xref: /linux/arch/arm/kernel/time.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  *  linux/arch/arm/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994-2001 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  *  This file contains the ARM-specific time handling details:
12  *  reading the RTC at bootup, etc...
13  *
14  *  1994-07-02  Alan Modra
15  *              fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
16  *  1998-12-20  Updated NTP code according to technical memorandum Jan '96
17  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
18  */
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/timex.h>
26 #include <linux/errno.h>
27 #include <linux/profile.h>
28 #include <linux/sysdev.h>
29 #include <linux/timer.h>
30 #include <linux/irq.h>
31 
32 #include <linux/mc146818rtc.h>
33 
34 #include <asm/leds.h>
35 #include <asm/thread_info.h>
36 #include <asm/mach/time.h>
37 
38 /*
39  * Our system timer.
40  */
41 struct sys_timer *system_timer;
42 
43 /* this needs a better home */
44 DEFINE_SPINLOCK(rtc_lock);
45 
46 #ifdef CONFIG_SA1100_RTC_MODULE
47 EXPORT_SYMBOL(rtc_lock);
48 #endif
49 
50 /* change this if you have some constant time drift */
51 #define USECS_PER_JIFFY	(1000000/HZ)
52 
53 #ifdef CONFIG_SMP
54 unsigned long profile_pc(struct pt_regs *regs)
55 {
56 	unsigned long fp, pc = instruction_pointer(regs);
57 
58 	if (in_lock_functions(pc)) {
59 		fp = regs->ARM_fp;
60 		pc = pc_pointer(((unsigned long *)fp)[-1]);
61 	}
62 
63 	return pc;
64 }
65 EXPORT_SYMBOL(profile_pc);
66 #endif
67 
68 /*
69  * hook for setting the RTC's idea of the current time.
70  */
71 int (*set_rtc)(void);
72 
73 #ifndef CONFIG_GENERIC_TIME
74 static unsigned long dummy_gettimeoffset(void)
75 {
76 	return 0;
77 }
78 #endif
79 
80 /*
81  * Scheduler clock - returns current time in nanosec units.
82  * This is the default implementation.  Sub-architecture
83  * implementations can override this.
84  */
85 unsigned long long __attribute__((weak)) sched_clock(void)
86 {
87 	return (unsigned long long)jiffies * (1000000000 / HZ);
88 }
89 
90 /*
91  * An implementation of printk_clock() independent from
92  * sched_clock().  This avoids non-bootable kernels when
93  * printk_clock is enabled.
94  */
95 unsigned long long printk_clock(void)
96 {
97 	return (unsigned long long)(jiffies - INITIAL_JIFFIES) *
98 			(1000000000 / HZ);
99 }
100 
101 static unsigned long next_rtc_update;
102 
103 /*
104  * If we have an externally synchronized linux clock, then update
105  * CMOS clock accordingly every ~11 minutes.  set_rtc() has to be
106  * called as close as possible to 500 ms before the new second
107  * starts.
