1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/smp.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/exception.h> 35 #include <asm/idmap.h> 36 #include <asm/topology.h> 37 #include <asm/mmu_context.h> 38 #include <asm/pgtable.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sections.h> 42 #include <asm/tlbflush.h> 43 #include <asm/ptrace.h> 44 #include <asm/localtimer.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 49 /* 50 * as from 2.5, kernels no longer have an init_tasks structure 51 * so we need some other way of telling a new secondary core 52 * where to place its SVC stack 53 */ 54 struct secondary_data secondary_data; 55 56 /* 57 * control for which core is the next to come out of the secondary 58 * boot "holding pen" 59 */ 60 volatile int __cpuinitdata pen_release = -1; 61 62 enum ipi_msg_type { 63 IPI_WAKEUP, 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CALL_FUNC_SINGLE, 68 IPI_CPU_STOP, 69 }; 70 71 static DECLARE_COMPLETION(cpu_running); 72 73 static struct smp_operations smp_ops; 74 75 void __init smp_set_ops(struct smp_operations *ops) 76 { 77 if (ops) 78 smp_ops = *ops; 79 }; 80 81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) 82 { 83 int ret; 84 85 /* 86 * We need to tell the secondary core where to find 87 * its stack and the page tables. 88 */ 89 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 90 secondary_data.pgdir = virt_to_phys(idmap_pgd); 91 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir); 92 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 93 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 94 95 /* 96 * Now bring the CPU into our world. 97 */ 98 ret = boot_secondary(cpu, idle); 99 if (ret == 0) { 100 /* 101 * CPU was successfully started, wait for it 102 * to come online or time out. 103 */ 104 wait_for_completion_timeout(&cpu_running, 105 msecs_to_jiffies(1000)); 106 107 if (!cpu_online(cpu)) { 108 pr_crit("CPU%u: failed to come online\n", cpu); 109 ret = -EIO; 110 } 111 } else { 112 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 113 } 114 115 secondary_data.stack = NULL; 116 secondary_data.pgdir = 0; 117 118 return ret; 119 } 120 121 /* platform specific SMP operations */ 122 void __init smp_init_cpus(void) 123 { 124 if (smp_ops.smp_init_cpus) 125 smp_ops.smp_init_cpus(); 126 } 127 128 static void __init platform_smp_prepare_cpus(unsigned int max_cpus) 129 { 130 if (smp_ops.smp_prepare_cpus) 131 smp_ops.smp_prepare_cpus(max_cpus); 132 } 133 134 static void __cpuinit platform_secondary_init(unsigned int cpu) 135 { 136 if (smp_ops.smp_secondary_init) 137 smp_ops.smp_secondary_init(cpu); 138 } 139 140 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) 141 { 142 if (smp_ops.smp_boot_secondary) 143 return smp_ops.smp_boot_secondary(cpu, idle); 144 return -ENOSYS; 145 } 146 147 #ifdef CONFIG_HOTPLUG_CPU 148 static void percpu_timer_stop(void); 149 150 static int platform_cpu_kill(unsigned int cpu) 151 { 152 if (smp_ops.cpu_kill) 153 return smp_ops.cpu_kill(cpu); 154 return 1; 155 } 156 157 static void platform_cpu_die(unsigned int cpu) 158 { 159 if (smp_ops.cpu_die) 160 smp_ops.cpu_die(cpu); 161 } 162 163 static int platform_cpu_disable(unsigned int cpu) 164 { 165 if (smp_ops.cpu_disable) 166 return smp_ops.cpu_disable(cpu); 167 168 /* 169 * By default, allow disabling all CPUs except the first one, 170 * since this is special on a lot of platforms, e.g. because 171 * of clock tick interrupts. 172 */ 173 return cpu == 0 ? -EPERM : 0; 174 } 175 /* 176 * __cpu_disable runs on the processor to be shutdown. 177 */ 178 int __cpuinit __cpu_disable(void) 179 { 180 unsigned int cpu = smp_processor_id(); 181 int ret; 182 183 ret = platform_cpu_disable(cpu); 184 if (ret) 185 return ret; 186 187 /* 188 * Take this CPU offline. Once we clear this, we can't return, 189 * and we must not schedule until we're ready to give up the cpu. 190 */ 191 set_cpu_online(cpu, false); 192 193 /* 194 * OK - migrate IRQs away from this CPU 195 */ 196 migrate_irqs(); 197 198 /* 199 * Stop the local timer for this CPU. 200 */ 201 percpu_timer_stop(); 202 203 /* 204 * Flush user cache and TLB mappings, and then remove this CPU 205 * from the vm mask set of all processes. 