xref: /linux/arch/arm/kernel/smp.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
32 
33 #include <linux/atomic.h>
34 #include <asm/smp.h>
35 #include <asm/cacheflush.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 #include <asm/idmap.h>
40 #include <asm/topology.h>
41 #include <asm/mmu_context.h>
42 #include <asm/pgtable.h>
43 #include <asm/pgalloc.h>
44 #include <asm/processor.h>
45 #include <asm/sections.h>
46 #include <asm/tlbflush.h>
47 #include <asm/ptrace.h>
48 #include <asm/smp_plat.h>
49 #include <asm/virt.h>
50 #include <asm/mach/arch.h>
51 #include <asm/mpu.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ipi.h>
55 
56 /*
57  * as from 2.5, kernels no longer have an init_tasks structure
58  * so we need some other way of telling a new secondary core
59  * where to place its SVC stack
60  */
61 struct secondary_data secondary_data;
62 
63 /*
64  * control for which core is the next to come out of the secondary
65  * boot "holding pen"
66  */
67 volatile int pen_release = -1;
68 
69 enum ipi_msg_type {
70 	IPI_WAKEUP,
71 	IPI_TIMER,
72 	IPI_RESCHEDULE,
73 	IPI_CALL_FUNC,
74 	IPI_CPU_STOP,
75 	IPI_IRQ_WORK,
76 	IPI_COMPLETION,
77 	IPI_CPU_BACKTRACE,
78 	/*
79 	 * SGI8-15 can be reserved by secure firmware, and thus may
80 	 * not be usable by the kernel. Please keep the above limited
81 	 * to at most 8 entries.
82 	 */
83 };
84 
85 static DECLARE_COMPLETION(cpu_running);
86 
87 static struct smp_operations smp_ops __ro_after_init;
88 
89 void __init smp_set_ops(const struct smp_operations *ops)
90 {
91 	if (ops)
92 		smp_ops = *ops;
93 };
94 
95 static unsigned long get_arch_pgd(pgd_t *pgd)
96 {
97 #ifdef CONFIG_ARM_LPAE
98 	return __phys_to_pfn(virt_to_phys(pgd));
99 #else
100 	return virt_to_phys(pgd);
101 #endif
102 }
103 
104 int __cpu_up(unsigned int cpu, struct task_struct *idle)
105 {
106 	int ret;
107 
108 	if (!smp_ops.smp_boot_secondary)
109 		return -ENOSYS;
110 
111 	/*
112 	 * We need to tell the secondary core where to find
113 	 * its stack and the page tables.
114 	 */
115 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
116 #ifdef CONFIG_ARM_MPU
117 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
118 #endif
119 
120 #ifdef CONFIG_MMU
121 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
122 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
123 #endif
124 	sync_cache_w(&secondary_data);
125 
126 	/*
127 	 * Now bring the CPU into our world.
128 	 */
129 	ret = smp_ops.smp_boot_secondary(cpu, idle);
130 	if (ret == 0) {
131 		/*
132 		 * CPU was successfully started, wait for it
133 		 * to come online or time out.
134 		 */
135 		wait_for_completion_timeout(&cpu_running,
136 						 msecs_to_jiffies(1000));
137 
138 		if (!cpu_online(cpu)) {
139 			pr_crit("CPU%u: failed to come online\n", cpu);
140 			ret = -EIO;
141 		}
142 	} else {
143 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
144 	}
145 
146 
147 	memset(&secondary_data, 0, sizeof(secondary_data));
148 	return ret;
149 }
150 
151 /* platform specific SMP operations */
152 void __init smp_init_cpus(void)
153 {
154 	if (smp_ops.smp_init_cpus)
155 		smp_ops.smp_init_cpus();
156 }
157 
158 int platform_can_secondary_boot(void)
159 {
160 	return !!smp_ops.smp_boot_secondary;
161 }
162 
163 int platform_can_cpu_hotplug(void)
164 {
165 #ifdef CONFIG_HOTPLUG_CPU
166 	if (smp_ops.cpu_kill)
167 		return 1;
168 #endif
169 
170 	return 0;
171 }
172 
173 #ifdef CONFIG_HOTPLUG_CPU
174 static int platform_cpu_kill(unsigned int cpu)
175 {
176 	if (smp_ops.cpu_kill)
177 		return smp_ops.cpu_kill(cpu);
178 	return 1;
179 }
180 
181 static int platform_cpu_disable(unsigned int cpu)
182 {
183 	if (smp_ops.cpu_disable)
184 		return smp_ops.cpu_disable(cpu);
185 
186 	return 0;
187 }
188 
189 int platform_can_hotplug_cpu(unsigned int cpu)
190 {
191 	/* cpu_die must be specified to support hotplug */
192 	if (!smp_ops.cpu_die)
193 		return 0;
194 
195 	if (smp_ops.cpu_can_disable)
196 		return smp_ops.cpu_can_disable(cpu);
197 
198 	/*
199 	 * By default, allow disabling all CPUs except the first one,
200 	 * since this is special on a lot of platforms, e.g. because
201 	 * of clock tick interrupts.
