xref: /linux/arch/arm/kernel/smp.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55 
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CALL_FUNC_SINGLE,
68 	IPI_CPU_STOP,
69 };
70 
71 static DECLARE_COMPLETION(cpu_running);
72 
73 static struct smp_operations smp_ops;
74 
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77 	if (ops)
78 		smp_ops = *ops;
79 };
80 
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83 	int ret;
84 
85 	/*
86 	 * We need to tell the secondary core where to find
87 	 * its stack and the page tables.
88 	 */
89 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
91 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
92 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
93 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94 
95 	/*
96 	 * Now bring the CPU into our world.
97 	 */
98 	ret = boot_secondary(cpu, idle);
99 	if (ret == 0) {
100 		/*
101 		 * CPU was successfully started, wait for it
102 		 * to come online or time out.
103 		 */
104 		wait_for_completion_timeout(&cpu_running,
105 						 msecs_to_jiffies(1000));
106 
107 		if (!cpu_online(cpu)) {
108 			pr_crit("CPU%u: failed to come online\n", cpu);
109 			ret = -EIO;
110 		}
111 	} else {
112 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113 	}
114 
115 	secondary_data.stack = NULL;
116 	secondary_data.pgdir = 0;
117 
118 	return ret;
119 }
120 
121 /* platform specific SMP operations */
122 void __init smp_init_cpus(void)
123 {
124 	if (smp_ops.smp_init_cpus)
125 		smp_ops.smp_init_cpus();
126 }
127 
128 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
129 {
130 	if (smp_ops.smp_boot_secondary)
131 		return smp_ops.smp_boot_secondary(cpu, idle);
132 	return -ENOSYS;
133 }
134 
135 #ifdef CONFIG_HOTPLUG_CPU
136 static void percpu_timer_stop(void);
137 
138 static int platform_cpu_kill(unsigned int cpu)
139 {
140 	if (smp_ops.cpu_kill)
141 		return smp_ops.cpu_kill(cpu);
142 	return 1;
143 }
144 
145 static int platform_cpu_disable(unsigned int cpu)
146 {
147 	if (smp_ops.cpu_disable)
148 		return smp_ops.cpu_disable(cpu);
149 
150 	/*
151 	 * By default, allow disabling all CPUs except the first one,
152 	 * since this is special on a lot of platforms, e.g. because
153 	 * of clock tick interrupts.
154 	 */
155 	return cpu == 0 ? -EPERM : 0;
156 }
157 /*
158  * __cpu_disable runs on the processor to be shutdown.
159  */
160 int __cpuinit __cpu_disable(void)
161 {
162 	unsigned int cpu = smp_processor_id();
163 	int ret;
164 
165 	ret = platform_cpu_disable(cpu);
166 	if (ret)
167 		return ret;
168 
169 	/*
170 	 * Take this CPU offline.  Once we clear this, we can't return,
171 	 * and we must not schedule until we're ready to give up the cpu.
172 	 */
173 	set_cpu_online(cpu, false);
174 
175 	/*
176 	 * OK - migrate IRQs away from this CPU
177 	 */
178 	migrate_irqs();
179 
180 	/*
181 	 * Stop the local timer for this CPU.
182 	 */
183 	percpu_timer_stop();
184 
185 	/*
186 	 * Flush user cache and TLB mappings, and then remove this CPU
187 	 * from the vm mask set of all processes.
188 	 *
189 	 * Caches are flushed to the Level of Unification Inner Shareable
190 	 * to write-back dirty lines to unified caches shared by all CPUs.
191 	 */
192 	flush_cache_louis();
193 	local_flush_tlb_all();
194 
195 	clear_tasks_mm_cpumask(cpu);
196 
197 	return 0;
198 }
199 
200 static DECLARE_COMPLETION(cpu_died);
201 
202 /*
203  * called on the thread which is asking for a CPU to be shutdown -
204  * waits until shutdown has completed, or it is timed out.
