possible
63  * for an outbound CPU to call power_down() after its inbound counterpart
64  * is already live using the same logical CPU number which trips lockdep
65  * debugging.
66  */
67 static arch_spinlock_t exynos_mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
68 static int
69 cpu_use_count[EXYNOS5420_CPUS_PER_CLUSTER][EXYNOS5420_NR_CLUSTERS];
70 
71 #define exynos_cluster_usecnt(cluster) \
72 	(cpu_use_count[0][cluster] +   \
73 	 cpu_use_count[1][cluster] +   \
74 	 cpu_use_count[2][cluster] +   \
75 	 cpu_use_count[3][cluster])
76 
77 #define exynos_cluster_unused(cluster) !exynos_cluster_usecnt(cluster)
78 
79 static int exynos_power_up(unsigned int cpu, unsigned int cluster)
80 {
81 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
82 
83 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
84 	if (cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
85 		cluster >= EXYNOS5420_NR_CLUSTERS)
86 		return -EINVAL;
87 
88 	/*
89 	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
90 	 * variant exists, we need to disable IRQs manually here.
91 	 */
92 	local_irq_disable();
93 	arch_spin_lock(&exynos_mcpm_lock);
94 
95 	cpu_use_count[cpu][cluster]++;
96 	if (cpu_use_count[cpu][cluster] == 1) {
97 		bool was_cluster_down =
98 			(exynos_cluster_usecnt(cluster) == 1);
99 
100 		/*
101 		 * Turn on the cluster (L2/COMMON) and then power on the
102 		 * cores.
103 		 */
104 		if (was_cluster_down)
105 			exynos_cluster_power_up(cluster);
106 
107 		exynos_cpu_power_up(cpunr);
108 	} else if (cpu_use_count[cpu][cluster] != 2) {
109 		/*
110 		 * The only possible values are:
111 		 * 0 = CPU down
112 		 * 1 = CPU (still) up
113 		 * 2 = CPU requested to be up before it had a chance
114 		 *     to actually make itself down.
115 		 * Any other value is a bug.
116 		 */
117 		BUG();
118 	}
119 
120 	arch_spin_unlock(&exynos_mcpm_lock);
121 	local_irq_enable();
122 
123 	return 0;
124 }
125 
126 /*
127  * NOTE: This function requires the stack data to be visible through power down
128  * and can only be executed on processors like A15 and A7 that hit the cache
129  * with the C bit clear in the SCTLR register.
130  */
131 static void exynos_power_down(void)
132 {
133 	unsigned int mpidr, cpu, cluster;
134 	bool last_man = false, skip_wfi = false;
135 	unsigned int cpunr;
136 
137 	mpidr = read_cpuid_mpidr();
138 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
139 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
140 	cpunr =  cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
141 
142 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
143 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
144 			cluster >= EXYNOS5420_NR_CLUSTERS);
145 
146 	__mcpm_cpu_going_down(cpu, cluster);
147 
148 	arch_spin_lock(&exynos_mcpm_lock);
149 	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
150 	cpu_use_count[cpu][cluster]--;
151 	if (cpu_use_count[cpu][cluster] == 0) {
152 		exynos_cpu_power_down(cpunr);
153 
154 		if (exynos_cluster_unused(cluster)) {
155 			exynos_cluster_power_down(cluster);
156 			last_man = true;
157 		}
158 	} else if (cpu_use_count[cpu][cluster] == 1) {
159 		/*
160 		 * A power_up request went ahead of us.
161 		 * Even if we do not want to shut this CPU down,
162 		 * the caller expects a certain state as if the WFI
163 		 * was aborted.  So let's continue with cache cleaning.
164 		 */
165 		skip_wfi = true;
166 	} else {
167 		BUG();
168 	}
169 
170 	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
171 		arch_spin_unlock(&exynos_mcpm_lock);
172 
173 		if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
174 			/*
175 			 * On the Cortex-A15 we need to disable
176 			 * L2 prefetching before flushing the cache.