202 	 */
203 	return cpu != 0;
204 }
205 
206 /*
207  * __cpu_disable runs on the processor to be shutdown.
208  */
209 int __cpu_disable(void)
210 {
211 	unsigned int cpu = smp_processor_id();
212 	int ret;
213 
214 	ret = platform_cpu_disable(cpu);
215 	if (ret)
216 		return ret;
217 
218 	/*
219 	 * Take this CPU offline.  Once we clear this, we can't return,
220 	 * and we must not schedule until we're ready to give up the cpu.
221 	 */
222 	set_cpu_online(cpu, false);
223 
224 	/*
225 	 * OK - migrate IRQs away from this CPU
226 	 */
227 	migrate_irqs();
228 
229 	/*
230 	 * Flush user cache and TLB mappings, and then remove this CPU
231 	 * from the vm mask set of all processes.
232 	 *
233 	 * Caches are flushed to the Level of Unification Inner Shareable
234 	 * to write-back dirty lines to unified caches shared by all CPUs.
235 	 */
236 	flush_cache_louis();
237 	local_flush_tlb_all();
238 
239 	clear_tasks_mm_cpumask(cpu);
240 
241 	return 0;
242 }
243 
244 static DECLARE_COMPLETION(cpu_died);
245 
246 /*
247  * called on the thread which is asking for a CPU to be shutdown -
248  * waits until shutdown has completed, or it is timed out.
249  */
250 void __cpu_die(unsigned int cpu)
251 {
252 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
253 		pr_err("CPU%u: cpu didn't die\n", cpu);
254 		return;
255 	}
256 	pr_debug("CPU%u: shutdown\n", cpu);
257 
258 	/*
259 	 * platform_cpu_kill() is generally expected to do the powering off
260 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
261 	 * be done by the CPU which is dying in preference to supporting
262 	 * this call, but that means there is _no_ synchronisation between
263 	 * the requesting CPU and the dying CPU actually losing power.
264 	 */
265 	if (!platform_cpu_kill(cpu))
266 		pr_err("CPU%u: unable to kill\n", cpu);
267 }
268 
269 /*
270  * Called from the idle thread for the CPU which has been shutdown.
271  *
272  * Note that we disable IRQs here, but do not re-enable them
273  * before returning to the caller. This is also the behaviour
274  * of the other hotplug-cpu capable cores, so presumably coming
275  * out of idle fixes this.
276  */
277 void arch_cpu_idle_dead(void)
278 {
279 	unsigned int cpu = smp_processor_id();
280 
281 	idle_task_exit();
282 
283 	local_irq_disable();
284 
285 	/*
286 	 * Flush the data out of the L1 cache for this CPU.  This must be
287 	 * before the completion to ensure that data is safely written out
288 	 * before platform_cpu_kill() gets called - which may disable
289 	 * *this* CPU and power down its cache.
290 	 */
291 	flush_cache_louis();
292 
293 	/*
294 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
295 	 * this returns, power and/or clocks can be removed at any point
296 	 * from this CPU and its cache by platform_cpu_kill().
297 	 */
298 	complete(&cpu_died);
299 
300 	/*
301 	 * Ensure that the cache lines associated with that completion are
302 	 * written out.  This covers the case where _this_ CPU is doing the
303 	 * powering down, to ensure that the completion is visible to the
304 	 * CPU waiting for this one.
305 	 */
306 	flush_cache_louis();
307 
308 	/*
309 	 * The actual CPU shutdown procedure is at least platform (if not
310 	 * CPU) specific.  This may remove power, or it may simply spin.