205  */
206 void __cpuinit __cpu_die(unsigned int cpu)
207 {
208 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
209 		pr_err("CPU%u: cpu didn't die\n", cpu);
210 		return;
211 	}
212 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
213 
214 	if (!platform_cpu_kill(cpu))
215 		printk("CPU%u: unable to kill\n", cpu);
216 }
217 
218 /*
219  * Called from the idle thread for the CPU which has been shutdown.
220  *
221  * Note that we disable IRQs here, but do not re-enable them
222  * before returning to the caller. This is also the behaviour
223  * of the other hotplug-cpu capable cores, so presumably coming
224  * out of idle fixes this.
225  */
226 void __ref cpu_die(void)
227 {
228 	unsigned int cpu = smp_processor_id();
229 
230 	idle_task_exit();
231 
232 	local_irq_disable();
233 	mb();
234 
235 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
236 	RCU_NONIDLE(complete(&cpu_died));
237 
238 	/*
239 	 * actual CPU shutdown procedure is at least platform (if not
240 	 * CPU) specific.
241 	 */
242 	if (smp_ops.cpu_die)
243 		smp_ops.cpu_die(cpu);
244 
245 	/*
246 	 * Do not return to the idle loop - jump back to the secondary
247 	 * cpu initialisation.  There's some initialisation which needs
248 	 * to be repeated to undo the effects of taking the CPU offline.
249 	 */
250 	__asm__("mov	sp, %0\n"
251 	"	mov	fp, #0\n"
252 	"	b	secondary_start_kernel"
253 		:
254 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
255 }
256 #endif /* CONFIG_HOTPLUG_CPU */
257 
258 /*
259  * Called by both boot and secondaries to move global data into
260  * per-processor storage.
261  */
262 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
263 {
264 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
265 
266 	cpu_info->loops_per_jiffy = loops_per_jiffy;
267 	cpu_info->cpuid = read_cpuid_id();
268 
269 	store_cpu_topology(cpuid);
270 }
271 
272 static void percpu_timer_setup(void);
273 
274 /*
275  * This is the secondary CPU boot entry.  We're using this CPUs
276  * idle thread stack, but a set of temporary page tables.
277  */
278 asmlinkage void __cpuinit secondary_start_kernel(void)
279 {
280 	struct mm_struct *mm = &init_mm;
281 	unsigned int cpu;
282 
283 	/*
284 	 * The identity mapping is uncached (strongly ordered), so
285 	 * switch away from it before attempting any exclusive accesses.
286 	 */
287 	cpu_switch_mm(mm->pgd, mm);
288 	enter_lazy_tlb(mm, current);
289 	local_flush_tlb_all();
290 
291 	/*
292 	 * All kernel threads share the same mm context; grab a
293 	 * reference and switch to it.
294 	 */
295 	cpu = smp_processor_id();
296 	atomic_inc(&mm->mm_count);
297 	current->active_mm = mm;
298 	cpumask_set_cpu(cpu, mm_cpumask(mm));
299 
300 	cpu_init();
301 
302 	printk("CPU%u: Booted secondary processor\n", cpu);
303 
304 	preempt_disable();
305 	trace_hardirqs_off();
306 
307 	/*
308 	 * Give the platform a chance to do its own initialisation.
309 	 */
310 	if (smp_ops.smp_secondary_init)
311 		smp_ops.smp_secondary_init(cpu);
312 
313 	notify_cpu_starting(cpu);
314 
315 	calibrate_delay();
316 
317 	smp_store_cpu_info(cpu);
318 
319 	/*
320 	 * OK, now it's safe to let the boot CPU continue.  Wait for
321 	 * the CPU migration code to notice that the CPU is online
322 	 * before we continue - which happens after __cpu_up returns.
323 	 */
324 	set_cpu_online(cpu, true);
325 	complete(&cpu_running);
326 
327 	/*
328 	 * Setup the percpu timer for this CPU.