206 * 207 * Caches are flushed to the Level of Unification Inner Shareable 208 * to write-back dirty lines to unified caches shared by all CPUs. 209 */ 210 flush_cache_louis(); 211 local_flush_tlb_all(); 212 213 clear_tasks_mm_cpumask(cpu); 214 215 return 0; 216 } 217 218 static DECLARE_COMPLETION(cpu_died); 219 220 /* 221 * called on the thread which is asking for a CPU to be shutdown - 222 * waits until shutdown has completed, or it is timed out. 223 */ 224 void __cpuinit __cpu_die(unsigned int cpu) 225 { 226 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 227 pr_err("CPU%u: cpu didn't die\n", cpu); 228 return; 229 } 230 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 231 232 if (!platform_cpu_kill(cpu)) 233 printk("CPU%u: unable to kill\n", cpu); 234 } 235 236 /* 237 * Called from the idle thread for the CPU which has been shutdown. 238 * 239 * Note that we disable IRQs here, but do not re-enable them 240 * before returning to the caller. This is also the behaviour 241 * of the other hotplug-cpu capable cores, so presumably coming 242 * out of idle fixes this. 243 */ 244 void __ref cpu_die(void) 245 { 246 unsigned int cpu = smp_processor_id(); 247 248 idle_task_exit(); 249 250 local_irq_disable(); 251 mb(); 252 253 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 254 RCU_NONIDLE(complete(&cpu_died)); 255 256 /* 257 * actual CPU shutdown procedure is at least platform (if not 258 * CPU) specific. 259 */ 260 platform_cpu_die(cpu); 261 262 /* 263 * Do not return to the idle loop - jump back to the secondary 264 * cpu initialisation. There's some initialisation which needs 265 * to be repeated to undo the effects of taking the CPU offline. 266 */ 267 __asm__("mov sp, %0\n" 268 " mov fp, #0\n" 269 " b secondary_start_kernel" 270 : 271 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 272 } 273 #endif /* CONFIG_HOTPLUG_CPU */ 274 275 /* 276 * Called by both boot and secondaries to move global data into 277 * per-processor storage. 278 */ 279 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 280 { 281 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 282 283 cpu_info->loops_per_jiffy = loops_per_jiffy; 284 285 store_cpu_topology(cpuid); 286 } 287 288 static void percpu_timer_setup(void); 289 290 /* 291 * This is the secondary CPU boot entry. We're using this CPUs 292 * idle thread stack, but a set of temporary page tables. 293 */ 294 asmlinkage void __cpuinit secondary_start_kernel(void) 295 { 296 struct mm_struct *mm = &init_mm; 297 unsigned int cpu; 298 299 /* 300 * The identity mapping is uncached (strongly ordered), so 301 * switch away from it before attempting any exclusive accesses. 302 */ 303 cpu_switch_mm(mm->pgd, mm); 304 enter_lazy_tlb(mm, current); 305 local_flush_tlb_all(); 306 307 /* 308 * All kernel threads share the same mm context; grab a 309 * reference and switch to it. 310 */ 311 cpu = smp_processor_id(); 312 atomic_inc(&mm->mm_count); 313 current->active_mm = mm; 314 cpumask_set_cpu(cpu, mm_cpumask(mm)); 315 316 printk("CPU%u: Booted secondary processor\n", cpu); 317 318 cpu_init(); 319 preempt_disable(); 320 trace_hardirqs_off(); 321 322 /* 323 * Give the platform a chance to do its own initialisation. 324 */ 325 platform_secondary_init(cpu); 326 327 notify_cpu_starting(cpu); 328 329 calibrate_delay(); 330 331 smp_store_cpu_info(cpu); 332 333 /* 334 * OK, now it's safe to let the boot CPU continue. Wait for 335 * the CPU migration code to notice that the CPU is online 336 * before we continue - which happens after __cpu_up returns. 337 */ 338 set_cpu_online(cpu, true); 339 complete(&cpu_running); 340 341 /* 342 * Setup the percpu timer for this CPU. 343 */ 344 percpu_timer_setup(); 345 346 local_irq_enable(); 347 local_fiq_enable(); 348 349 /* 350 * OK, it's off to the idle thread for us 351 */ 352 cpu_idle(); 353 } 354 355 void __init smp_cpus_done(unsigned int max_cpus) 356 { 357 int cpu; 358 unsigned long bogosum = 0; 359 360 for_each_online_cpu(cpu) 361 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 362 363 printk(KERN_INFO "SMP: Total of %d processors activated " 364 "(%lu.%02lu BogoMIPS).