1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/smp.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/exception.h> 35 #include <asm/idmap.h> 36 #include <asm/topology.h> 37 #include <asm/mmu_context.h> 38 #include <asm/pgtable.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sections.h> 42 #include <asm/tlbflush.h> 43 #include <asm/ptrace.h> 44 #include <asm/localtimer.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 /* 51 * as from 2.5, kernels no longer have an init_tasks structure 52 * so we need some other way of telling a new secondary core 53 * where to place its SVC stack 54 */ 55 struct secondary_data secondary_data; 56 57 /* 58 * control for which core is the next to come out of the secondary 59 * boot "holding pen" 60 */ 61 volatile int __cpuinitdata pen_release = -1; 62 63 enum ipi_msg_type { 64 IPI_WAKEUP, 65 IPI_TIMER, 66 IPI_RESCHEDULE, 67 IPI_CALL_FUNC, 68 IPI_CALL_FUNC_SINGLE, 69 IPI_CPU_STOP, 70 }; 71 72 static DECLARE_COMPLETION(cpu_running); 73 74 static struct smp_operations smp_ops; 75 76 void __init smp_set_ops(struct smp_operations *ops) 77 { 78 if (ops) 79 smp_ops = *ops; 80 }; 81 82 static unsigned long get_arch_pgd(pgd_t *pgd) 83 { 84 phys_addr_t pgdir = virt_to_phys(pgd); 85 BUG_ON(pgdir & ARCH_PGD_MASK); 86 return pgdir >> ARCH_PGD_SHIFT; 87 } 88 89 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) 90 { 91 int ret; 92 93 /* 94 * We need to tell the secondary core where to find 95 * its stack and the page tables. 96 */ 97 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 98 #ifdef CONFIG_ARM_MPU 99 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 100 #endif 101 102 #ifdef CONFIG_MMU 103 secondary_data.pgdir = get_arch_pgd(idmap_pgd); 104 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 105 #endif 106 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 107 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 108 109 /* 110 * Now bring the CPU into our world. 111 */ 112 ret = boot_secondary(cpu, idle); 113 if (ret == 0) { 114 /* 115 * CPU was successfully started, wait for it 116 * to come online or time out. 117 */ 118 wait_for_completion_timeout(&cpu_running, 119 msecs_to_jiffies(1000)); 120 121 if (!cpu_online(cpu)) { 122 pr_crit("CPU%u: failed to come online\n", cpu); 123 ret = -EIO; 124 } 125 } else { 126 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 127 } 128 129 130 memset(&secondary_data, 0, sizeof(secondary_data)); 131 return ret; 132 } 133 134 /* platform specific SMP operations */ 135 void __init smp_init_cpus(void) 136 { 137 if (smp_ops.smp_init_cpus) 138 smp_ops.smp_init_cpus(); 139 } 140 141 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) 142 { 143 if (smp_ops.smp_boot_secondary) 144 return smp_ops.smp_boot_secondary(cpu, idle); 145 return -ENOSYS; 146 } 147 148 #ifdef CONFIG_HOTPLUG_CPU 149 static void percpu_timer_stop(void); 150 151 static int platform_cpu_kill(unsigned int cpu) 152 { 153 if (smp_ops.cpu_kill) 154 return smp_ops.cpu_kill(cpu); 155 return 1; 156 } 157 158 static int platform_cpu_disable(unsigned int cpu) 159 { 160 if (smp_ops.cpu_disable) 161 return smp_ops.cpu_disable(cpu); 162 163 /* 164 * By default, allow disabling all CPUs except the first one, 165 * since this is special on a lot of platforms, e.g. because 166 * of clock tick interrupts. 167 */ 168 return cpu == 0 ? -EPERM : 0; 169 } 170 /* 171 * __cpu_disable runs on the processor to be shutdown. 