311 	 *
312 	 * Platforms are generally expected *NOT* to return from this call,
313 	 * although there are some which do because they have no way to
314 	 * power down the CPU.  These platforms are the _only_ reason we
315 	 * have a return path which uses the fragment of assembly below.
316 	 *
317 	 * The return path should not be used for platforms which can
318 	 * power off the CPU.
319 	 */
320 	if (smp_ops.cpu_die)
321 		smp_ops.cpu_die(cpu);
322 
323 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
324 		cpu);
325 
326 	/*
327 	 * Do not return to the idle loop - jump back to the secondary
328 	 * cpu initialisation.  There's some initialisation which needs
329 	 * to be repeated to undo the effects of taking the CPU offline.
330 	 */
331 	__asm__("mov	sp, %0\n"
332 	"	mov	fp, #0\n"
333 	"	b	secondary_start_kernel"
334 		:
335 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
336 }
337 #endif /* CONFIG_HOTPLUG_CPU */
338 
339 /*
340  * Called by both boot and secondaries to move global data into
341  * per-processor storage.
342  */
343 static void smp_store_cpu_info(unsigned int cpuid)
344 {
345 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
346 
347 	cpu_info->loops_per_jiffy = loops_per_jiffy;
348 	cpu_info->cpuid = read_cpuid_id();
349 
350 	store_cpu_topology(cpuid);
351 }
352 
353 /*
354  * This is the secondary CPU boot entry.  We're using this CPUs
355  * idle thread stack, but a set of temporary page tables.
356  */
357 asmlinkage void secondary_start_kernel(void)
358 {
359 	struct mm_struct *mm = &init_mm;
360 	unsigned int cpu;
361 
362 	/*
363 	 * The identity mapping is uncached (strongly ordered), so
364 	 * switch away from it before attempting any exclusive accesses.
365 	 */
366 	cpu_switch_mm(mm->pgd, mm);
367 	local_flush_bp_all();
368 	enter_lazy_tlb(mm, current);
369 	local_flush_tlb_all();
370 
371 	/*
372 	 * All kernel threads share the same mm context; grab a
373 	 * reference and switch to it.
374 	 */
375 	cpu = smp_processor_id();
376 	mmgrab(mm);
377 	current->active_mm = mm;
378 	cpumask_set_cpu(cpu, mm_cpumask(mm));
379 
380 	cpu_init();
381 
382 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
383 
384 	preempt_disable();
385 	trace_hardirqs_off();
386 
387 	/*
388 	 * Give the platform a chance to do its own initialisation.
389 	 */
390 	if (smp_ops.smp_secondary_init)
391 		smp_ops.smp_secondary_init(cpu);
392 
393 	notify_cpu_starting(cpu);
394 
395 	calibrate_delay();
396 
397 	smp_store_cpu_info(cpu);
398 
399 	/*
400 	 * OK, now it's safe to let the boot CPU continue.  Wait for
401 	 * the CPU migration code to notice that the CPU is online
402 	 * before we continue - which happens after __cpu_up returns.
403 	 */
404 	set_cpu_online(cpu, true);
405 	complete(&cpu_running);
406 
407 	local_irq_enable();
408 	local_fiq_enable();
409 	local_abt_enable();
410 
411 	/*
412 	 * OK, it's off to the idle thread for us
413 	 */
414 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
415 }
416 
417 void __init smp_cpus_done(unsigned int max_cpus)
418 {
419 	int cpu;
420 	unsigned long bogosum = 0;
421 
422 	for_each_online_cpu(cpu)
423 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
424 
425 	printk(KERN_INFO "SMP: Total of %d processors activated "
426 	       "(%lu.%02lu BogoMIPS).\n",
427 	       num_online_cpus(),
428 	       bogosum / (500000/HZ),
429 	       (bogosum / (5000/HZ)) % 100);
430 
431 	hyp_mode_check();
432 }
433 
434 void __init smp_prepare_boot_cpu(void)
435 {
436 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
437 }
438 
439 void __init smp_prepare_cpus(unsigned int max_cpus)
440 {
441 	unsigned int ncores = num_possible_cpus();
442 
443 	init_cpu_topology();
444 
445 	smp_store_cpu_info(smp_processor_id());
446 
447 	/*
448 	 * are we trying to boot more cores than exist?