108  */
109 static inline void do_set_rtc(void)
110 {
111 	if (!ntp_synced() || set_rtc == NULL)
112 		return;
113 
114 	if (next_rtc_update &&
115 	    time_before((unsigned long)xtime.tv_sec, next_rtc_update))
116 		return;
117 
118 	if (xtime.tv_nsec < 500000000 - ((unsigned) tick_nsec >> 1) &&
119 	    xtime.tv_nsec >= 500000000 + ((unsigned) tick_nsec >> 1))
120 		return;
121 
122 	if (set_rtc())
123 		/*
124 		 * rtc update failed.  Try again in 60s
125 		 */
126 		next_rtc_update = xtime.tv_sec + 60;
127 	else
128 		next_rtc_update = xtime.tv_sec + 660;
129 }
130 
131 #ifdef CONFIG_LEDS
132 
133 static void dummy_leds_event(led_event_t evt)
134 {
135 }
136 
137 void (*leds_event)(led_event_t) = dummy_leds_event;
138 
139 struct leds_evt_name {
140 	const char	name[8];
141 	int		on;
142 	int		off;
143 };
144 
145 static const struct leds_evt_name evt_names[] = {
146 	{ "amber", led_amber_on, led_amber_off },
147 	{ "blue",  led_blue_on,  led_blue_off  },
148 	{ "green", led_green_on, led_green_off },
149 	{ "red",   led_red_on,   led_red_off   },
150 };
151 
152 static ssize_t leds_store(struct sys_device *dev, const char *buf, size_t size)
153 {
154 	int ret = -EINVAL, len = strcspn(buf, " ");
155 
156 	if (len > 0 && buf[len] == '\0')
157 		len--;
158 
159 	if (strncmp(buf, "claim", len) == 0) {
160 		leds_event(led_claim);
161 		ret = size;
162 	} else if (strncmp(buf, "release", len) == 0) {
163 		leds_event(led_release);
164 		ret = size;
165 	} else {
166 		int i;
167 
168 		for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
169 			if (strlen(evt_names[i].name) != len ||
170 			    strncmp(buf, evt_names[i].name, len) != 0)
171 				continue;
172 			if (strncmp(buf+len, " on", 3) == 0) {
173 				leds_event(evt_names[i].on);
174 				ret = size;
175 			} else if (strncmp(buf+len, " off", 4) == 0) {
176 				leds_event(evt_names[i].off);
177 				ret = size;
178 			}
179 			break;
180 		}
181 	}
182 	return ret;
183 }
184 
185 static SYSDEV_ATTR(event, 0200, NULL, leds_store);
186 
187 static int leds_suspend(struct sys_device *dev, pm_message_t state)
188 {
189 	leds_event(led_stop);
190 	return 0;
191 }
192 
193 static int leds_resume(struct sys_device *dev)
194 {
195 	leds_event(led_start);
196 	return 0;
197 }
198 
199 static int leds_shutdown(struct sys_device *dev)
200 {
201 	leds_event(led_halted);
202 	return 0;
203 }
204 
205 static struct sysdev_class leds_sysclass = {
206 	set_kset_name("leds"),
207 	.shutdown	= leds_shutdown,
208 	.suspend	= leds_suspend,
209 	.resume		= leds_resume,
210 };
211 
212 static struct sys_device leds_device = {
213 	.id		= 0,
214 	.cls		= &leds_sysclass,
215 };
216 
217 static int __init leds_init(void)
218 {
219 	int ret;
220 	ret = sysdev_class_register(&leds_sysclass);
221 	if (ret == 0)
222 		ret = sysdev_register(&leds_device);
223 	if (ret == 0)
224 		ret = sysdev_create_file(&leds_device, &attr_event);
225 	return ret;
226 }
227 
228 device_initcall(leds_init);
229 
230 EXPORT_SYMBOL(leds_event);
231 #endif
232 
233 #ifdef CONFIG_LEDS_TIMER
234 static inline void do_leds(void)
235 {
236 	static unsigned int count = HZ/2;
237 
238 	if (--count == 0) {
239 		count = HZ/2;
240 		leds_event(led_timer);
241 	}
242 }
243 #else
244 #define	do_leds()
245 #endif
246 
247 #ifndef CONFIG_GENERIC_TIME
248 void do_gettimeofday(struct timeval *tv)
249 {
250 	unsigned long flags;
251 	unsigned long seq;
252 	unsigned long usec, sec;
253 
254 	do {
255 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
256 		usec = system_timer->offset();
257 		sec = xtime.tv_sec;
258 		usec += xtime.tv_nsec / 1000;
259 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
260 
261 	/* usec may have gone up a lot: be safe */
262 	while (usec >= 1000000) {
263 		usec -= 1000000;
264 		sec++;
265 	}
266 
267 	tv->tv_sec = sec;
268 	tv->tv_usec = usec;
269 }
270 
271 EXPORT_SYMBOL(do_gettimeofday);
272 
273 int do_settimeofday(struct timespec *tv)
274 {
275 	time_t wtm_sec, sec = tv->tv_sec;
276 	long wtm_nsec, nsec = tv->tv_nsec;
277 
278 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
279 		return -EINVAL;
280 
281 	write_seqlock_irq(&xtime_lock);
282 	/*
283 	 * This is revolting. We need to set "xtime" correctly. However, the
284 	 * value in this location is the value at the most recent update of
285 	 * wall time.  Discover what correction gettimeofday() would have
286 	 * done, and then undo it!
