1 /* 2 * arch/arm/kernel/topology.c 3 * 4 * Copyright (C) 2011 Linaro Limited. 5 * Written by: Vincent Guittot 6 * 7 * based on arch/sh/kernel/topology.c 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 14 #include <linux/arch_topology.h> 15 #include <linux/cpu.h> 16 #include <linux/cpufreq.h> 17 #include <linux/cpumask.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/percpu.h> 21 #include <linux/node.h> 22 #include <linux/nodemask.h> 23 #include <linux/of.h> 24 #include <linux/sched.h> 25 #include <linux/sched/topology.h> 26 #include <linux/slab.h> 27 #include <linux/string.h> 28 29 #include <asm/cpu.h> 30 #include <asm/cputype.h> 31 #include <asm/topology.h> 32 33 /* 34 * cpu capacity scale management 35 */ 36 37 /* 38 * cpu capacity table 39 * This per cpu data structure describes the relative capacity of each core. 40 * On a heteregenous system, cores don't have the same computation capacity 41 * and we reflect that difference in the cpu_capacity field so the scheduler 42 * can take this difference into account during load balance. A per cpu 43 * structure is preferred because each CPU updates its own cpu_capacity field 44 * during the load balance except for idle cores. One idle core is selected 45 * to run the sched_balance_domains for all idle cores and the cpu_capacity can be 46 * updated during this sequence. 47 */ 48 49 #ifdef CONFIG_OF 50 struct cpu_efficiency { 51 const char *compatible; 52 unsigned long efficiency; 53 }; 54 55 /* 56 * Table of relative efficiency of each processors 57 * The efficiency value must fit in 20bit and the final 58 * cpu_scale value must be in the range 59 * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2 60 * in order to return at most 1 when DIV_ROUND_CLOSEST 61 * is used to compute the capacity of a CPU. 62 * Processors that are not defined in the table, 63 * use the default SCHED_CAPACITY_SCALE value for cpu_scale. 64 */ 65 static const struct cpu_efficiency table_efficiency[] = { 66 {"arm,cortex-a15", 3891}, 67 {"arm,cortex-a7", 2048}, 68 {NULL, }, 69 }; 70 71 static unsigned long *__cpu_capacity; 72 #define cpu_capacity(cpu) __cpu_capacity[cpu] 73 74 static unsigned long middle_capacity = 1; 75 static bool cap_from_dt = true; 76 77 /* 78 * Iterate all CPUs' descriptor in DT and compute the efficiency 79 * (as per table_efficiency). Also calculate a middle efficiency 80 * as close as possible to (max{eff_i} - min{eff_i}) / 2 81 * This is later used to scale the cpu_capacity field such that an 82 * 'average' CPU is of middle capacity. Also see the comments near 83 * table_efficiency[] and update_cpu_capacity(). 84 */ 85 static void __init parse_dt_topology(void) 86 { 87 const struct cpu_efficiency *cpu_eff; 88 struct device_node *cn = NULL; 89 unsigned long min_capacity = ULONG_MAX; 90 unsigned long max_capacity = 0; 91 unsigned long capacity = 0; 92 int cpu = 0; 93 94 __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), 95 GFP_NOWAIT); 96 97 for_each_possible_cpu(cpu) { 98 const __be32 *rate; 99 int len; 100 101 /* too early to use cpu->of_node */ 102 cn = of_get_cpu_node(cpu, NULL); 103 if (!cn) { 104 pr_err("missing device node for CPU %d\n", cpu); 105 continue; 106 } 107 108 if (topology_parse_cpu_capacity(cn, cpu)) { 109 of_node_put(cn); 110 continue; 111 } 112 113 cap_from_dt = false; 114 115 for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) 116 if (of_device_is_compatible(cn, cpu_eff->compatible)) 117 break; 118 119 if (cpu_eff->compatible == NULL) 120 continue; 121 122 rate = of_get_property(cn, "clock-frequency", &len); 123 if (!rate || len != 4) { 124 pr_err("%pOF missing clock-frequency property\n", cn); 125 continue; 126 } 127 128 capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; 129 130 /* Save min capacity of the system */ 131 if (capacity < min_capacity) 132 min_capacity = capacity; 133 134 /* Save max capacity of the system */ 135 if (capacity > max_capacity) 136 max_capacity = capacity; 137 138 cpu_capacity(cpu) = capacity; 139 } 140 141 /* If min and max capacities are equals, we bypass the update of the 142 * cpu_scale because all CPUs have the same capacity. Otherwise, we 143 * compute a middle_capacity factor that will ensure that the capacity 144 * of an 'average' CPU of the system will be as close as possible to 145 * SCHED_CAPACITY_SCALE, which is the default value, but with the 146 * constraint explained near table_efficiency[]. 147 */ 148 if (4*max_capacity < (3*(max_capacity + min_capacity))) 149 middle_capacity = (min_capacity + max_capacity) 150 >> (SCHED_CAPACITY_SHIFT+1); 151 else 152 middle_capacity = ((max_capacity / 3) 153 >> (SCHED_CAPACITY_SHIFT-1)) + 1; 154 155 if (cap_from_dt) 156 topology_normalize_cpu_scale(); 157 } 158 159 /* 160 * Look for a customed capacity of a CPU in the cpu_capacity table during the 161 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the 162 * function returns directly for SMP system. 163 */ 164 static void update_cpu_capacity(unsigned int cpu) 165 { 166 if (!cpu_capacity(cpu) || cap_from_dt) 167 return; 168 169 topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity); 170 171 pr_info("CPU%u: update cpu_capacity %lu\n", 172 cpu, topology_get_cpu_scale(cpu)); 173 } 174 175 #else 176 static inline void parse_dt_topology(void) {} 177 static inline void update_cpu_capacity(unsigned int cpuid) {} 178 #endif 179 180 /* 181 * store_cpu_topology is called at boot when only one cpu is running 182 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, 183 * which prevents simultaneous write access to cpu_topology array 184 */ 185 void store_cpu_topology(unsigned int cpuid) 186 { 187 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; 188 unsigned int mpidr; 189 190 if (cpuid_topo->package_id != -1) 191 goto topology_populated; 192 193 mpidr = read_cpuid_mpidr(); 194 195 /* create cpu topology mapping */ 196 if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { 197 /* 198 * This is a multiprocessor system 199 * multiprocessor format & multiprocessor mode field are set 200 */ 201 202 if (mpidr & MPIDR_MT_BITMASK) { 203 /* core performance interdependency */ 204 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); 205 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); 206 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2); 207 } else { 208 /* largely independent cores */ 209 cpuid_topo->thread_id = -1; 210 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); 211 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); 212 } 213 } else { 214 /* 215 * This is an uniprocessor system 216 * we are in multiprocessor format but uniprocessor system 217 * or in the old uniprocessor format 218 */ 219 cpuid_topo->thread_id = -1; 220 cpuid_topo->core_id = 0; 221 cpuid_topo->package_id = -1; 222 } 223 224 update_cpu_capacity(cpuid); 225 226 pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", 227 cpuid, cpu_topology[cpuid].thread_id, 228 cpu_topology[cpuid].core_id, 229 cpu_topology[cpuid].package_id, mpidr); 230 231 topology_populated: 232 update_siblings_masks(cpuid); 233 } 234 235 /* 236 * init_cpu_topology is called at boot when only one cpu is running 237 * which prevent simultaneous write access to cpu_topology array 238 */ 239 void __init init_cpu_topology(void) 240 { 241 reset_cpu_topology(); 242 smp_wmb(); 243 244 parse_dt_topology(); 245 } 246