\n", 365 num_online_cpus(), 366 bogosum / (500000/HZ), 367 (bogosum / (5000/HZ)) % 100); 368 369 hyp_mode_check(); 370 } 371 372 void __init smp_prepare_boot_cpu(void) 373 { 374 } 375 376 void __init smp_prepare_cpus(unsigned int max_cpus) 377 { 378 unsigned int ncores = num_possible_cpus(); 379 380 init_cpu_topology(); 381 382 smp_store_cpu_info(smp_processor_id()); 383 384 /* 385 * are we trying to boot more cores than exist? 386 */ 387 if (max_cpus > ncores) 388 max_cpus = ncores; 389 if (ncores > 1 && max_cpus) { 390 /* 391 * Enable the local timer or broadcast device for the 392 * boot CPU, but only if we have more than one CPU. 393 */ 394 percpu_timer_setup(); 395 396 /* 397 * Initialise the present map, which describes the set of CPUs 398 * actually populated at the present time. A platform should 399 * re-initialize the map in platform_smp_prepare_cpus() if 400 * present != possible (e.g. physical hotplug). 401 */ 402 init_cpu_present(cpu_possible_mask); 403 404 /* 405 * Initialise the SCU if there are more than one CPU 406 * and let them know where to start. 407 */ 408 platform_smp_prepare_cpus(max_cpus); 409 } 410 } 411 412 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 413 414 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 415 { 416 smp_cross_call = fn; 417 } 418 419 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 420 { 421 smp_cross_call(mask, IPI_CALL_FUNC); 422 } 423 424 void arch_send_call_function_single_ipi(int cpu) 425 { 426 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 427 } 428 429 static const char *ipi_types[NR_IPI] = { 430 #define S(x,s) [x] = s 431 S(IPI_WAKEUP, "CPU wakeup interrupts"), 432 S(IPI_TIMER, "Timer broadcast interrupts"), 433 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 434 S(IPI_CALL_FUNC, "Function call interrupts"), 435 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 436 S(IPI_CPU_STOP, "CPU stop interrupts"), 437 }; 438 439 void show_ipi_list(struct seq_file *p, int prec) 440 { 441 unsigned int cpu, i; 442 443 for (i = 0; i < NR_IPI; i++) { 444 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 445 446 for_each_present_cpu(cpu) 447 seq_printf(p, "%10u ", 448 __get_irq_stat(cpu, ipi_irqs[i])); 449 450 seq_printf(p, " %s\n", ipi_types[i]); 451 } 452 } 453 454 u64 smp_irq_stat_cpu(unsigned int cpu) 455 { 456 u64 sum = 0; 457 int i; 458 459 for (i = 0; i < NR_IPI; i++) 460 sum += __get_irq_stat(cpu, ipi_irqs[i]); 461 462 return sum; 463 } 464 465 /* 466 * Timer (local or broadcast) support 467 */ 468 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 469 470 static void ipi_timer(void) 471 { 472 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 473 evt->event_handler(evt); 474 } 475 476 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 477 static void smp_timer_broadcast(const struct cpumask *mask) 478 { 479 smp_cross_call(mask, IPI_TIMER); 480 } 481 #else 482 #define smp_timer_broadcast NULL 483 #endif 484 485 static void broadcast_timer_set_mode(enum clock_event_mode mode, 486 struct clock_event_device *evt) 487 { 488 } 489 490 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 491 { 492 evt->name = "dummy_timer"; 493 evt->features = CLOCK_EVT_FEAT_ONESHOT | 494 CLOCK_EVT_FEAT_PERIODIC | 495 CLOCK_EVT_FEAT_DUMMY; 496 evt->rating = 400; 497 evt->mult = 1; 498 evt->set_mode = broadcast_timer_set_mode; 499 500 clockevents_register_device(evt); 501 } 502 503 static struct local_timer_ops *lt_ops; 504 505 #ifdef CONFIG_LOCAL_TIMERS 506 int local_timer_register(struct local_timer_ops *ops) 507 { 508 if (!is_smp() || !setup_max_cpus) 509 return -ENXIO; 510 511 if (lt_ops) 512 return -EBUSY; 513 514 lt_ops = ops; 515 return 0; 516 } 517 #endif 518 519 static void __cpuinit percpu_timer_setup(void) 520 { 521 unsigned int cpu = smp_processor_id(); 522 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 523 524 evt->cpumask = cpumask_of(cpu); 525 evt->broadcast = smp_timer_broadcast; 526 527 if (!lt_ops || lt_ops->setup(evt)) 528 broadcast_timer_setup(evt); 529 } 530 531 #ifdef CONFIG_HOTPLUG_CPU 532 /* 533 * The generic clock events code purposely does not stop the local timer 534 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 535 * manually here. 536 */ 537 static void percpu_timer_stop(void) 538 { 539 unsigned int cpu = smp_processor_id(); 540 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 541 542 if (lt_ops) 543 