xref: /linux/arch/arm/mach-bcm/platsmp.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * Copyright (C) 2014-2015 Broadcom Corporation
3  * Copyright 2014 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/jiffies.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 
26 #include <asm/cacheflush.h>
27 #include <asm/smp.h>
28 #include <asm/smp_plat.h>
29 #include <asm/smp_scu.h>
30 
31 /* Size of mapped Cortex A9 SCU address space */
32 #define CORTEX_A9_SCU_SIZE	0x58
33 
34 #define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
35 #define BOOT_ADDR_CPUID_MASK	0x3
36 
37 /* Name of device node property defining secondary boot register location */
38 #define OF_SECONDARY_BOOT	"secondary-boot-reg"
39 #define MPIDR_CPUID_BITMASK	0x3
40 
41 /*
42  * Enable the Cortex A9 Snoop Control Unit
43  *
44  * By the time this is called we already know there are multiple
45  * cores present.  We assume we're running on a Cortex A9 processor,
46  * so any trouble getting the base address register or getting the
47  * SCU base is a problem.
48  *
49  * Return 0 if successful or an error code otherwise.
50  */
51 static int __init scu_a9_enable(void)
52 {
53 	unsigned long config_base;
54 	void __iomem *scu_base;
55 
56 	if (!scu_a9_has_base()) {
57 		pr_err("no configuration base address register!\n");
58 		return -ENXIO;
59 	}
60 
61 	/* Config base address register value is zero for uniprocessor */
62 	config_base = scu_a9_get_base();
63 	if (!config_base) {
64 		pr_err("hardware reports only one core\n");
65 		return -ENOENT;
66 	}
67 
68 	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
69 	if (!scu_base) {
70 		pr_err("failed to remap config base (%lu/%u) for SCU\n",
71 			config_base, CORTEX_A9_SCU_SIZE);
72 		return -ENOMEM;
73 	}
74 
75 	scu_enable(scu_base);
76 
77 	iounmap(scu_base);	/* That's the last we'll need of this */
78 
79 	return 0;
80 }
81 
82 static u32 secondary_boot_addr_for(unsigned int cpu)
83 {
84 	u32 secondary_boot_addr = 0;
85 	struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
86 
87         if (!cpu_node) {
88 		pr_err("Failed to find device tree node for CPU%u\n", cpu);
89 		return 0;
90 	}
91 
92 	if (of_property_read_u32(cpu_node,
93 				 OF_SECONDARY_BOOT,
94 				 &secondary_boot_addr))
95 		pr_err("required secondary boot register not specified for CPU%u\n",
96 			cpu);
97 
98 	of_node_put(cpu_node);
99 
100 	return secondary_boot_addr;
101 }
102 
103 static int nsp_write_lut(unsigned int cpu)
104 {
105 	void __iomem *sku_rom_lut;
106 	phys_addr_t secondary_startup_phy;
107 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
108 
109 	if (!secondary_boot_addr)
110 		return -EINVAL;
111 
112 	sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
113 				      sizeof(phys_addr_t));
114 	if (!sku_rom_lut) {
115 		pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
116 		return -ENOMEM;
117 	}
118 
119 	secondary_startup_phy = virt_to_phys(secondary_startup);
120 	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
121 
122 	writel_relaxed(secondary_startup_phy, sku_rom_lut);
123 
124 	/* Ensure the write is visible to the secondary core */
125 	smp_wmb();
126 
127 	iounmap(sku_rom_lut);
128 
129 	return 0;
130 }
131 
132 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
133 {
134 	const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
135 
136 	/* Enable the SCU on Cortex A9 based SoCs */
137 	if (scu_a9_enable()) {
138 		/* Update the CPU present map to reflect uniprocessor mode */
139 		pr_warn("failed to enable A9 SCU - disabling SMP\n");
140 		init_cpu_present(&only_cpu_0);
141 	}
142 }
143 
144 /*
145  * The ROM code has the secondary cores looping, waiting for an event.
146  * When an event occurs each core examines the bottom two bits of the
147  * secondary boot register.  When a core finds those bits contain its
148  * own core id, it performs initialization, including computing its boot
149  * address by clearing the boot register value's bottom two bits.  The
150  * core signals that it is beginning its execution by writing its boot
151  * address back to the secondary boot register, and finally jumps to
152  * that address.