172 */ 173 int __cpuinit __cpu_disable(void) 174 { 175 unsigned int cpu = smp_processor_id(); 176 int ret; 177 178 ret = platform_cpu_disable(cpu); 179 if (ret) 180 return ret; 181 182 /* 183 * Take this CPU offline. Once we clear this, we can't return, 184 * and we must not schedule until we're ready to give up the cpu. 185 */ 186 set_cpu_online(cpu, false); 187 188 /* 189 * OK - migrate IRQs away from this CPU 190 */ 191 migrate_irqs(); 192 193 /* 194 * Stop the local timer for this CPU. 195 */ 196 percpu_timer_stop(); 197 198 /* 199 * Flush user cache and TLB mappings, and then remove this CPU 200 * from the vm mask set of all processes. 201 * 202 * Caches are flushed to the Level of Unification Inner Shareable 203 * to write-back dirty lines to unified caches shared by all CPUs. 204 */ 205 flush_cache_louis(); 206 local_flush_tlb_all(); 207 208 clear_tasks_mm_cpumask(cpu); 209 210 return 0; 211 } 212 213 static DECLARE_COMPLETION(cpu_died); 214 215 /* 216 * called on the thread which is asking for a CPU to be shutdown - 217 * waits until shutdown has completed, or it is timed out. 218 */ 219 void __cpuinit __cpu_die(unsigned int cpu) 220 { 221 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 222 pr_err("CPU%u: cpu didn't die\n", cpu); 223 return; 224 } 225 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 226 227 /* 228 * platform_cpu_kill() is generally expected to do the powering off 229 * and/or cutting of clocks to the dying CPU. Optionally, this may 230 * be done by the CPU which is dying in preference to supporting 231 * this call, but that means there is _no_ synchronisation between 232 * the requesting CPU and the dying CPU actually losing power. 233 */ 234 if (!platform_cpu_kill(cpu)) 235 printk("CPU%u: unable to kill\n", cpu); 236 } 237 238 /* 239 * Called from the idle thread for the CPU which has been shutdown. 240 * 241 * Note that we disable IRQs here, but do not re-enable them 242 * before returning to the caller. This is also the behaviour 243 * of the other hotplug-cpu capable cores, so presumably coming 244 * out of idle fixes this. 245 */ 246 void __ref cpu_die(void) 247 { 248 unsigned int cpu = smp_processor_id(); 249 250 idle_task_exit(); 251 252 local_irq_disable(); 253 254 /* 255 * Flush the data out of the L1 cache for this CPU. This must be 256 * before the completion to ensure that data is safely written out 257 * before platform_cpu_kill() gets called - which may disable 258 * *this* CPU and power down its cache. 259 */ 260 flush_cache_louis(); 261 262 /* 263 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 264 * this returns, power and/or clocks can be removed at any point 265 * from this CPU and its cache by platform_cpu_kill(). 266 */ 267 complete(&cpu_died); 268 269 /* 270 * Ensure that the cache lines associated with that completion are 271 * written out. This covers the case where _this_ CPU is doing the 272 * powering down, to ensure that the completion is visible to the 273 * CPU waiting for this one. 274 */ 275 flush_cache_louis(); 276 277 /* 278 * The actual CPU shutdown procedure is at least platform (if not 279 * CPU) specific. This may remove power, or it may simply spin. 280 * 281 * Platforms are generally expected *NOT* to return from this call, 282 * although there are some which do because they have no way to 283 * power down the CPU. These platforms are the _only_ reason we 284 * have a return path which uses the fragment of assembly below. 285 * 286 * The return path should not be used for platforms which can 287 * power off the CPU. 288 */ 289 if (smp_ops.cpu_die) 290 smp_ops.cpu_die(cpu); 291 292 /* 293 * Do not return to the idle loop - jump back to the secondary 294 * cpu initialisation. There's some initialisation which needs 295 * to be repeated to undo the effects of taking the CPU offline. 