177 			 */
178 			asm volatile(
179 			"mcr	p15, 1, %0, c15, c0, 3\n\t"
180 			"isb\n\t"
181 			"dsb"
182 			: : "r" (0x400));
183 		}
184 
185 		/* Flush all cache levels for this cluster. */
186 		exynos_v7_exit_coherency_flush(all);
187 
188 		/*
189 		 * Disable cluster-level coherency by masking
190 		 * incoming snoops and DVM messages:
191 		 */
192 		cci_disable_port_by_cpu(mpidr);
193 
194 		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
195 	} else {
196 		arch_spin_unlock(&exynos_mcpm_lock);
197 
198 		/* Disable and flush the local CPU cache. */
199 		exynos_v7_exit_coherency_flush(louis);
200 	}
201 
202 	__mcpm_cpu_down(cpu, cluster);
203 
204 	/* Now we are prepared for power-down, do it: */
205 	if (!skip_wfi)
206 		wfi();
207 
208 	/* Not dead at this point?  Let our caller cope. */
209 }
210 
211 static int exynos_wait_for_powerdown(unsigned int cpu, unsigned int cluster)
212 {
213 	unsigned int tries = 100;
214 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
215 
216 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
217 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
218 			cluster >= EXYNOS5420_NR_CLUSTERS);
219 
220 	/* Wait for the core state to be OFF */
221 	while (tries--) {
222 		if (ACCESS_ONCE(cpu_use_count[cpu][cluster]) == 0) {
223 			if ((exynos_cpu_power_state(cpunr) == 0))
224 				return 0; /* success: the CPU is halted */
225 		}
226 
227 		/* Otherwise, wait and retry: */
228 		msleep(1);
229 	}
230 
231 	return -ETIMEDOUT; /* timeout */
232 }
233 
234 static void exynos_powered_up(void)
235 {
236 	unsigned int mpidr, cpu, cluster;
237 
238 	mpidr = read_cpuid_mpidr();
239 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
240 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
241 
242 	arch_spin_lock(&exynos_mcpm_lock);
243 	if (cpu_use_count[cpu][cluster] == 0)
244 		cpu_use_count[cpu][cluster] = 1;
245 	arch_spin_unlock(&exynos_mcpm_lock);
246 }
247 
248 static void exynos_suspend(u64 residency)
249 {
250 	unsigned int mpidr, cpunr;
251 
252 	exynos_power_down();
253 
254 	/*
255 	 * Execution reaches here only if cpu did not power down.
256 	 * Hence roll back the changes done in exynos_power_down function.
257 	 *
258 	 * CAUTION: "This function requires the stack data to be visible through
259 	 * power down and can only be executed on processors like A15 and A7
260 	 * that hit the cache with the C bit clear in the SCTLR register."
261 	*/
262 	mpidr = read_cpuid_mpidr();
263 	cpunr = exynos_pmu_cpunr(mpidr);
264 
265 	exynos_cpu_power_up(cpunr);
266 }
267 
268 static const struct mcpm_platform_ops exynos_power_ops = {
269 	.power_up		= exynos_power_up,
270 	.power_down		= exynos_power_down,
271 	.wait_for_powerdown	= exynos_wait_for_powerdown,
272 	.suspend		= exynos_suspend,
273 	.powered_up		= exynos_powered_up,
274 };
275 
276 static void __init exynos_mcpm_usage_count_init(void)
277 {
278 	unsigned int mpidr, cpu, cluster;
279 
280 	mpidr = read_cpuid_mpidr();
281 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
282 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
283 
284 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
285 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER  ||
286 			cluster >= EXYNOS5420_NR_CLUSTERS);
287 
288 	cpu_use_count[cpu][cluster] = 1;
289 }
290 
291 /*
292  * Enable cluster-level coherency, in preparation for turning on the MMU.
