xref: /linux/arch/arm/mach-bcm/platsmp.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /*
2  * Copyright (C) 2014-2015 Broadcom Corporation
3  * Copyright 2014 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/irqchip/irq-bcm2836.h>
21 #include <linux/jiffies.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/sched.h>
25 #include <linux/sched/clock.h>
26 #include <linux/smp.h>
27 
28 #include <asm/cacheflush.h>
29 #include <asm/smp.h>
30 #include <asm/smp_plat.h>
31 #include <asm/smp_scu.h>
32 
33 /* Size of mapped Cortex A9 SCU address space */
34 #define CORTEX_A9_SCU_SIZE	0x58
35 
36 #define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
37 #define BOOT_ADDR_CPUID_MASK	0x3
38 
39 /* Name of device node property defining secondary boot register location */
40 #define OF_SECONDARY_BOOT	"secondary-boot-reg"
41 #define MPIDR_CPUID_BITMASK	0x3
42 
43 /*
44  * Enable the Cortex A9 Snoop Control Unit
45  *
46  * By the time this is called we already know there are multiple
47  * cores present.  We assume we're running on a Cortex A9 processor,
48  * so any trouble getting the base address register or getting the
49  * SCU base is a problem.
50  *
51  * Return 0 if successful or an error code otherwise.
52  */
53 static int __init scu_a9_enable(void)
54 {
55 	unsigned long config_base;
56 	void __iomem *scu_base;
57 
58 	if (!scu_a9_has_base()) {
59 		pr_err("no configuration base address register!\n");
60 		return -ENXIO;
61 	}
62 
63 	/* Config base address register value is zero for uniprocessor */
64 	config_base = scu_a9_get_base();
65 	if (!config_base) {
66 		pr_err("hardware reports only one core\n");
67 		return -ENOENT;
68 	}
69 
70 	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
71 	if (!scu_base) {
72 		pr_err("failed to remap config base (%lu/%u) for SCU\n",
73 			config_base, CORTEX_A9_SCU_SIZE);
74 		return -ENOMEM;
75 	}
76 
77 	scu_enable(scu_base);
78 
79 	iounmap(scu_base);	/* That's the last we'll need of this */
80 
81 	return 0;
82 }
83 
84 static u32 secondary_boot_addr_for(unsigned int cpu)
85 {
86 	u32 secondary_boot_addr = 0;
87 	struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
88 
89         if (!cpu_node) {
90 		pr_err("Failed to find device tree node for CPU%u\n", cpu);
91 		return 0;
92 	}
93 
94 	if (of_property_read_u32(cpu_node,
95 				 OF_SECONDARY_BOOT,
96 				 &secondary_boot_addr))
97 		pr_err("required secondary boot register not specified for CPU%u\n",
98 			cpu);
99 
100 	of_node_put(cpu_node);
101 
102 	return secondary_boot_addr;
103 }
104 
105 static int nsp_write_lut(unsigned int cpu)
106 {
107 	void __iomem *sku_rom_lut;
108 	phys_addr_t secondary_startup_phy;
109 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
110 
111 	if (!secondary_boot_addr)
112 		return -EINVAL;
113 
114 	sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
115 				      sizeof(phys_addr_t));
116 	if (!sku_rom_lut) {
117 		pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
118 		return -ENOMEM;
119 	}
120 
121 	secondary_startup_phy = __pa_symbol(secondary_startup);
122 	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
123 
124 	writel_relaxed(secondary_startup_phy, sku_rom_lut);
125 
126 	/* Ensure the write is visible to the secondary core */
127 	smp_wmb();
128 
129 	iounmap(sku_rom_lut);
130 
131 	return 0;
132 }
133 
134 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
135 {
136 	const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
137 
138 	/* Enable the SCU on Cortex A9 based SoCs */
139 	if (scu_a9_enable()) {
140 		/* Update the CPU present map to reflect uniprocessor mode */
141 		pr_warn("failed to enable A9 SCU - disabling SMP\n");
142 		init_cpu_present(&only_cpu_0);
143 	}
144 }
145 
146 /*
147  * The ROM code has the secondary cores looping, waiting for an event.
148  * When an event occurs each core examines the bottom two bits of the
149  * secondary boot register.  When a core finds those bits contain its
150  * own core id, it performs initialization, including computing its boot
151  * address by clearing the boot register value's bottom two bits.  The
152  * core signals that it is beginning its execution by writing its boot
153  * address back to the secondary boot register, and finally jumps to
154  * that address.
155  *
156  * So to start a core executing we need to:
157  * - Encode the (hardware) CPU id with the bottom bits of the secondary
158  *   start address.
159  * - Write that value into the secondary boot register.
160  * - Generate an event to wake up the secondary CPU(s).
161  * - Wait for the secondary boot register to be re-written, which
162  *   indicates the secondary core has started.
