xref: /linux/arch/arm/kernel/topology.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * arch/arm/kernel/topology.c
3  *
4  * Copyright (C) 2011 Linaro Limited.
5  * Written by: Vincent Guittot
6  *
7  * based on arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/percpu.h>
19 #include <linux/node.h>
20 #include <linux/nodemask.h>
21 #include <linux/of.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 
25 #include <asm/cputype.h>
26 #include <asm/topology.h>
27 
28 /*
29  * cpu capacity scale management
30  */
31 
32 /*
33  * cpu capacity table
34  * This per cpu data structure describes the relative capacity of each core.
35  * On a heteregenous system, cores don't have the same computation capacity
36  * and we reflect that difference in the cpu_capacity field so the scheduler
37  * can take this difference into account during load balance. A per cpu
38  * structure is preferred because each CPU updates its own cpu_capacity field
39  * during the load balance except for idle cores. One idle core is selected
40  * to run the rebalance_domains for all idle cores and the cpu_capacity can be
41  * updated during this sequence.
42  */
43 static DEFINE_PER_CPU(unsigned long, cpu_scale);
44 
45 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
46 {
47 	return per_cpu(cpu_scale, cpu);
48 }
49 
50 static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
51 {
52 	per_cpu(cpu_scale, cpu) = capacity;
53 }
54 
55 #ifdef CONFIG_OF
56 struct cpu_efficiency {
57 	const char *compatible;
58 	unsigned long efficiency;
59 };
60 
61 /*
62  * Table of relative efficiency of each processors
63  * The efficiency value must fit in 20bit and the final
64  * cpu_scale value must be in the range
65  *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
66  * in order to return at most 1 when DIV_ROUND_CLOSEST
67  * is used to compute the capacity of a CPU.
68  * Processors that are not defined in the table,
69  * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
70  */
71 static const struct cpu_efficiency table_efficiency[] = {
72 	{"arm,cortex-a15", 3891},
73 	{"arm,cortex-a7",  2048},
74 	{NULL, },
75 };
76 
77 static unsigned long *__cpu_capacity;
78 #define cpu_capacity(cpu)	__cpu_capacity[cpu]
79 
80 static unsigned long middle_capacity = 1;
81 
82 /*
83  * Iterate all CPUs' descriptor in DT and compute the efficiency
84  * (as per table_efficiency). Also calculate a middle efficiency
85  * as close as possible to  (max{eff_i} - min{eff_i}) / 2
86  * This is later used to scale the cpu_capacity field such that an
87  * 'average' CPU is of middle capacity. Also see the comments near
88  * table_efficiency[] and update_cpu_capacity().
89  */
90 static void __init parse_dt_topology(void)
91 {
92 	const struct cpu_efficiency *cpu_eff;
93 	struct device_node *cn = NULL;
94 	unsigned long min_capacity = ULONG_MAX;
95 	unsigned long max_capacity = 0;
96 	unsigned long capacity = 0;
97 	int cpu = 0;
98 
99 	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
100 				 GFP_NOWAIT);
101 
102 	for_each_possible_cpu(cpu) {
103 		const u32 *rate;
104 		int len;
105 
106 		/* too early to use cpu->of_node */
107 		cn = of_get_cpu_node(cpu, NULL);
108 		if (!cn) {
109 			pr_err("missing device node for CPU %d\n", cpu);
110 			continue;
111 		}
112 
113 		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
114 			if (of_device_is_compatible(cn, cpu_eff->compatible))
115 				break;
116 
117 		if (cpu_eff->compatible == NULL)
118 			continue;
119 
120 		rate = of_get_property(cn, "clock-frequency", &len);
121 		if (!rate || len != 4) {
122 			pr_err("%s missing clock-frequency property\n",
123 				cn->full_name);
124 			continue;
125 		}
126 
127 		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
128 
129 		/* Save min capacity of the system */
130 		if (capacity < min_capacity)
131 			min_capacity = capacity;
132 
133 		/* Save max capacity of the system */
134 		if (capacity > max_capacity)
135 			max_capacity = capacity;
136 
137 		cpu_capacity(cpu) = capacity;
138 	}
139 
140 	/* If min and max capacities are equals, we bypass the update of the
141 	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
142 	 * compute a middle_capacity factor that will ensure that the capacity
143 	 * of an 'average' CPU of the system will be as close as possible to
144 	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
145 	 * constraint explained near table_efficiency[].
146 	 */
147 	if (4*max_capacity < (3*(max_capacity + min_capacity)))
148 		middle_capacity = (min_capacity + max_capacity)
149 				>> (SCHED_CAPACITY_SHIFT+1);
150 	else
151 		middle_capacity = ((max_capacity / 3)
152 				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
153 
154 }
155 
156 /*
157  * Look for a customed capacity of a CPU in the cpu_capacity table during the
158  * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
159  * function returns directly for SMP system.
