xref: /linux/arch/arm/kernel/smp.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 /*
51  * as from 2.5, kernels no longer have an init_tasks structure
52  * so we need some other way of telling a new secondary core
53  * where to place its SVC stack
54  */
55 struct secondary_data secondary_data;
56 
57 /*
58  * control for which core is the next to come out of the secondary
59  * boot "holding pen"
60  */
61 volatile int __cpuinitdata pen_release = -1;
62 
63 enum ipi_msg_type {
64 	IPI_WAKEUP,
65 	IPI_TIMER,
66 	IPI_RESCHEDULE,
67 	IPI_CALL_FUNC,
68 	IPI_CALL_FUNC_SINGLE,
69 	IPI_CPU_STOP,
70 };
71 
72 static DECLARE_COMPLETION(cpu_running);
73 
74 static struct smp_operations smp_ops;
75 
76 void __init smp_set_ops(struct smp_operations *ops)
77 {
78 	if (ops)
79 		smp_ops = *ops;
80 };
81 
82 static unsigned long get_arch_pgd(pgd_t *pgd)
83 {
84 	phys_addr_t pgdir = virt_to_phys(pgd);
85 	BUG_ON(pgdir & ARCH_PGD_MASK);
86 	return pgdir >> ARCH_PGD_SHIFT;
87 }
88 
89 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
90 {
91 	int ret;
92 
93 	/*
94 	 * We need to tell the secondary core where to find
95 	 * its stack and the page tables.
96 	 */
97 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
98 #ifdef CONFIG_ARM_MPU
99 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
100 #endif
101 
102 #ifdef CONFIG_MMU
103 	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
104 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
105 #endif
106 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
107 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
108 
109 	/*
110 	 * Now bring the CPU into our world.
111 	 */
112 	ret = boot_secondary(cpu, idle);
113 	if (ret == 0) {
114 		/*
115 		 * CPU was successfully started, wait for it
116 		 * to come online or time out.
117 		 */
118 		wait_for_completion_timeout(&cpu_running,
119 						 msecs_to_jiffies(1000));
120 
121 		if (!cpu_online(cpu)) {
122 			pr_crit("CPU%u: failed to come online\n", cpu);
123 			ret = -EIO;
124 		}
125 	} else {
126 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
127 	}
128 
129 
130 	memset(&secondary_data, 0, sizeof(secondary_data));
131 	return ret;
132 }
133 
134 /* platform specific SMP operations */
135 void __init smp_init_cpus(void)
136 {
137 	if (smp_ops.smp_init_cpus)
138 		smp_ops.smp_init_cpus();
139 }
140 
141 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
142 {
143 	if (smp_ops.smp_boot_secondary)
144 		return smp_ops.smp_boot_secondary(cpu, idle);
145 	return -ENOSYS;
146 }
147 
148 #ifdef CONFIG_HOTPLUG_CPU
149 static void percpu_timer_stop(void);
150 
151 static int platform_cpu_kill(unsigned int cpu)
152 {
153 	if (smp_ops.cpu_kill)
154 		return smp_ops.cpu_kill(cpu);
155 	return 1;
156 }
157 
158 static int platform_cpu_disable(unsigned int cpu)
159 {
160 	if (smp_ops.cpu_disable)
161 		return smp_ops.cpu_disable(cpu);
162 
163 	/*
164 	 * By default, allow disabling all CPUs except the first one,
165 	 * since this is special on a lot of platforms, e.g. because
166 	 * of clock tick interrupts.
167 	 */
168 	return cpu == 0 ? -EPERM : 0;
169 }
170 /*
171  * __cpu_disable runs on the processor to be shutdown.
172  */
173 int __cpuinit __cpu_disable(void)
174 {
175 	unsigned int cpu = smp_processor_id();
176 	int ret;
177 
178 	ret = platform_cpu_disable(cpu);
179 	if (ret)
180 		return ret;
181 
182 	/*
183 	 * Take this CPU offline.  Once we clear this, we can't return,
184 	 * and we must not schedule until we're ready to give up the cpu.
185 	 */
186 	set_cpu_online(cpu, false);
187 
188 	/*
189 	 * OK - migrate IRQs away from this CPU
190 	 */
191 	migrate_irqs();
192 
193 	/*
194 	 * Stop the local timer for this CPU.
