xref: /linux/arch/arm/kernel/topology.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * arch/arm/kernel/topology.c
3  *
4  * Copyright (C) 2011 Linaro Limited.
5  * Written by: Vincent Guittot
6  *
7  * based on arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/percpu.h>
19 #include <linux/node.h>
20 #include <linux/nodemask.h>
21 #include <linux/of.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 
25 #include <asm/cputype.h>
26 #include <asm/topology.h>
27 
28 /*
29  * cpu power scale management
30  */
31 
32 /*
33  * cpu power table
34  * This per cpu data structure describes the relative capacity of each core.
35  * On a heteregenous system, cores don't have the same computation capacity
36  * and we reflect that difference in the cpu_power field so the scheduler can
37  * take this difference into account during load balance. A per cpu structure
38  * is preferred because each CPU updates its own cpu_power field during the
39  * load balance except for idle cores. One idle core is selected to run the
40  * rebalance_domains for all idle cores and the cpu_power can be updated
41  * during this sequence.
42  */
43 static DEFINE_PER_CPU(unsigned long, cpu_scale);
44 
45 unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
46 {
47 	return per_cpu(cpu_scale, cpu);
48 }
49 
50 static void set_power_scale(unsigned int cpu, unsigned long power)
51 {
52 	per_cpu(cpu_scale, cpu) = power;
53 }
54 
55 #ifdef CONFIG_OF
56 struct cpu_efficiency {
57 	const char *compatible;
58 	unsigned long efficiency;
59 };
60 
61 /*
62  * Table of relative efficiency of each processors
63  * The efficiency value must fit in 20bit and the final
64  * cpu_scale value must be in the range
65  *   0 < cpu_scale < 3*SCHED_POWER_SCALE/2
66  * in order to return at most 1 when DIV_ROUND_CLOSEST
67  * is used to compute the capacity of a CPU.
68  * Processors that are not defined in the table,
69  * use the default SCHED_POWER_SCALE value for cpu_scale.
70  */
71 struct cpu_efficiency table_efficiency[] = {
72 	{"arm,cortex-a15", 3891},
73 	{"arm,cortex-a7",  2048},
74 	{NULL, },
75 };
76 
77 struct cpu_capacity {
78 	unsigned long hwid;
79 	unsigned long capacity;
80 };
81 
82 struct cpu_capacity *cpu_capacity;
83 
84 unsigned long middle_capacity = 1;
85 
86 /*
87  * Iterate all CPUs' descriptor in DT and compute the efficiency
88  * (as per table_efficiency). Also calculate a middle efficiency
89  * as close as possible to  (max{eff_i} - min{eff_i}) / 2
90  * This is later used to scale the cpu_power field such that an
91  * 'average' CPU is of middle power. Also see the comments near
92  * table_efficiency[] and update_cpu_power().
93  */
94 static void __init parse_dt_topology(void)
95 {
96 	struct cpu_efficiency *cpu_eff;
97 	struct device_node *cn = NULL;
98 	unsigned long min_capacity = (unsigned long)(-1);
99 	unsigned long max_capacity = 0;
100 	unsigned long capacity = 0;
101 	int alloc_size, cpu = 0;
102 
103 	alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
104 	cpu_capacity = kzalloc(alloc_size, GFP_NOWAIT);
105 
106 	while ((cn = of_find_node_by_type(cn, "cpu"))) {
107 		const u32 *rate, *reg;
108 		int len;
109 
110 		if (cpu >= num_possible_cpus())
111 			break;
112 
113 		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
114 			if (of_device_is_compatible(cn, cpu_eff->compatible))
115 				break;
116 
117 		if (cpu_eff->compatible == NULL)
118 			continue;
119 
120 		rate = of_get_property(cn, "clock-frequency", &len);
121 		if (!rate || len != 4) {
122 			pr_err("%s missing clock-frequency property\n",
123 				cn->full_name);
124 			continue;
125 		}
126 
127 		reg = of_get_property(cn, "reg", &len);
128 		if (!reg || len != 4) {
129 			pr_err("%s missing reg property\n", cn->full_name);
130 			continue;
131 		}
132 
133 		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
134 
135 		/* Save min capacity of the system */
136 		if (capacity < min_capacity)
137 			min_capacity = capacity;
138 
139 		/* Save max capacity of the system */
140 		if (capacity > max_capacity)
141 			max_capacity = capacity;
142 
143 		cpu_capacity[cpu].capacity = capacity;
144 		cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
145 	}
146 
147 	if (cpu < num_possible_cpus())
148 		cpu_capacity[cpu].hwid = (unsigned long)(-1);
149 
150 	/* If min and max capacities are equals, we bypass the update of the
151 	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
152 	 * compute a middle_capacity factor that will ensure that the capacity
153 	 * of an 'average' CPU of the system will be as close as possible to
154 	 * SCHED_POWER_SCALE, which is the default value, but with the
155 	 * constraint explained near table_efficiency[].