293  */
294 static void __naked exynos_pm_power_up_setup(unsigned int affinity_level)
295 {
296 	asm volatile ("\n"
297 	"cmp	r0, #1\n"
298 	"bxne	lr\n"
299 	"b	cci_enable_port_for_self");
300 }
301 
302 static void __init exynos_cache_off(void)
303 {
304 	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
305 		/* disable L2 prefetching on the Cortex-A15 */
306 		asm volatile(
307 		"mcr	p15, 1, %0, c15, c0, 3\n\t"
308 		"isb\n\t"
309 		"dsb"
310 		: : "r" (0x400));
311 	}
312 	exynos_v7_exit_coherency_flush(all);
313 }
314 
315 static const struct of_device_id exynos_dt_mcpm_match[] = {
316 	{ .compatible = "samsung,exynos5420" },
317 	{ .compatible = "samsung,exynos5800" },
318 	{},
319 };
320 
321 static int __init exynos_mcpm_init(void)
322 {
323 	struct device_node *node;
324 	void __iomem *ns_sram_base_addr;
325 	unsigned int value, i;
326 	int ret;
327 
328 	node = of_find_matching_node(NULL, exynos_dt_mcpm_match);
329 	if (!node)
330 		return -ENODEV;
331 	of_node_put(node);
332 
333 	if (!cci_probed())
334 		return -ENODEV;
335 
336 	node = of_find_compatible_node(NULL, NULL,
337 			"samsung,exynos4210-sysram-ns");
338 	if (!node)
339 		return -ENODEV;
340 
341 	ns_sram_base_addr = of_iomap(node, 0);
342 	of_node_put(node);
343 	if (!ns_sram_base_addr) {
344 		pr_err("failed to map non-secure iRAM base address\n");
345 		return -ENOMEM;
346 	}
347 
348 	/*
349 	 * To increase the stability of KFC reset we need to program
350 	 * the PMU SPARE3 register
351 	 */
352 	pmu_raw_writel(EXYNOS5420_SWRESET_KFC_SEL, S5P_PMU_SPARE3);
353 
354 	exynos_mcpm_usage_count_init();
355 
356 	ret = mcpm_platform_register(&exynos_power_ops);
357 	if (!ret)
358 		ret = mcpm_sync_init(exynos_pm_power_up_setup);
359 	if (!ret)
360 		ret = mcpm_loopback(exynos_cache_off); /* turn on the CCI */
361 	if (ret) {
362 		iounmap(ns_sram_base_addr);
363 		return ret;
364 	}
365 
366 	mcpm_smp_set_ops();
367 
368 	pr_info("Exynos MCPM support installed\n");
369 
370 	/*
371 	 * On Exynos5420/5800 for the A15 and A7 clusters:
372 	 *
373 	 * EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN ensures that all the cores
374 	 * in a cluster are turned off before turning off the cluster L2.
375 	 *
376 	 * EXYNOS5420_USE_ARM_CORE_DOWN_STATE ensures that a cores is powered
377 	 * off before waking it up.
378 	 *
379 	 * EXYNOS5420_USE_L2_COMMON_UP_STATE ensures that cluster L2 will be
380 	 * turned on before the first man is powered up.
381 	 */
382 	for (i = 0; i < EXYNOS5420_NR_CLUSTERS; i++) {
383 		value = pmu_raw_readl(EXYNOS_COMMON_OPTION(i));
384 		value |= EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN |
385 			 EXYNOS5420_USE_ARM_CORE_DOWN_STATE    |
386 			 EXYNOS5420_USE_L2_COMMON_UP_STATE;
387 		pmu_raw_writel(value, EXYNOS_COMMON_OPTION(i));
388 	}
389 
390 	/*
391 	 * U-Boot SPL is hardcoded to jump to the start of ns_sram_base_addr
392 	 * as part of secondary_cpu_start().  Let's redirect it to the
393 	 * mcpm_entry_point().
394 	 */
395 	__raw_writel(0xe59f0000, ns_sram_base_addr);     /* ldr r0, [pc, #0] */
396 	__raw_writel(0xe12fff10, ns_sram_base_addr + 4); /* bx  r0 */
397 	__raw_writel(virt_to_phys(mcpm_entry_point), ns_sram_base_addr + 8);
398 
399 	iounmap(ns_sram_base_addr);
400 
401 	return ret;
402 }
403 
404 early_initcall(exynos_mcpm_init);
405