449 	 */
450 	if (max_cpus > ncores)
451 		max_cpus = ncores;
452 	if (ncores > 1 && max_cpus) {
453 		/*
454 		 * Initialise the present map, which describes the set of CPUs
455 		 * actually populated at the present time. A platform should
456 		 * re-initialize the map in the platforms smp_prepare_cpus()
457 		 * if present != possible (e.g. physical hotplug).
458 		 */
459 		init_cpu_present(cpu_possible_mask);
460 
461 		/*
462 		 * Initialise the SCU if there are more than one CPU
463 		 * and let them know where to start.
464 		 */
465 		if (smp_ops.smp_prepare_cpus)
466 			smp_ops.smp_prepare_cpus(max_cpus);
467 	}
468 }
469 
470 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
471 
472 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
473 {
474 	if (!__smp_cross_call)
475 		__smp_cross_call = fn;
476 }
477 
478 static const char *ipi_types[NR_IPI] __tracepoint_string = {
479 #define S(x,s)	[x] = s
480 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
481 	S(IPI_TIMER, "Timer broadcast interrupts"),
482 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
483 	S(IPI_CALL_FUNC, "Function call interrupts"),
484 	S(IPI_CPU_STOP, "CPU stop interrupts"),
485 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
486 	S(IPI_COMPLETION, "completion interrupts"),
487 };
488 
489 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
490 {
491 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
492 	__smp_cross_call(target, ipinr);
493 }
494 
495 void show_ipi_list(struct seq_file *p, int prec)
496 {
497 	unsigned int cpu, i;
498 
499 	for (i = 0; i < NR_IPI; i++) {
500 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
501 
502 		for_each_online_cpu(cpu)
503 			seq_printf(p, "%10u ",
504 				   __get_irq_stat(cpu, ipi_irqs[i]));
505 
506 		seq_printf(p, " %s\n", ipi_types[i]);
507 	}
508 }
509 
510 u64 smp_irq_stat_cpu(unsigned int cpu)
511 {
512 	u64 sum = 0;
513 	int i;
514 
515 	for (i = 0; i < NR_IPI; i++)
516 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
517 
518 	return sum;
519 }
520 
521 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
522 {
523 	smp_cross_call(mask, IPI_CALL_FUNC);
524 }
525 
526 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
527 {
528 	smp_cross_call(mask, IPI_WAKEUP);
529 }
530 
531 void arch_send_call_function_single_ipi(int cpu)
532 {
533 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
534 }
535 
536 #ifdef CONFIG_IRQ_WORK
537 void arch_irq_work_raise(void)
538 {
539 	if (arch_irq_work_has_interrupt())
540 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
541 }
542 #endif
543 
544 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
545 void tick_broadcast(const struct cpumask *mask)
546 {
547 	smp_cross_call(mask, IPI_TIMER);
548 }
549 #endif
550 
551 static DEFINE_RAW_SPINLOCK(stop_lock);
552 
553 /*
554  * ipi_cpu_stop - handle IPI from smp_send_stop()
555  */
556 static void ipi_cpu_stop(unsigned int cpu)
557 {
558 	if (system_state <= SYSTEM_RUNNING) {
559 		raw_spin_lock(&stop_lock);
560 		pr_crit("CPU%u: stopping\n", cpu);
561 		dump_stack();
562 		raw_spin_unlock(&stop_lock);
563 	}
564 
565 	set_cpu_online(cpu, false);
566 
567 	local_fiq_disable();
568 	local_irq_disable();
569 
570 	while (1)
571 		cpu_relax();
572 }
573 
574 static DEFINE_PER_CPU(struct completion *, cpu_completion);
575 
576 int register_ipi_completion(struct completion *completion, int cpu)
577 {
578 	per_cpu(cpu_completion, cpu) = completion;
579 	return IPI_COMPLETION;
580 }
581 
582 static void ipi_complete(unsigned int cpu)
583 {
584 	complete(per_cpu(cpu_completion, cpu));
585 }
586 
587 /*
588  * Main handler for inter-processor interrupts
589  */
590 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
591 {
592 	handle_IPI(ipinr, regs);
593 }
594 
595 void handle_IPI(int ipinr, struct pt_regs *regs)
596 {
597 	unsigned int cpu = smp_processor_id();
598 	struct pt_regs *old_regs = set_irq_regs(regs);
599 