296 */ 297 __asm__("mov sp, %0\n" 298 " mov fp, #0\n" 299 " b secondary_start_kernel" 300 : 301 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 302 } 303 #endif /* CONFIG_HOTPLUG_CPU */ 304 305 /* 306 * Called by both boot and secondaries to move global data into 307 * per-processor storage. 308 */ 309 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 310 { 311 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 312 313 cpu_info->loops_per_jiffy = loops_per_jiffy; 314 cpu_info->cpuid = read_cpuid_id(); 315 316 store_cpu_topology(cpuid); 317 } 318 319 static void percpu_timer_setup(void); 320 321 /* 322 * This is the secondary CPU boot entry. We're using this CPUs 323 * idle thread stack, but a set of temporary page tables. 324 */ 325 asmlinkage void __cpuinit secondary_start_kernel(void) 326 { 327 struct mm_struct *mm = &init_mm; 328 unsigned int cpu; 329 330 /* 331 * The identity mapping is uncached (strongly ordered), so 332 * switch away from it before attempting any exclusive accesses. 333 */ 334 cpu_switch_mm(mm->pgd, mm); 335 local_flush_bp_all(); 336 enter_lazy_tlb(mm, current); 337 local_flush_tlb_all(); 338 339 /* 340 * All kernel threads share the same mm context; grab a 341 * reference and switch to it. 342 */ 343 cpu = smp_processor_id(); 344 atomic_inc(&mm->mm_count); 345 current->active_mm = mm; 346 cpumask_set_cpu(cpu, mm_cpumask(mm)); 347 348 cpu_init(); 349 350 printk("CPU%u: Booted secondary processor\n", cpu); 351 352 preempt_disable(); 353 trace_hardirqs_off(); 354 355 /* 356 * Give the platform a chance to do its own initialisation. 357 */ 358 if (smp_ops.smp_secondary_init) 359 smp_ops.smp_secondary_init(cpu); 360 361 notify_cpu_starting(cpu); 362 363 calibrate_delay(); 364 365 smp_store_cpu_info(cpu); 366 367 /* 368 * OK, now it's safe to let the boot CPU continue. Wait for 369 * the CPU migration code to notice that the CPU is online 370 * before we continue - which happens after __cpu_up returns. 371 */ 372 set_cpu_online(cpu, true); 373 complete(&cpu_running); 374 375 /* 376 * Setup the percpu timer for this CPU. 377 */ 378 percpu_timer_setup(); 379 380 local_irq_enable(); 381 local_fiq_enable(); 382 383 /* 384 * OK, it's off to the idle thread for us 385 */ 386 cpu_startup_entry(CPUHP_ONLINE); 387 } 388 389 void __init smp_cpus_done(unsigned int max_cpus) 390 { 391 int cpu; 392 unsigned long bogosum = 0; 393 394 for_each_online_cpu(cpu) 395 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 396 397 printk(KERN_INFO "SMP: Total of %d processors activated " 398 "(%lu.%02lu BogoMIPS).\n", 399 num_online_cpus(), 400 bogosum / (500000/HZ), 401 (bogosum / (5000/HZ)) % 100); 402 403 hyp_mode_check(); 404 } 405 406 void __init smp_prepare_boot_cpu(void) 407 { 408 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 409 } 410 411 void __init smp_prepare_cpus(unsigned int max_cpus) 412 { 413 unsigned int ncores = num_possible_cpus(); 414 415 init_cpu_topology(); 416 417 smp_store_cpu_info(smp_processor_id()); 418 419 /* 420 * are we trying to boot more cores than exist? 421 */ 422 if (max_cpus > ncores) 423 max_cpus = ncores; 424 if (ncores > 1 && max_cpus) { 425 /* 426 * Enable the local timer or broadcast device for the 427 * boot CPU, but only if we have more than one CPU. 428 */ 429 percpu_timer_setup(); 430 431 /* 432 * Initialise the present map, which describes the set of CPUs 433 * actually populated at the present time. A platform should 434 * re-initialize the map in the platforms smp_prepare_cpus() 435 * if present != possible (e.g. physical hotplug). 436 */ 437 init_cpu_present(cpu_possible_mask); 438 439 /* 440 * Initialise the SCU if there are more than one CPU 441 * and let them know where to start. 