160  */
161 static void update_cpu_capacity(unsigned int cpu)
162 {
163 	if (!cpu_capacity(cpu))
164 		return;
165 
166 	set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
167 
168 	pr_info("CPU%u: update cpu_capacity %lu\n",
169 		cpu, arch_scale_cpu_capacity(NULL, cpu));
170 }
171 
172 #else
173 static inline void parse_dt_topology(void) {}
174 static inline void update_cpu_capacity(unsigned int cpuid) {}
175 #endif
176 
177  /*
178  * cpu topology table
179  */
180 struct cputopo_arm cpu_topology[NR_CPUS];
181 EXPORT_SYMBOL_GPL(cpu_topology);
182 
183 const struct cpumask *cpu_coregroup_mask(int cpu)
184 {
185 	return &cpu_topology[cpu].core_sibling;
186 }
187 
188 /*
189  * The current assumption is that we can power gate each core independently.
190  * This will be superseded by DT binding once available.
191  */
192 const struct cpumask *cpu_corepower_mask(int cpu)
193 {
194 	return &cpu_topology[cpu].thread_sibling;
195 }
196 
197 static void update_siblings_masks(unsigned int cpuid)
198 {
199 	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
200 	int cpu;
201 
202 	/* update core and thread sibling masks */
203 	for_each_possible_cpu(cpu) {
204 		cpu_topo = &cpu_topology[cpu];
205 
206 		if (cpuid_topo->socket_id != cpu_topo->socket_id)
207 			continue;
208 
209 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
210 		if (cpu != cpuid)
211 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
212 
213 		if (cpuid_topo->core_id != cpu_topo->core_id)
214 			continue;
215 
216 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
217 		if (cpu != cpuid)
218 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
219 	}
220 	smp_wmb();
221 }
222 
223 /*
224  * store_cpu_topology is called at boot when only one cpu is running
225  * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
226  * which prevents simultaneous write access to cpu_topology array
227  */
228 void store_cpu_topology(unsigned int cpuid)
229 {
230 	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
231 	unsigned int mpidr;
232 
233 	/* If the cpu topology has been already set, just return */
234 	if (cpuid_topo->core_id != -1)
235 		return;
236 
237 	mpidr = read_cpuid_mpidr();
238 
239 	/* create cpu topology mapping */
240 	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
241 		/*
242 		 * This is a multiprocessor system
243 		 * multiprocessor format & multiprocessor mode field are set
244 		 */
245 
246 		if (mpidr & MPIDR_MT_BITMASK) {
247 			/* core performance interdependency */
248 			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
249 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
250 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
251 		} else {
252 			/* largely independent cores */
253 			cpuid_topo->thread_id = -1;
254 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
255 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
256 		}
257 	} else {
258 		/*
259 		 * This is an uniprocessor system
260 		 * we are in multiprocessor format but uniprocessor system
261 		 * or in the old uniprocessor format
262 		 */
263 		cpuid_topo->thread_id = -1;
264 		cpuid_topo->core_id = 0;
265 		cpuid_topo->socket_id = -1;
266 	}
267 
268 	update_siblings_masks(cpuid);
269 
270 	update_cpu_capacity(cpuid);
271 
272 	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
273 		cpuid, cpu_topology[cpuid].thread_id,
274 		cpu_topology[cpuid].core_id,
275 		cpu_topology[cpuid].socket_id, mpidr);
276 }
277 
278 static inline int cpu_corepower_flags(void)
279 {
280 	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
281 }
282 
283 static struct sched_domain_topology_level arm_topology[] = {
284 #ifdef CONFIG_SCHED_MC
285 	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
286 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
287 #endif
288 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
289 	{ NULL, },
290 };
291 
292 /*
293  * init_cpu_topology is called at boot when only one cpu is running
294  * which prevent simultaneous write access to cpu_topology array
295  */
296 void __init init_cpu_topology(void)
297 {
298 	unsigned int cpu;
299 
300 	/* init core mask and capacity */
301 	for_each_possible_cpu(cpu) {
302 		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
303 
304 		cpu_topo->thread_id = -1;
305 		cpu_topo->core_id =  -1;
306 		cpu_topo->socket_id = -1;
307 		cpumask_clear(&cpu_topo->core_sibling);
308 		cpumask_clear(&cpu_topo->thread_sibling);
309 
310 		set_capacity_scale(cpu, SCHED_CAPACITY_SCALE);
311 	}
312 	smp_wmb();
313 
314 	parse_dt_topology();
315 
316 	/* Set scheduler topology descriptor */
317 	set_sched_topology(arm_topology);
318 }
319