163  */
164 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
165 {
166 	void __iomem *boot_reg;
167 	phys_addr_t boot_func;
168 	u64 start_clock;
169 	u32 cpu_id;
170 	u32 boot_val;
171 	bool timeout = false;
172 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
173 
174 	cpu_id = cpu_logical_map(cpu);
175 	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
176 		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
177 		return -EINVAL;
178 	}
179 
180 	if (!secondary_boot_addr)
181 		return -EINVAL;
182 
183 	boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
184 				   sizeof(phys_addr_t));
185 	if (!boot_reg) {
186 		pr_err("unable to map boot register for cpu %u\n", cpu_id);
187 		return -ENOMEM;
188 	}
189 
190 	/*
191 	 * Secondary cores will start in secondary_startup(),
192 	 * defined in "arch/arm/kernel/head.S"
193 	 */
194 	boot_func = __pa_symbol(secondary_startup);
195 	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
196 	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
197 
198 	/* The core to start is encoded in the low bits */
199 	boot_val = (u32)boot_func | cpu_id;
200 	writel_relaxed(boot_val, boot_reg);
201 
202 	sev();
203 
204 	/* The low bits will be cleared once the core has started */
205 	start_clock = local_clock();
206 	while (!timeout && readl_relaxed(boot_reg) == boot_val)
207 		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
208 
209 	iounmap(boot_reg);
210 
211 	if (!timeout)
212 		return 0;
213 
214 	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
215 
216 	return -ENXIO;
217 }
218 
219 /* Cluster Dormant Control command to bring CPU into a running state */
220 #define CDC_CMD			6
221 #define CDC_CMD_OFFSET		0
222 #define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
223 
224 /*
225  * BCM23550 has a Cluster Dormant Control block that keeps the core in
226  * idle state. A command needs to be sent to the block to bring the CPU
227  * into running state.
228  */
229 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
230 {
231 	void __iomem *cdc_base;
232 	struct device_node *dn;
233 	char *name;
234 	int ret;
235 
236 	/* Make sure a CDC node exists before booting the
237 	 * secondary core.
238 	 */
239 	name = "brcm,bcm23550-cdc";
240 	dn = of_find_compatible_node(NULL, NULL, name);
241 	if (!dn) {
242 		pr_err("unable to find cdc node\n");
243 		return -ENODEV;
244 	}
245 
246 	cdc_base = of_iomap(dn, 0);
247 	of_node_put(dn);
248 
249 	if (!cdc_base) {
250 		pr_err("unable to remap cdc base register\n");
251 		return -ENOMEM;
252 	}
253 
254 	/* Boot the secondary core */
255 	ret = kona_boot_secondary(cpu, idle);
256 	if (ret)
257 		goto out;
258 
259 	/* Bring this CPU to RUN state so that nIRQ nFIQ
260 	 * signals are unblocked.
261 	 */
262 	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
263 
264 out:
265 	iounmap(cdc_base);
266 
267 	return ret;
268 }
269 
270 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
271 {
272 	int ret;
273 
274 	/*
275 	 * After wake up, secondary core branches to the startup
276 	 * address programmed at SKU ROM LUT location.
277 	 */
278 	ret = nsp_write_lut(cpu);
279 	if (ret) {
280 		pr_err("unable to write startup addr to SKU ROM LUT\n");
281 		goto out;
282 	}
283 
284 	/* Send a CPU wakeup interrupt to the secondary core */
285 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
286 
287 out:
288 	return ret;
289 }
290 
291 static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
292 {
293 	void __iomem *intc_base;
294 	struct device_node *dn;
295 	char *name;
296 
297 	name = "brcm,bcm2836-l1-intc";
298 	dn = of_find_compatible_node(NULL, NULL, name);
299 	if (!dn) {
300 		pr_err("unable to find intc node\n");
301 		return -ENODEV;
302 	}
303 
304 	intc_base = of_iomap(dn, 0);
305 	of_node_put(dn);
306 
307 	if (!intc_base) {
308 		pr_err("unable to remap intc base register\n");
309 		return -ENOMEM;
310 	}
311 
312 	writel(virt_to_phys(secondary_startup),
313 	       intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
314 
315 	dsb(sy);
316 	sev();
317 
318 	iounmap(intc_base);
319 
320 	return 0;
321 }
322 
323 static const struct smp_operations kona_smp_ops __initconst = {
324 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
325 	.smp_boot_secondary	= kona_boot_secondary,
326 };
327 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
328 			&kona_smp_ops);
329 
330 static const struct smp_operations bcm23550_smp_ops __initconst = {
331 	.smp_boot_secondary	= bcm23550_boot_secondary,
332 };
333 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
334 			&bcm23550_smp_ops);
335 
336 static const struct smp_operations nsp_smp_ops __initconst = {
337 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
338 	.smp_boot_secondary	= nsp_boot_secondary,
339 };
340 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
341 
342 const struct smp_operations bcm2836_smp_ops __initconst = {
343 	.smp_boot_secondary	= bcm2836_boot_secondary,
344 };
345 CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
346