195 	 */
196 	percpu_timer_stop();
197 
198 	/*
199 	 * Flush user cache and TLB mappings, and then remove this CPU
200 	 * from the vm mask set of all processes.
201 	 *
202 	 * Caches are flushed to the Level of Unification Inner Shareable
203 	 * to write-back dirty lines to unified caches shared by all CPUs.
204 	 */
205 	flush_cache_louis();
206 	local_flush_tlb_all();
207 
208 	clear_tasks_mm_cpumask(cpu);
209 
210 	return 0;
211 }
212 
213 static DECLARE_COMPLETION(cpu_died);
214 
215 /*
216  * called on the thread which is asking for a CPU to be shutdown -
217  * waits until shutdown has completed, or it is timed out.
218  */
219 void __cpuinit __cpu_die(unsigned int cpu)
220 {
221 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
222 		pr_err("CPU%u: cpu didn't die\n", cpu);
223 		return;
224 	}
225 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
226 
227 	/*
228 	 * platform_cpu_kill() is generally expected to do the powering off
229 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
230 	 * be done by the CPU which is dying in preference to supporting
231 	 * this call, but that means there is _no_ synchronisation between
232 	 * the requesting CPU and the dying CPU actually losing power.
233 	 */
234 	if (!platform_cpu_kill(cpu))
235 		printk("CPU%u: unable to kill\n", cpu);
236 }
237 
238 /*
239  * Called from the idle thread for the CPU which has been shutdown.
240  *
241  * Note that we disable IRQs here, but do not re-enable them
242  * before returning to the caller. This is also the behaviour
243  * of the other hotplug-cpu capable cores, so presumably coming
244  * out of idle fixes this.
245  */
246 void __ref cpu_die(void)
247 {
248 	unsigned int cpu = smp_processor_id();
249 
250 	idle_task_exit();
251 
252 	local_irq_disable();
253 
254 	/*
255 	 * Flush the data out of the L1 cache for this CPU.  This must be
256 	 * before the completion to ensure that data is safely written out
257 	 * before platform_cpu_kill() gets called - which may disable
258 	 * *this* CPU and power down its cache.
259 	 */
260 	flush_cache_louis();
261 
262 	/*
263 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
264 	 * this returns, power and/or clocks can be removed at any point
265 	 * from this CPU and its cache by platform_cpu_kill().
266 	 */
267 	complete(&cpu_died);
268 
269 	/*
270 	 * Ensure that the cache lines associated with that completion are
271 	 * written out.  This covers the case where _this_ CPU is doing the
272 	 * powering down, to ensure that the completion is visible to the
273 	 * CPU waiting for this one.
274 	 */
275 	flush_cache_louis();
276 
277 	/*
278 	 * The actual CPU shutdown procedure is at least platform (if not
279 	 * CPU) specific.  This may remove power, or it may simply spin.
280 	 *
281 	 * Platforms are generally expected *NOT* to return from this call,
282 	 * although there are some which do because they have no way to
283 	 * power down the CPU.  These platforms are the _only_ reason we
284 	 * have a return path which uses the fragment of assembly below.
285 	 *
286 	 * The return path should not be used for platforms which can
287 	 * power off the CPU.
288 	 */
289 	if (smp_ops.cpu_die)
290 		smp_ops.cpu_die(cpu);
291 
292 	/*
293 	 * Do not return to the idle loop - jump back to the secondary
294 	 * cpu initialisation.  There's some initialisation which needs
295 	 * to be repeated to undo the effects of taking the CPU offline.
296 	 */
297 	__asm__("mov	sp, %0\n"
298 	"	mov	fp, #0\n"
299 	"	b	secondary_start_kernel"
300 		:
301 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
302 }
303 #endif /* CONFIG_HOTPLUG_CPU */
304 
305 /*
306  * Called by both boot and secondaries to move global data into
307  * per-processor storage.
