1 /* 2 * arch/arm/kernel/topology.c 3 * 4 * Copyright (C) 2011 Linaro Limited. 5 * Written by: Vincent Guittot 6 * 7 * based on arch/sh/kernel/topology.c 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/cpumask.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/percpu.h> 19 #include <linux/node.h> 20 #include <linux/nodemask.h> 21 #include <linux/of.h> 22 #include <linux/sched.h> 23 #include <linux/slab.h> 24 25 #include <asm/cputype.h> 26 #include <asm/topology.h> 27 28 /* 29 * cpu capacity scale management 30 */ 31 32 /* 33 * cpu capacity table 34 * This per cpu data structure describes the relative capacity of each core. 35 * On a heteregenous system, cores don't have the same computation capacity 36 * and we reflect that difference in the cpu_capacity field so the scheduler 37 * can take this difference into account during load balance. A per cpu 38 * structure is preferred because each CPU updates its own cpu_capacity field 39 * during the load balance except for idle cores. One idle core is selected 40 * to run the rebalance_domains for all idle cores and the cpu_capacity can be 41 * updated during this sequence. 42 */ 43 static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; 44 45 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 46 { 47 return per_cpu(cpu_scale, cpu); 48 } 49 50 static void set_capacity_scale(unsigned int cpu, unsigned long capacity) 51 { 52 per_cpu(cpu_scale, cpu) = capacity; 53 } 54 55 #ifdef CONFIG_OF 56 struct cpu_efficiency { 57 const char *compatible; 58 unsigned long efficiency; 59 }; 60 61 /* 62 * Table of relative efficiency of each processors 63 * The efficiency value must fit in 20bit and the final 64 * cpu_scale value must be in the range 65 * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2 66 * in order to return at most 1 when DIV_ROUND_CLOSEST 67 * is used to compute the capacity of a CPU. 68 * Processors that are not defined in the table, 69 * use the default SCHED_CAPACITY_SCALE value for cpu_scale. 70 */ 71 static const struct cpu_efficiency table_efficiency[] = { 72 {"arm,cortex-a15", 3891}, 73 {"arm,cortex-a7", 2048}, 74 {NULL, }, 75 }; 76 77 static unsigned long *__cpu_capacity; 78 #define cpu_capacity(cpu) __cpu_capacity[cpu] 79 80 static unsigned long middle_capacity = 1; 81 82 /* 83 * Iterate all CPUs' descriptor in DT and compute the efficiency 84 * (as per table_efficiency). Also calculate a middle efficiency 85 * as close as possible to (max{eff_i} - min{eff_i}) / 2 86 * This is later used to scale the cpu_capacity field such that an 87 * 'average' CPU is of middle capacity. Also see the comments near 88 * table_efficiency[] and update_cpu_capacity(). 89 */ 90 static void __init parse_dt_topology(void) 91 { 92 const struct cpu_efficiency *cpu_eff; 93 struct device_node *cn = NULL; 94 unsigned long min_capacity = ULONG_MAX; 95 unsigned long max_capacity = 0; 96 unsigned long capacity = 0; 97 int cpu = 0; 98 99 __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), 100 GFP_NOWAIT); 101 102 for_each_possible_cpu(cpu) { 103 const u32 *rate; 104 int len; 105 106 /* too early to use cpu->of_node */ 107 cn = of_get_cpu_node(cpu, NULL); 108 if (!cn) { 109 pr_err("missing device node for CPU %d\n", cpu); 110 continue; 111 } 112 113 for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) 114 if (of_device_is_compatible(cn, cpu_eff->compatible)) 115 break; 116 117 if (cpu_eff->compatible == NULL) 118 continue; 119 120 rate = of_get_property(cn, "clock-frequency", &len); 121 if (!rate || len != 4) { 122 pr_err("%s missing clock-frequency property\n", 123 cn->full_name); 124 continue; 125 } 126 127 capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; 128 129 /* Save min capacity of the system */ 130 if (capacity < min_capacity) 131 min_capacity = capacity; 132 133 /* Save max capacity of the system */ 134 if (capacity > max_capacity) 135 max_capacity = capacity; 136 137 cpu_capacity(cpu) = capacity; 138 } 139 140 /* If min and max capacities are equals, we bypass the update of the 141 * cpu_scale because all CPUs have the same capacity. Otherwise, we 142 * compute a middle_capacity factor that will ensure that the capacity 143 * of an 'average' CPU of the system will be as close as possible to 144 * SCHED_CAPACITY_SCALE, which is the default value, but with the 145 * constraint explained near table_efficiency[]. 146 */ 147 if (4*max_capacity < (3*(max_capacity + min_capacity))) 148 middle_capacity = (min_capacity + max_capacity) 149 >> (SCHED_CAPACITY_SHIFT+1); 150 else 151 middle_capacity = ((max_capacity / 3) 152 >> (SCHED_CAPACITY_SHIFT-1)) + 1; 153 154 } 155 156 /* 157 * Look for a customed capacity of a CPU in the cpu_capacity table during the 158 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the 159 * function returns directly for SMP system. 