156 	 */
157 	if (min_capacity == max_capacity)
158 		cpu_capacity[0].hwid = (unsigned long)(-1);
159 	else if (4*max_capacity < (3*(max_capacity + min_capacity)))
160 		middle_capacity = (min_capacity + max_capacity)
161 				>> (SCHED_POWER_SHIFT+1);
162 	else
163 		middle_capacity = ((max_capacity / 3)
164 				>> (SCHED_POWER_SHIFT-1)) + 1;
165 
166 }
167 
168 /*
169  * Look for a customed capacity of a CPU in the cpu_capacity table during the
170  * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
171  * function returns directly for SMP system.
172  */
173 void update_cpu_power(unsigned int cpu, unsigned long hwid)
174 {
175 	unsigned int idx = 0;
176 
177 	/* look for the cpu's hwid in the cpu capacity table */
178 	for (idx = 0; idx < num_possible_cpus(); idx++) {
179 		if (cpu_capacity[idx].hwid == hwid)
180 			break;
181 
182 		if (cpu_capacity[idx].hwid == -1)
183 			return;
184 	}
185 
186 	if (idx == num_possible_cpus())
187 		return;
188 
189 	set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);
190 
191 	printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
192 		cpu, arch_scale_freq_power(NULL, cpu));
193 }
194 
195 #else
196 static inline void parse_dt_topology(void) {}
197 static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
198 #endif
199 
200  /*
201  * cpu topology table
202  */
203 struct cputopo_arm cpu_topology[NR_CPUS];
204 EXPORT_SYMBOL_GPL(cpu_topology);
205 
206 const struct cpumask *cpu_coregroup_mask(int cpu)
207 {
208 	return &cpu_topology[cpu].core_sibling;
209 }
210 
211 void update_siblings_masks(unsigned int cpuid)
212 {
213 	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
214 	int cpu;
215 
216 	/* update core and thread sibling masks */
217 	for_each_possible_cpu(cpu) {
218 		cpu_topo = &cpu_topology[cpu];
219 
220 		if (cpuid_topo->socket_id != cpu_topo->socket_id)
221 			continue;
222 
223 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
224 		if (cpu != cpuid)
225 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
226 
227 		if (cpuid_topo->core_id != cpu_topo->core_id)
228 			continue;
229 
230 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
231 		if (cpu != cpuid)
232 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
233 	}
234 	smp_wmb();
235 }
236 
237 /*
238  * store_cpu_topology is called at boot when only one cpu is running
239  * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
240  * which prevents simultaneous write access to cpu_topology array
241  */
242 void store_cpu_topology(unsigned int cpuid)
243 {
244 	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
245 	unsigned int mpidr;
246 
247 	/* If the cpu topology has been already set, just return */
248 	if (cpuid_topo->core_id != -1)
249 		return;
250 
251 	mpidr = read_cpuid_mpidr();
252 
253 	/* create cpu topology mapping */
254 	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
255 		/*
256 		 * This is a multiprocessor system
257 		 * multiprocessor format & multiprocessor mode field are set
258 		 */
259 
260 		if (mpidr & MPIDR_MT_BITMASK) {
261 			/* core performance interdependency */
262 			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
263 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
264 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
265 		} else {
266 			/* largely independent cores */
267 			cpuid_topo->thread_id = -1;
268 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
269 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
270 		}
271 	} else {
272 		/*
273 		 * This is an uniprocessor system
274 		 * we are in multiprocessor format but uniprocessor system
275 		 * or in the old uniprocessor format
276 		 */
277 		cpuid_topo->thread_id = -1;
278 		cpuid_topo->core_id = 0;
279 		cpuid_topo->socket_id = -1;
280 	}
281 
282 	update_siblings_masks(cpuid);
283 
284 	update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);
285 
286 	printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
287 		cpuid, cpu_topology[cpuid].thread_id,
288 		cpu_topology[cpuid].core_id,
289 		cpu_topology[cpuid].socket_id, mpidr);
290 }
291 
292 /*
293  * init_cpu_topology is called at boot when only one cpu is running
294  * which prevent simultaneous write access to cpu_topology array
295  */
296 void __init init_cpu_topology(void)
297 {
298 	unsigned int cpu;
299 
300 	/* init core mask and power*/
301 	for_each_possible_cpu(cpu) {
302 		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
303 
304 		cpu_topo->thread_id = -1;
305 		cpu_topo->core_id =  -1;
306 		cpu_topo->socket_id = -1;
307 		cpumask_clear(&cpu_topo->core_sibling);
308 		cpumask_clear(&cpu_topo->thread_sibling);
309 
310 		set_power_scale(cpu, SCHED_POWER_SCALE);
311 	}
312 	smp_wmb();
313 
314 	parse_dt_topology();
315 }
316