442 */ 443 if (smp_ops.smp_prepare_cpus) 444 smp_ops.smp_prepare_cpus(max_cpus); 445 } 446 } 447 448 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 449 450 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 451 { 452 if (!smp_cross_call) 453 smp_cross_call = fn; 454 } 455 456 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 457 { 458 smp_cross_call(mask, IPI_CALL_FUNC); 459 } 460 461 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 462 { 463 smp_cross_call(mask, IPI_WAKEUP); 464 } 465 466 void arch_send_call_function_single_ipi(int cpu) 467 { 468 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 469 } 470 471 static const char *ipi_types[NR_IPI] = { 472 #define S(x,s) [x] = s 473 S(IPI_WAKEUP, "CPU wakeup interrupts"), 474 S(IPI_TIMER, "Timer broadcast interrupts"), 475 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 476 S(IPI_CALL_FUNC, "Function call interrupts"), 477 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 478 S(IPI_CPU_STOP, "CPU stop interrupts"), 479 }; 480 481 void show_ipi_list(struct seq_file *p, int prec) 482 { 483 unsigned int cpu, i; 484 485 for (i = 0; i < NR_IPI; i++) { 486 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 487 488 for_each_online_cpu(cpu) 489 seq_printf(p, "%10u ", 490 __get_irq_stat(cpu, ipi_irqs[i])); 491 492 seq_printf(p, " %s\n", ipi_types[i]); 493 } 494 } 495 496 u64 smp_irq_stat_cpu(unsigned int cpu) 497 { 498 u64 sum = 0; 499 int i; 500 501 for (i = 0; i < NR_IPI; i++) 502 sum += __get_irq_stat(cpu, ipi_irqs[i]); 503 504 return sum; 505 } 506 507 /* 508 * Timer (local or broadcast) support 509 */ 510 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 511 512 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 513 void tick_broadcast(const struct cpumask *mask) 514 { 515 smp_cross_call(mask, IPI_TIMER); 516 } 517 #endif 518 519 static void broadcast_timer_set_mode(enum clock_event_mode mode, 520 struct clock_event_device *evt) 521 { 522 } 523 524 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 525 { 526 evt->name = "dummy_timer"; 527 evt->features = CLOCK_EVT_FEAT_ONESHOT | 528 CLOCK_EVT_FEAT_PERIODIC | 529 CLOCK_EVT_FEAT_DUMMY; 530 evt->rating = 100; 531 evt->mult = 1; 532 evt->set_mode = broadcast_timer_set_mode; 533 534 clockevents_register_device(evt); 535 } 536 537 static struct local_timer_ops *lt_ops; 538 539 #ifdef CONFIG_LOCAL_TIMERS 540 int local_timer_register(struct local_timer_ops *ops) 541 { 542 if (!is_smp() || !setup_max_cpus) 543 return -ENXIO; 544 545 if (lt_ops) 546 return -EBUSY; 547 548 lt_ops = ops; 549 return 0; 550 } 551 #endif 552 553 static void __cpuinit percpu_timer_setup(void) 554 { 555 unsigned int cpu = smp_processor_id(); 556 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 557 558 evt->cpumask = cpumask_of(cpu); 559 560 if (!lt_ops || lt_ops->setup(evt)) 561 broadcast_timer_setup(evt); 562 } 563 564 #ifdef CONFIG_HOTPLUG_CPU 565 /* 566 * The generic clock events code purposely does not stop the local timer 567 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 568 * manually here. 569 */ 570 static void percpu_timer_stop(void) 571 { 572 unsigned int cpu = smp_processor_id(); 573 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 574 575 if (lt_ops) 576 lt_ops->stop(evt); 577 } 578 #endif 579 580 static DEFINE_RAW_SPINLOCK(stop_lock); 581 582 /* 583 * ipi_cpu_stop - handle IPI from smp_send_stop() 584 */ 585 static void ipi_cpu_stop(unsigned int cpu) 586 { 587 if (system_state == SYSTEM_BOOTING || 588 system_state == SYSTEM_RUNNING) { 589 raw_spin_lock(&stop_lock); 590 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 591 dump_stack(); 592 