287 	 */
288 	nsec -= system_timer->offset() * NSEC_PER_USEC;
289 
290 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
291 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
292 
293 	set_normalized_timespec(&xtime, sec, nsec);
294 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
295 
296 	ntp_clear();
297 	write_sequnlock_irq(&xtime_lock);
298 	clock_was_set();
299 	return 0;
300 }
301 
302 EXPORT_SYMBOL(do_settimeofday);
303 #endif /* !CONFIG_GENERIC_TIME */
304 
305 /**
306  * save_time_delta - Save the offset between system time and RTC time
307  * @delta: pointer to timespec to store delta
308  * @rtc: pointer to timespec for current RTC time
309  *
310  * Return a delta between the system time and the RTC time, such
311  * that system time can be restored later with restore_time_delta()
312  */
313 void save_time_delta(struct timespec *delta, struct timespec *rtc)
314 {
315 	set_normalized_timespec(delta,
316 				xtime.tv_sec - rtc->tv_sec,
317 				xtime.tv_nsec - rtc->tv_nsec);
318 }
319 EXPORT_SYMBOL(save_time_delta);
320 
321 /**
322  * restore_time_delta - Restore the current system time
323  * @delta: delta returned by save_time_delta()
324  * @rtc: pointer to timespec for current RTC time
325  */
326 void restore_time_delta(struct timespec *delta, struct timespec *rtc)
327 {
328 	struct timespec ts;
329 
330 	set_normalized_timespec(&ts,
331 				delta->tv_sec + rtc->tv_sec,
332 				delta->tv_nsec + rtc->tv_nsec);
333 
334 	do_settimeofday(&ts);
335 }
336 EXPORT_SYMBOL(restore_time_delta);
337 
338 /*
339  * Kernel system timer support.
340  */
341 void timer_tick(void)
342 {
343 	profile_tick(CPU_PROFILING);
344 	do_leds();
345 	do_set_rtc();
346 	do_timer(1);
347 #ifndef CONFIG_SMP
348 	update_process_times(user_mode(get_irq_regs()));
349 #endif
350 }
351 
352 #ifdef CONFIG_PM
353 static int timer_suspend(struct sys_device *dev, pm_message_t state)
354 {
355 	struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
356 
357 	if (timer->suspend != NULL)
358 		timer->suspend();
359 
360 	return 0;
361 }
362 
363 static int timer_resume(struct sys_device *dev)
364 {
365 	struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
366 
367 	if (timer->resume != NULL)
368 		timer->resume();
369 
370 	return 0;
371 }
372 #else
373 #define timer_suspend NULL
374 #define timer_resume NULL
375 #endif
376 
377 static struct sysdev_class timer_sysclass = {
378 	set_kset_name("timer"),
379 	.suspend	= timer_suspend,
380 	.resume		= timer_resume,
381 };
382 
383 #ifdef CONFIG_NO_IDLE_HZ
384 static int timer_dyn_tick_enable(void)
385 {
386 	struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
387 	unsigned long flags;
388 	int ret = -ENODEV;
389 
390 	if (dyn_tick) {
391 		spin_lock_irqsave(&dyn_tick->lock, flags);
392 		ret = 0;
393 		if (!(dyn_tick->state & DYN_TICK_ENABLED)) {
394 			ret = dyn_tick->enable();
395 
396 			if (ret == 0)
397 				dyn_tick->state |= DYN_TICK_ENABLED;
398 		}
399 		spin_unlock_irqrestore(&dyn_tick->lock, flags);
400 	}
401 
402 	return ret;
403 }
404 
405 static int timer_dyn_tick_disable(void)
406 {
407 	struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
408 	unsigned long flags;
409 	int ret = -ENODEV;
410 
411 	if (dyn_tick) {
412 		spin_lock_irqsave(&dyn_tick->lock, flags);
413 		ret = 0;
414 		if (dyn_tick->state & DYN_TICK_ENABLED) {
415 			ret = dyn_tick->disable();
416 
417 			if (ret == 0)
418 				dyn_tick->state &= ~DYN_TICK_ENABLED;
419 		}
420 		spin_unlock_irqrestore(&dyn_tick->lock, flags);
421 	}
422 
423 	return ret;
424 }
425 
426 /*
427  * Reprogram the system timer for at least the calculated time interval.