lt_ops->stop(evt); 544 } 545 #endif 546 547 static DEFINE_RAW_SPINLOCK(stop_lock); 548 549 /* 550 * ipi_cpu_stop - handle IPI from smp_send_stop() 551 */ 552 static void ipi_cpu_stop(unsigned int cpu) 553 { 554 if (system_state == SYSTEM_BOOTING || 555 system_state == SYSTEM_RUNNING) { 556 raw_spin_lock(&stop_lock); 557 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 558 dump_stack(); 559 raw_spin_unlock(&stop_lock); 560 } 561 562 set_cpu_online(cpu, false); 563 564 local_fiq_disable(); 565 local_irq_disable(); 566 567 while (1) 568 cpu_relax(); 569 } 570 571 /* 572 * Main handler for inter-processor interrupts 573 */ 574 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 575 { 576 handle_IPI(ipinr, regs); 577 } 578 579 void handle_IPI(int ipinr, struct pt_regs *regs) 580 { 581 unsigned int cpu = smp_processor_id(); 582 struct pt_regs *old_regs = set_irq_regs(regs); 583 584 if (ipinr < NR_IPI) 585 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 586 587 switch (ipinr) { 588 case IPI_WAKEUP: 589 break; 590 591 case IPI_TIMER: 592 irq_enter(); 593 ipi_timer(); 594 irq_exit(); 595 break; 596 597 case IPI_RESCHEDULE: 598 scheduler_ipi(); 599 break; 600 601 case IPI_CALL_FUNC: 602 irq_enter(); 603 generic_smp_call_function_interrupt(); 604 irq_exit(); 605 break; 606 607 case IPI_CALL_FUNC_SINGLE: 608 irq_enter(); 609 generic_smp_call_function_single_interrupt(); 610 irq_exit(); 611 break; 612 613 case IPI_CPU_STOP: 614 irq_enter(); 615 ipi_cpu_stop(cpu); 616 irq_exit(); 617 break; 618 619 default: 620 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 621 cpu, ipinr); 622 break; 623 } 624 set_irq_regs(old_regs); 625 } 626 627 void smp_send_reschedule(int cpu) 628 { 629 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 630 } 631 632 #ifdef CONFIG_HOTPLUG_CPU 633 static void smp_kill_cpus(cpumask_t *mask) 634 { 635 unsigned int cpu; 636 for_each_cpu(cpu, mask) 637 platform_cpu_kill(cpu); 638 } 639 #else 640 static void smp_kill_cpus(cpumask_t *mask) { } 641 #endif 642 643 void smp_send_stop(void) 644 { 645 unsigned long timeout; 646 struct cpumask mask; 647 648 cpumask_copy(&mask, cpu_online_mask); 649 cpumask_clear_cpu(smp_processor_id(), &mask); 650 if (!cpumask_empty(&mask)) 651 smp_cross_call(&mask, IPI_CPU_STOP); 652 653 /* Wait up to one second for other CPUs to stop */ 654 timeout = USEC_PER_SEC; 655 while (num_online_cpus() > 1 && timeout--) 656 udelay(1); 657 658 if (num_online_cpus() > 1) 659 pr_warning("SMP: failed to stop secondary CPUs\n"); 660 661 smp_kill_cpus(&mask); 662 } 663 664 /* 665 * not supported here 666 */ 667 int setup_profiling_timer(unsigned int multiplier) 668 { 669 return -EINVAL; 670 } 671 672 #ifdef CONFIG_CPU_FREQ 673 674 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 675 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 676 static unsigned long global_l_p_j_ref; 677 static unsigned long global_l_p_j_ref_freq; 678 679 static int cpufreq_callback(struct notifier_block *nb, 680 unsigned long val, void *data) 681 { 682 struct cpufreq_freqs *freq = data; 683 int cpu = freq->cpu; 684 685 if (freq->flags & CPUFREQ_CONST_LOOPS) 686 return NOTIFY_OK; 687 688 if (!per_cpu(l_p_j_ref, cpu)) { 689 per_cpu(l_p_j_ref, cpu) = 690 per_cpu(cpu_data, cpu).loops_per_jiffy; 691 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 692 if (!global_l_p_j_ref) { 693 global_l_p_j_ref = loops_per_jiffy; 694 global_l_p_j_ref_freq = freq->old; 695 } 696 } 697 698 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 699 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 700 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 701 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 702 global_l_p_j_ref_freq, 703 freq->new); 704 per_cpu(cpu_data, cpu).loops_per_jiffy = 705 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 706 per_cpu(l_p_j_ref_freq, cpu), 707 freq->new); 708 } 709 return NOTIFY_OK; 710 } 711 712 static struct notifier_block cpufreq_notifier = { 713 .notifier_call = cpufreq_callback, 714 }; 715 716 static int __init register_cpufreq_notifier(void) 717 { 718 return cpufreq_register_notifier(&cpufreq_notifier, 719 CPUFREQ_TRANSITION_NOTIFIER); 720 } 721 core_initcall(register_cpufreq_notifier); 722 723 #endif 724