329 	 */
330 	percpu_timer_setup();
331 
332 	local_irq_enable();
333 	local_fiq_enable();
334 
335 	/*
336 	 * OK, it's off to the idle thread for us
337 	 */
338 	cpu_idle();
339 }
340 
341 void __init smp_cpus_done(unsigned int max_cpus)
342 {
343 	int cpu;
344 	unsigned long bogosum = 0;
345 
346 	for_each_online_cpu(cpu)
347 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
348 
349 	printk(KERN_INFO "SMP: Total of %d processors activated "
350 	       "(%lu.%02lu BogoMIPS).\n",
351 	       num_online_cpus(),
352 	       bogosum / (500000/HZ),
353 	       (bogosum / (5000/HZ)) % 100);
354 
355 	hyp_mode_check();
356 }
357 
358 void __init smp_prepare_boot_cpu(void)
359 {
360 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
361 }
362 
363 void __init smp_prepare_cpus(unsigned int max_cpus)
364 {
365 	unsigned int ncores = num_possible_cpus();
366 
367 	init_cpu_topology();
368 
369 	smp_store_cpu_info(smp_processor_id());
370 
371 	/*
372 	 * are we trying to boot more cores than exist?
373 	 */
374 	if (max_cpus > ncores)
375 		max_cpus = ncores;
376 	if (ncores > 1 && max_cpus) {
377 		/*
378 		 * Enable the local timer or broadcast device for the
379 		 * boot CPU, but only if we have more than one CPU.
380 		 */
381 		percpu_timer_setup();
382 
383 		/*
384 		 * Initialise the present map, which describes the set of CPUs
385 		 * actually populated at the present time. A platform should
386 		 * re-initialize the map in the platforms smp_prepare_cpus()
387 		 * if present != possible (e.g. physical hotplug).
388 		 */
389 		init_cpu_present(cpu_possible_mask);
390 
391 		/*
392 		 * Initialise the SCU if there are more than one CPU
393 		 * and let them know where to start.
394 		 */
395 		if (smp_ops.smp_prepare_cpus)
396 			smp_ops.smp_prepare_cpus(max_cpus);
397 	}
398 }
399 
400 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
401 
402 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
403 {
404 	if (!smp_cross_call)
405 		smp_cross_call = fn;
406 }
407 
408 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
409 {
410 	smp_cross_call(mask, IPI_CALL_FUNC);
411 }
412 
413 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
414 {
415 	smp_cross_call(mask, IPI_WAKEUP);
416 }
417 
418 void arch_send_call_function_single_ipi(int cpu)
419 {
420 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
421 }
422 
423 static const char *ipi_types[NR_IPI] = {
424 #define S(x,s)	[x] = s
425 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
426 	S(IPI_TIMER, "Timer broadcast interrupts"),
427 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
428 	S(IPI_CALL_FUNC, "Function call interrupts"),
429 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
430 	S(IPI_CPU_STOP, "CPU stop interrupts"),
431 };
432 
433 void show_ipi_list(struct seq_file *p, int prec)
434 {
435 	unsigned int cpu, i;
436 
437 	for (i = 0; i < NR_IPI; i++) {
438 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
439 
440 		for_each_online_cpu(cpu)
441 			seq_printf(p, "%10u ",
442 				   __get_irq_stat(cpu, ipi_irqs[i]));
443 
444 		seq_printf(p, " %s\n", ipi_types[i]);
445 	}
446 }
447 
448 u64 smp_irq_stat_cpu(unsigned int cpu)
449 {
450 	u64 sum = 0;
451 	int i;
452 
453 	for (i = 0; i < NR_IPI; i++)
454 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
455 
456 	return sum;
457 }
458 
459 /*
460  * Timer (local or broadcast) support
461  */
462 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
463 
464 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