160 */ 161 static void update_cpu_capacity(unsigned int cpu) 162 { 163 if (!cpu_capacity(cpu)) 164 return; 165 166 set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity); 167 168 pr_info("CPU%u: update cpu_capacity %lu\n", 169 cpu, arch_scale_cpu_capacity(NULL, cpu)); 170 } 171 172 #else 173 static inline void parse_dt_topology(void) {} 174 static inline void update_cpu_capacity(unsigned int cpuid) {} 175 #endif 176 177 /* 178 * cpu topology table 179 */ 180 struct cputopo_arm cpu_topology[NR_CPUS]; 181 EXPORT_SYMBOL_GPL(cpu_topology); 182 183 const struct cpumask *cpu_coregroup_mask(int cpu) 184 { 185 return &cpu_topology[cpu].core_sibling; 186 } 187 188 /* 189 * The current assumption is that we can power gate each core independently. 190 * This will be superseded by DT binding once available. 191 */ 192 const struct cpumask *cpu_corepower_mask(int cpu) 193 { 194 return &cpu_topology[cpu].thread_sibling; 195 } 196 197 static void update_siblings_masks(unsigned int cpuid) 198 { 199 struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 200 int cpu; 201 202 /* update core and thread sibling masks */ 203 for_each_possible_cpu(cpu) { 204 cpu_topo = &cpu_topology[cpu]; 205 206 if (cpuid_topo->socket_id != cpu_topo->socket_id) 207 continue; 208 209 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 210 if (cpu != cpuid) 211 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 212 213 if (cpuid_topo->core_id != cpu_topo->core_id) 214 continue; 215 216 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 217 if (cpu != cpuid) 218 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 219 } 220 smp_wmb(); 221 } 222 223 /* 224 * store_cpu_topology is called at boot when only one cpu is running 225 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, 226 * which prevents simultaneous write access to cpu_topology array 227 */ 228 void store_cpu_topology(unsigned int cpuid) 229 { 230 struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; 231 unsigned int mpidr; 232 233 /* If the cpu topology has been already set, just return */ 234 if (cpuid_topo->core_id != -1) 235 return; 236 237 mpidr = read_cpuid_mpidr(); 238 239 /* create cpu topology mapping */ 240 if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { 241 /* 242 * This is a multiprocessor system 243 * multiprocessor format & multiprocessor mode field are set 244 */ 245 246 if (mpidr & MPIDR_MT_BITMASK) { 247 /* core performance interdependency */ 248 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); 249 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); 250 cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2); 251 } else { 252 /* largely independent cores */ 253 cpuid_topo->thread_id = -1; 254 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); 255 cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); 256 } 257 } else { 258 /* 259 * This is an uniprocessor system 260 * we are in multiprocessor format but uniprocessor system 261 * or in the old uniprocessor format 262 */ 263 cpuid_topo->thread_id = -1; 264 cpuid_topo->core_id = 0; 265 cpuid_topo->socket_id = -1; 266 } 267 268 update_siblings_masks(cpuid); 269 270 update_cpu_capacity(cpuid); 271 272 pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", 273 cpuid, cpu_topology[cpuid].thread_id, 274 cpu_topology[cpuid].core_id, 275 cpu_topology[cpuid].socket_id, mpidr); 276 } 277 278 static inline int cpu_corepower_flags(void) 279 { 280 return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN; 281 } 282 283 static struct sched_domain_topology_level arm_topology[] = { 284 #ifdef CONFIG_SCHED_MC 285 { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) }, 286 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 287 #endif 288 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 289 { NULL, }, 290 }; 291 292 /* 293 * init_cpu_topology is called at boot when only one cpu is running 294 * which prevent simultaneous write access to cpu_topology array 295 */ 296 void __init init_cpu_topology(void) 297 { 298 unsigned int cpu; 299 300 /* init core mask and capacity */ 301 for_each_possible_cpu(cpu) { 302 struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); 303 304 cpu_topo->thread_id = -1; 305 cpu_topo->core_id = -1; 306 cpu_topo->socket_id = -1; 307 cpumask_clear(&cpu_topo->core_sibling); 308 cpumask_clear(&cpu_topo->thread_sibling); 309 } 310 smp_wmb(); 311 312 parse_dt_topology(); 313 314 /* Set scheduler topology descriptor */ 315 set_sched_topology(arm_topology); 316 } 317