308  */
309 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
310 {
311 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
312 
313 	cpu_info->loops_per_jiffy = loops_per_jiffy;
314 	cpu_info->cpuid = read_cpuid_id();
315 
316 	store_cpu_topology(cpuid);
317 }
318 
319 static void percpu_timer_setup(void);
320 
321 /*
322  * This is the secondary CPU boot entry.  We're using this CPUs
323  * idle thread stack, but a set of temporary page tables.
324  */
325 asmlinkage void __cpuinit secondary_start_kernel(void)
326 {
327 	struct mm_struct *mm = &init_mm;
328 	unsigned int cpu;
329 
330 	/*
331 	 * The identity mapping is uncached (strongly ordered), so
332 	 * switch away from it before attempting any exclusive accesses.
333 	 */
334 	cpu_switch_mm(mm->pgd, mm);
335 	local_flush_bp_all();
336 	enter_lazy_tlb(mm, current);
337 	local_flush_tlb_all();
338 
339 	/*
340 	 * All kernel threads share the same mm context; grab a
341 	 * reference and switch to it.
342 	 */
343 	cpu = smp_processor_id();
344 	atomic_inc(&mm->mm_count);
345 	current->active_mm = mm;
346 	cpumask_set_cpu(cpu, mm_cpumask(mm));
347 
348 	cpu_init();
349 
350 	printk("CPU%u: Booted secondary processor\n", cpu);
351 
352 	preempt_disable();
353 	trace_hardirqs_off();
354 
355 	/*
356 	 * Give the platform a chance to do its own initialisation.
357 	 */
358 	if (smp_ops.smp_secondary_init)
359 		smp_ops.smp_secondary_init(cpu);
360 
361 	notify_cpu_starting(cpu);
362 
363 	calibrate_delay();
364 
365 	smp_store_cpu_info(cpu);
366 
367 	/*
368 	 * OK, now it's safe to let the boot CPU continue.  Wait for
369 	 * the CPU migration code to notice that the CPU is online
370 	 * before we continue - which happens after __cpu_up returns.
371 	 */
372 	set_cpu_online(cpu, true);
373 	complete(&cpu_running);
374 
375 	/*
376 	 * Setup the percpu timer for this CPU.
377 	 */
378 	percpu_timer_setup();
379 
380 	local_irq_enable();
381 	local_fiq_enable();
382 
383 	/*
384 	 * OK, it's off to the idle thread for us
385 	 */
386 	cpu_startup_entry(CPUHP_ONLINE);
387 }
388 
389 void __init smp_cpus_done(unsigned int max_cpus)
390 {
391 	int cpu;
392 	unsigned long bogosum = 0;
393 
394 	for_each_online_cpu(cpu)
395 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
396 
397 	printk(KERN_INFO "SMP: Total of %d processors activated "
398 	       "(%lu.%02lu BogoMIPS).\n",
399 	       num_online_cpus(),
400 	       bogosum / (500000/HZ),
401 	       (bogosum / (5000/HZ)) % 100);
402 
403 	hyp_mode_check();
404 }
405 
406 void __init smp_prepare_boot_cpu(void)
407 {
408 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
409 }
410 
411 void __init smp_prepare_cpus(unsigned int max_cpus)
412 {
413 	unsigned int ncores = num_possible_cpus();
414 
415 	init_cpu_topology();
416 
417 	smp_store_cpu_info(smp_processor_id());
418 
419 	/*
420 	 * are we trying to boot more cores than exist?
421 	 */
422 	if (max_cpus > ncores)
423 		max_cpus = ncores;
424 	if (ncores > 1 && max_cpus) {
425 		/*
426 		 * Enable the local timer or broadcast device for the
427 		 * boot CPU, but only if we have more than one CPU.
428 		 */
429 		percpu_timer_setup();
430 
431 		/*
432 		 * Initialise the present map, which describes the set of CPUs
433 		 * actually populated at the present time. A platform should
434 		 * re-initialize the map in the platforms smp_prepare_cpus()
435 		 * if present != possible (e.g. physical hotplug).
436 		 */
437 		init_cpu_present(cpu_possible_mask);
438 
439 		/*
440 		 * Initialise the SCU if there are more than one CPU
441 		 * and let them know where to start.