600 	if ((unsigned)ipinr < NR_IPI) {
601 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
602 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
603 	}
604 
605 	switch (ipinr) {
606 	case IPI_WAKEUP:
607 		break;
608 
609 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
610 	case IPI_TIMER:
611 		irq_enter();
612 		tick_receive_broadcast();
613 		irq_exit();
614 		break;
615 #endif
616 
617 	case IPI_RESCHEDULE:
618 		scheduler_ipi();
619 		break;
620 
621 	case IPI_CALL_FUNC:
622 		irq_enter();
623 		generic_smp_call_function_interrupt();
624 		irq_exit();
625 		break;
626 
627 	case IPI_CPU_STOP:
628 		irq_enter();
629 		ipi_cpu_stop(cpu);
630 		irq_exit();
631 		break;
632 
633 #ifdef CONFIG_IRQ_WORK
634 	case IPI_IRQ_WORK:
635 		irq_enter();
636 		irq_work_run();
637 		irq_exit();
638 		break;
639 #endif
640 
641 	case IPI_COMPLETION:
642 		irq_enter();
643 		ipi_complete(cpu);
644 		irq_exit();
645 		break;
646 
647 	case IPI_CPU_BACKTRACE:
648 		printk_nmi_enter();
649 		irq_enter();
650 		nmi_cpu_backtrace(regs);
651 		irq_exit();
652 		printk_nmi_exit();
653 		break;
654 
655 	default:
656 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
657 		        cpu, ipinr);
658 		break;
659 	}
660 
661 	if ((unsigned)ipinr < NR_IPI)
662 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
663 	set_irq_regs(old_regs);
664 }
665 
666 void smp_send_reschedule(int cpu)
667 {
668 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
669 }
670 
671 void smp_send_stop(void)
672 {
673 	unsigned long timeout;
674 	struct cpumask mask;
675 
676 	cpumask_copy(&mask, cpu_online_mask);
677 	cpumask_clear_cpu(smp_processor_id(), &mask);
678 	if (!cpumask_empty(&mask))
679 		smp_cross_call(&mask, IPI_CPU_STOP);
680 
681 	/* Wait up to one second for other CPUs to stop */
682 	timeout = USEC_PER_SEC;
683 	while (num_online_cpus() > 1 && timeout--)
684 		udelay(1);
685 
686 	if (num_online_cpus() > 1)
687 		pr_warn("SMP: failed to stop secondary CPUs\n");
688 }
689 
690 /*
691  * not supported here
692  */
693 int setup_profiling_timer(unsigned int multiplier)
694 {
695 	return -EINVAL;
696 }
697 
698 #ifdef CONFIG_CPU_FREQ
699 
700 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
701 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
702 static unsigned long global_l_p_j_ref;
703 static unsigned long global_l_p_j_ref_freq;
704 
705 static int cpufreq_callback(struct notifier_block *nb,
706 					unsigned long val, void *data)
707 {
708 	struct cpufreq_freqs *freq = data;
709 	int cpu = freq->cpu;
710 
711 	if (freq->flags & CPUFREQ_CONST_LOOPS)
712 		return NOTIFY_OK;
713 
714 	if (!per_cpu(l_p_j_ref, cpu)) {
715 		per_cpu(l_p_j_ref, cpu) =
716 			per_cpu(cpu_data, cpu).loops_per_jiffy;
717 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
718 		if (!global_l_p_j_ref) {
719 			global_l_p_j_ref = loops_per_jiffy;
720 			global_l_p_j_ref_freq = freq->old;
721 		}
722 	}
723 
724 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
725 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
726 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
727 						global_l_p_j_ref_freq,
728 						freq->new);
729 		per_cpu(cpu_data, cpu).loops_per_jiffy =
730 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
731 					per_cpu(l_p_j_ref_freq, cpu),
732 					freq->new);
733 	}
734 	return NOTIFY_OK;
735 }
736 
737 static struct notifier_block cpufreq_notifier = {
738 	.notifier_call  = cpufreq_callback,
739 };
740 
741 static int __init register_cpufreq_notifier(void)
742 {
743 	return cpufreq_register_notifier(&cpufreq_notifier,
744 						CPUFREQ_TRANSITION_NOTIFIER);
745 }
746 core_initcall(register_cpufreq_notifier);
747 
748 #endif
749 
750 static void raise_nmi(cpumask_t *mask)
751 {
752 	smp_cross_call(mask, IPI_CPU_BACKTRACE);
753 }
754 
755 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
756 {
757 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
758 }
759