raw_spin_unlock(&stop_lock); 593 } 594 595 set_cpu_online(cpu, false); 596 597 local_fiq_disable(); 598 local_irq_disable(); 599 600 while (1) 601 cpu_relax(); 602 } 603 604 /* 605 * Main handler for inter-processor interrupts 606 */ 607 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 608 { 609 handle_IPI(ipinr, regs); 610 } 611 612 void handle_IPI(int ipinr, struct pt_regs *regs) 613 { 614 unsigned int cpu = smp_processor_id(); 615 struct pt_regs *old_regs = set_irq_regs(regs); 616 617 if (ipinr < NR_IPI) 618 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 619 620 switch (ipinr) { 621 case IPI_WAKEUP: 622 break; 623 624 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 625 case IPI_TIMER: 626 irq_enter(); 627 tick_receive_broadcast(); 628 irq_exit(); 629 break; 630 #endif 631 632 case IPI_RESCHEDULE: 633 scheduler_ipi(); 634 break; 635 636 case IPI_CALL_FUNC: 637 irq_enter(); 638 generic_smp_call_function_interrupt(); 639 irq_exit(); 640 break; 641 642 case IPI_CALL_FUNC_SINGLE: 643 irq_enter(); 644 generic_smp_call_function_single_interrupt(); 645 irq_exit(); 646 break; 647 648 case IPI_CPU_STOP: 649 irq_enter(); 650 ipi_cpu_stop(cpu); 651 irq_exit(); 652 break; 653 654 default: 655 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 656 cpu, ipinr); 657 break; 658 } 659 set_irq_regs(old_regs); 660 } 661 662 void smp_send_reschedule(int cpu) 663 { 664 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 665 } 666 667 void smp_send_stop(void) 668 { 669 unsigned long timeout; 670 struct cpumask mask; 671 672 cpumask_copy(&mask, cpu_online_mask); 673 cpumask_clear_cpu(smp_processor_id(), &mask); 674 if (!cpumask_empty(&mask)) 675 smp_cross_call(&mask, IPI_CPU_STOP); 676 677 /* Wait up to one second for other CPUs to stop */ 678 timeout = USEC_PER_SEC; 679 while (num_online_cpus() > 1 && timeout--) 680 udelay(1); 681 682 if (num_online_cpus() > 1) 683 pr_warning("SMP: failed to stop secondary CPUs\n"); 684 } 685 686 /* 687 * not supported here 688 */ 689 int setup_profiling_timer(unsigned int multiplier) 690 { 691 return -EINVAL; 692 } 693 694 #ifdef CONFIG_CPU_FREQ 695 696 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 697 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 698 static unsigned long global_l_p_j_ref; 699 static unsigned long global_l_p_j_ref_freq; 700 701 static int cpufreq_callback(struct notifier_block *nb, 702 unsigned long val, void *data) 703 { 704 struct cpufreq_freqs *freq = data; 705 int cpu = freq->cpu; 706 707 if (freq->flags & CPUFREQ_CONST_LOOPS) 708 return NOTIFY_OK; 709 710 if (!per_cpu(l_p_j_ref, cpu)) { 711 per_cpu(l_p_j_ref, cpu) = 712 per_cpu(cpu_data, cpu).loops_per_jiffy; 713 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 714 if (!global_l_p_j_ref) { 715 global_l_p_j_ref = loops_per_jiffy; 716 global_l_p_j_ref_freq = freq->old; 717 } 718 } 719 720 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 721 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 722 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 723 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 724 global_l_p_j_ref_freq, 725 freq->new); 726 per_cpu(cpu_data, cpu).loops_per_jiffy = 727 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 728 per_cpu(l_p_j_ref_freq, cpu), 729 freq->new); 730 } 731 return NOTIFY_OK; 732 } 733 734 static struct notifier_block cpufreq_notifier = { 735 .notifier_call = cpufreq_callback, 736 }; 737 738 static int __init register_cpufreq_notifier(void) 739 { 740 return cpufreq_register_notifier(&cpufreq_notifier, 741 CPUFREQ_TRANSITION_NOTIFIER); 742 } 743 core_initcall(register_cpufreq_notifier); 744 745 #endif 746