442 		 */
443 		if (smp_ops.smp_prepare_cpus)
444 			smp_ops.smp_prepare_cpus(max_cpus);
445 	}
446 }
447 
448 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
449 
450 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
451 {
452 	if (!smp_cross_call)
453 		smp_cross_call = fn;
454 }
455 
456 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
457 {
458 	smp_cross_call(mask, IPI_CALL_FUNC);
459 }
460 
461 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
462 {
463 	smp_cross_call(mask, IPI_WAKEUP);
464 }
465 
466 void arch_send_call_function_single_ipi(int cpu)
467 {
468 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
469 }
470 
471 static const char *ipi_types[NR_IPI] = {
472 #define S(x,s)	[x] = s
473 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
474 	S(IPI_TIMER, "Timer broadcast interrupts"),
475 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
476 	S(IPI_CALL_FUNC, "Function call interrupts"),
477 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
478 	S(IPI_CPU_STOP, "CPU stop interrupts"),
479 };
480 
481 void show_ipi_list(struct seq_file *p, int prec)
482 {
483 	unsigned int cpu, i;
484 
485 	for (i = 0; i < NR_IPI; i++) {
486 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
487 
488 		for_each_online_cpu(cpu)
489 			seq_printf(p, "%10u ",
490 				   __get_irq_stat(cpu, ipi_irqs[i]));
491 
492 		seq_printf(p, " %s\n", ipi_types[i]);
493 	}
494 }
495 
496 u64 smp_irq_stat_cpu(unsigned int cpu)
497 {
498 	u64 sum = 0;
499 	int i;
500 
501 	for (i = 0; i < NR_IPI; i++)
502 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
503 
504 	return sum;
505 }
506 
507 /*
508  * Timer (local or broadcast) support
509  */
510 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
511 
512 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
513 void tick_broadcast(const struct cpumask *mask)
514 {
515 	smp_cross_call(mask, IPI_TIMER);
516 }
517 #endif
518 
519 static void broadcast_timer_set_mode(enum clock_event_mode mode,
520 	struct clock_event_device *evt)
521 {
522 }
523 
524 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
525 {
526 	evt->name	= "dummy_timer";
527 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
528 			  CLOCK_EVT_FEAT_PERIODIC |
529 			  CLOCK_EVT_FEAT_DUMMY;
530 	evt->rating	= 100;
531 	evt->mult	= 1;
532 	evt->set_mode	= broadcast_timer_set_mode;
533 
534 	clockevents_register_device(evt);
535 }
536 
537 static struct local_timer_ops *lt_ops;
538 
539 #ifdef CONFIG_LOCAL_TIMERS
540 int local_timer_register(struct local_timer_ops *ops)
541 {
542 	if (!is_smp() || !setup_max_cpus)
543 		return -ENXIO;
544 
545 	if (lt_ops)
546 		return -EBUSY;
547 
548 	lt_ops = ops;
549 	return 0;
550 }
551 #endif
552 
553 static void __cpuinit percpu_timer_setup(void)
554 {
555 	unsigned int cpu = smp_processor_id();
556 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
557 
558 	evt->cpumask = cpumask_of(cpu);
559 
560 	if (!lt_ops || lt_ops->setup(evt))
561 		broadcast_timer_setup(evt);
562 }
563 
564 #ifdef CONFIG_HOTPLUG_CPU
565 /*
566  * The generic clock events code purposely does not stop the local timer
567  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
568  * manually here.