428  * This function should be called from the idle thread with IRQs disabled,
429  * immediately before sleeping.
430  */
431 void timer_dyn_reprogram(void)
432 {
433 	struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
434 	unsigned long next, seq, flags;
435 
436 	if (!dyn_tick)
437 		return;
438 
439 	spin_lock_irqsave(&dyn_tick->lock, flags);
440 	if (dyn_tick->state & DYN_TICK_ENABLED) {
441 		next = next_timer_interrupt();
442 		do {
443 			seq = read_seqbegin(&xtime_lock);
444 			dyn_tick->reprogram(next - jiffies);
445 		} while (read_seqretry(&xtime_lock, seq));
446 	}
447 	spin_unlock_irqrestore(&dyn_tick->lock, flags);
448 }
449 
450 static ssize_t timer_show_dyn_tick(struct sys_device *dev, char *buf)
451 {
452 	return sprintf(buf, "%i\n",
453 		       (system_timer->dyn_tick->state & DYN_TICK_ENABLED) >> 1);
454 }
455 
456 static ssize_t timer_set_dyn_tick(struct sys_device *dev, const char *buf,
457 				  size_t count)
458 {
459 	unsigned int enable = simple_strtoul(buf, NULL, 2);
460 
461 	if (enable)
462 		timer_dyn_tick_enable();
463 	else
464 		timer_dyn_tick_disable();
465 
466 	return count;
467 }
468 static SYSDEV_ATTR(dyn_tick, 0644, timer_show_dyn_tick, timer_set_dyn_tick);
469 
470 /*
471  * dyntick=enable|disable
472  */
473 static char dyntick_str[4] __initdata = "";
474 
475 static int __init dyntick_setup(char *str)
476 {
477 	if (str)
478 		strlcpy(dyntick_str, str, sizeof(dyntick_str));
479 	return 1;
480 }
481 
482 __setup("dyntick=", dyntick_setup);
483 #endif
484 
485 static int __init timer_init_sysfs(void)
486 {
487 	int ret = sysdev_class_register(&timer_sysclass);
488 	if (ret == 0) {
489 		system_timer->dev.cls = &timer_sysclass;
490 		ret = sysdev_register(&system_timer->dev);
491 	}
492 
493 #ifdef CONFIG_NO_IDLE_HZ
494 	if (ret == 0 && system_timer->dyn_tick) {
495 		ret = sysdev_create_file(&system_timer->dev, &attr_dyn_tick);
496 
497 		/*
498 		 * Turn on dynamic tick after calibrate delay
499 		 * for correct bogomips
500 		 */
501 		if (ret == 0 && dyntick_str[0] == 'e')
502 			ret = timer_dyn_tick_enable();
503 	}
504 #endif
505 
506 	return ret;
507 }
508 
509 device_initcall(timer_init_sysfs);
510 
511 void __init time_init(void)
512 {
513 #ifndef CONFIG_GENERIC_TIME
514 	if (system_timer->offset == NULL)
515 		system_timer->offset = dummy_gettimeoffset;
516 #endif
517 	system_timer->init();
518 
519 #ifdef CONFIG_NO_IDLE_HZ
520 	if (system_timer->dyn_tick)
521 		system_timer->dyn_tick->lock = SPIN_LOCK_UNLOCKED;
522 #endif
523 }
524 
525