153  *
154  * So to start a core executing we need to:
155  * - Encode the (hardware) CPU id with the bottom bits of the secondary
156  *   start address.
157  * - Write that value into the secondary boot register.
158  * - Generate an event to wake up the secondary CPU(s).
159  * - Wait for the secondary boot register to be re-written, which
160  *   indicates the secondary core has started.
161  */
162 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
163 {
164 	void __iomem *boot_reg;
165 	phys_addr_t boot_func;
166 	u64 start_clock;
167 	u32 cpu_id;
168 	u32 boot_val;
169 	bool timeout = false;
170 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
171 
172 	cpu_id = cpu_logical_map(cpu);
173 	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
174 		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
175 		return -EINVAL;
176 	}
177 
178 	if (!secondary_boot_addr)
179 		return -EINVAL;
180 
181 	boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
182 				   sizeof(phys_addr_t));
183 	if (!boot_reg) {
184 		pr_err("unable to map boot register for cpu %u\n", cpu_id);
185 		return -ENOMEM;
186 	}
187 
188 	/*
189 	 * Secondary cores will start in secondary_startup(),
190 	 * defined in "arch/arm/kernel/head.S"
191 	 */
192 	boot_func = virt_to_phys(secondary_startup);
193 	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
194 	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
195 
196 	/* The core to start is encoded in the low bits */
197 	boot_val = (u32)boot_func | cpu_id;
198 	writel_relaxed(boot_val, boot_reg);
199 
200 	sev();
201 
202 	/* The low bits will be cleared once the core has started */
203 	start_clock = local_clock();
204 	while (!timeout && readl_relaxed(boot_reg) == boot_val)
205 		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
206 
207 	iounmap(boot_reg);
208 
209 	if (!timeout)
210 		return 0;
211 
212 	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
213 
214 	return -ENXIO;
215 }
216 
217 /* Cluster Dormant Control command to bring CPU into a running state */
218 #define CDC_CMD			6
219 #define CDC_CMD_OFFSET		0
220 #define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
221 
222 /*
223  * BCM23550 has a Cluster Dormant Control block that keeps the core in
224  * idle state. A command needs to be sent to the block to bring the CPU
225  * into running state.
226  */
227 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
228 {
229 	void __iomem *cdc_base;
230 	struct device_node *dn;
231 	char *name;
232 	int ret;
233 
234 	/* Make sure a CDC node exists before booting the
235 	 * secondary core.
236 	 */
237 	name = "brcm,bcm23550-cdc";
238 	dn = of_find_compatible_node(NULL, NULL, name);
239 	if (!dn) {
240 		pr_err("unable to find cdc node\n");
241 		return -ENODEV;
242 	}
243 
244 	cdc_base = of_iomap(dn, 0);
245 	of_node_put(dn);
246 
247 	if (!cdc_base) {
248 		pr_err("unable to remap cdc base register\n");
249 		return -ENOMEM;
250 	}
251 
252 	/* Boot the secondary core */
253 	ret = kona_boot_secondary(cpu, idle);
254 	if (ret)
255 		goto out;
256 
257 	/* Bring this CPU to RUN state so that nIRQ nFIQ
258 	 * signals are unblocked.
259 	 */
260 	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
261 
262 out:
263 	iounmap(cdc_base);
264 
265 	return ret;
266 }
267 
268 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
269 {
270 	int ret;
271 
272 	/*
273 	 * After wake up, secondary core branches to the startup
274 	 * address programmed at SKU ROM LUT location.
275 	 */
276 	ret = nsp_write_lut(cpu);
277 	if (ret) {
278 		pr_err("unable to write startup addr to SKU ROM LUT\n");
279 		goto out;
280 	}
281 
282 	/* Send a CPU wakeup interrupt to the secondary core */
283 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
284 
285 out:
286 	return ret;
287 }
288 
289 static const struct smp_operations kona_smp_ops __initconst = {
290 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
291 	.smp_boot_secondary	= kona_boot_secondary,
292 };
293 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
294 			&kona_smp_ops);
295 
296 static const struct smp_operations bcm23550_smp_ops __initconst = {
297 	.smp_boot_secondary	= bcm23550_boot_secondary,
298 };
299 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
300 			&bcm23550_smp_ops);
301 
302 static const struct smp_operations nsp_smp_ops __initconst = {
303 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
304 	.smp_boot_secondary	= nsp_boot_secondary,
305 };
306 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
307