569  */
570 static void percpu_timer_stop(void)
571 {
572 	unsigned int cpu = smp_processor_id();
573 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
574 
575 	if (lt_ops)
576 		lt_ops->stop(evt);
577 }
578 #endif
579 
580 static DEFINE_RAW_SPINLOCK(stop_lock);
581 
582 /*
583  * ipi_cpu_stop - handle IPI from smp_send_stop()
584  */
585 static void ipi_cpu_stop(unsigned int cpu)
586 {
587 	if (system_state == SYSTEM_BOOTING ||
588 	    system_state == SYSTEM_RUNNING) {
589 		raw_spin_lock(&stop_lock);
590 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
591 		dump_stack();
592 		raw_spin_unlock(&stop_lock);
593 	}
594 
595 	set_cpu_online(cpu, false);
596 
597 	local_fiq_disable();
598 	local_irq_disable();
599 
600 	while (1)
601 		cpu_relax();
602 }
603 
604 /*
605  * Main handler for inter-processor interrupts
606  */
607 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
608 {
609 	handle_IPI(ipinr, regs);
610 }
611 
612 void handle_IPI(int ipinr, struct pt_regs *regs)
613 {
614 	unsigned int cpu = smp_processor_id();
615 	struct pt_regs *old_regs = set_irq_regs(regs);
616 
617 	if (ipinr < NR_IPI)
618 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
619 
620 	switch (ipinr) {
621 	case IPI_WAKEUP:
622 		break;
623 
624 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
625 	case IPI_TIMER:
626 		irq_enter();
627 		tick_receive_broadcast();
628 		irq_exit();
629 		break;
630 #endif
631 
632 	case IPI_RESCHEDULE:
633 		scheduler_ipi();
634 		break;
635 
636 	case IPI_CALL_FUNC:
637 		irq_enter();
638 		generic_smp_call_function_interrupt();
639 		irq_exit();
640 		break;
641 
642 	case IPI_CALL_FUNC_SINGLE:
643 		irq_enter();
644 		generic_smp_call_function_single_interrupt();
645 		irq_exit();
646 		break;
647 
648 	case IPI_CPU_STOP:
649 		irq_enter();
650 		ipi_cpu_stop(cpu);
651 		irq_exit();
652 		break;
653 
654 	default:
655 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
656 		       cpu, ipinr);
657 		break;
658 	}
659 	set_irq_regs(old_regs);
660 }
661 
662 void smp_send_reschedule(int cpu)
663 {
664 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
665 }
666 
667 void smp_send_stop(void)
668 {
669 	unsigned long timeout;
670 	struct cpumask mask;
671 
672 	cpumask_copy(&mask, cpu_online_mask);
673 	cpumask_clear_cpu(smp_processor_id(), &mask);
674 	if (!cpumask_empty(&mask))
675 		smp_cross_call(&mask, IPI_CPU_STOP);
676 
677 	/* Wait up to one second for other CPUs to stop */
678 	timeout = USEC_PER_SEC;
679 	while (num_online_cpus() > 1 && timeout--)
680 		udelay(1);
681 
682 	if (num_online_cpus() > 1)
683 		pr_warning("SMP: failed to stop secondary CPUs\n");
684 }
685 
686 /*
687  * not supported here
688  */
689 int setup_profiling_timer(unsigned int multiplier)
690 {
691 	return -EINVAL;
692 }
693 
694 #ifdef CONFIG_CPU_FREQ
695 
696 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
697 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
698 static unsigned long global_l_p_j_ref;
699 static unsigned long global_l_p_j_ref_freq;
700 
701 static int cpufreq_callback(struct notifier_block *nb,
702 					unsigned long val, void *data)
703 {
704 	struct cpufreq_freqs *freq = data;
705 	int cpu = freq->cpu;
706 
707 	if (freq->flags & CPUFREQ_CONST_LOOPS)
708 		return NOTIFY_OK;
709 
710 	if (!per_cpu(l_p_j_ref, cpu)) {
711 		per_cpu(l_p_j_ref, cpu) =
712 			per_cpu(cpu_data, cpu).loops_per_jiffy;
713 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
714 		if (!global_l_p_j_ref) {
715 			global_l_p_j_ref = loops_per_jiffy;
716 			global_l_p_j_ref_freq = freq->old;
717 		}
718 	}
719 
720 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
721 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
722 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
723 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
724 						global_l_p_j_ref_freq,
725 						freq->new);
726 		per_cpu(cpu_data, cpu).loops_per_jiffy =
727 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
728 					per_cpu(l_p_j_ref_freq, cpu),
729 					freq->new);
730 	}
731 	return NOTIFY_OK;
732 }
733 
734 static struct notifier_block cpufreq_notifier = {
735 	.notifier_call  = cpufreq_callback,
736 };
737 
738 static int __init register_cpufreq_notifier(void)
739 {
740 	return cpufreq_register_notifier(&cpufreq_notifier,
741 						CPUFREQ_TRANSITION_NOTIFIER);
742 }
743 core_initcall(register_cpufreq_notifier);
744 
745 #endif
746