465 void tick_broadcast(const struct cpumask *mask)
466 {
467 	smp_cross_call(mask, IPI_TIMER);
468 }
469 #else
470 #define smp_timer_broadcast	NULL
471 #endif
472 
473 static void broadcast_timer_set_mode(enum clock_event_mode mode,
474 	struct clock_event_device *evt)
475 {
476 }
477 
478 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
479 {
480 	evt->name	= "dummy_timer";
481 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
482 			  CLOCK_EVT_FEAT_PERIODIC |
483 			  CLOCK_EVT_FEAT_DUMMY;
484 	evt->rating	= 400;
485 	evt->mult	= 1;
486 	evt->set_mode	= broadcast_timer_set_mode;
487 
488 	clockevents_register_device(evt);
489 }
490 
491 static struct local_timer_ops *lt_ops;
492 
493 #ifdef CONFIG_LOCAL_TIMERS
494 int local_timer_register(struct local_timer_ops *ops)
495 {
496 	if (!is_smp() || !setup_max_cpus)
497 		return -ENXIO;
498 
499 	if (lt_ops)
500 		return -EBUSY;
501 
502 	lt_ops = ops;
503 	return 0;
504 }
505 #endif
506 
507 static void __cpuinit percpu_timer_setup(void)
508 {
509 	unsigned int cpu = smp_processor_id();
510 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
511 
512 	evt->cpumask = cpumask_of(cpu);
513 
514 	if (!lt_ops || lt_ops->setup(evt))
515 		broadcast_timer_setup(evt);
516 }
517 
518 #ifdef CONFIG_HOTPLUG_CPU
519 /*
520  * The generic clock events code purposely does not stop the local timer
521  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
522  * manually here.
523  */
524 static void percpu_timer_stop(void)
525 {
526 	unsigned int cpu = smp_processor_id();
527 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
528 
529 	if (lt_ops)
530 		lt_ops->stop(evt);
531 }
532 #endif
533 
534 static DEFINE_RAW_SPINLOCK(stop_lock);
535 
536 /*
537  * ipi_cpu_stop - handle IPI from smp_send_stop()
538  */
539 static void ipi_cpu_stop(unsigned int cpu)
540 {
541 	if (system_state == SYSTEM_BOOTING ||
542 	    system_state == SYSTEM_RUNNING) {
543 		raw_spin_lock(&stop_lock);
544 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
545 		dump_stack();
546 		raw_spin_unlock(&stop_lock);
547 	}
548 
549 	set_cpu_online(cpu, false);
550 
551 	local_fiq_disable();
552 	local_irq_disable();
553 
554 	while (1)
555 		cpu_relax();
556 }
557 
558 /*
559  * Main handler for inter-processor interrupts
560  */
561 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
562 {
563 	handle_IPI(ipinr, regs);
564 }
565 
566 void handle_IPI(int ipinr, struct pt_regs *regs)
567 {
568 	unsigned int cpu = smp_processor_id();
569 	struct pt_regs *old_regs = set_irq_regs(regs);
570 
571 	if (ipinr < NR_IPI)
572 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
573 
574 	switch (ipinr) {
575 	case IPI_WAKEUP:
576 		break;
577 
578 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
579 	case IPI_TIMER:
580 		irq_enter();
581 		tick_receive_broadcast();
582 		irq_exit();
583 		break;
584 #endif
585 
586 	case IPI_RESCHEDULE:
587 		scheduler_ipi();
588 		break;
589 
590 	case IPI_CALL_FUNC:
591 		irq_enter();
592 		generic_smp_call_function_interrupt();
593 		irq_exit();
594 		break;
595 
596 	case IPI_CALL_FUNC_SINGLE:
597 		irq_enter();
598 		generic_smp_call_function_single_interrupt();
599 		irq_exit();
600 		break;
601 
602 	case IPI_CPU_STOP:
603 		irq_enter();
604 		ipi_cpu_stop(cpu);
605 		irq_exit();
606 		break;
607 
608 	default:
609 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
610 		       cpu, ipinr);
611 		break;
612 	}
613 	set_irq_regs(old_regs);
614 }
615 
616 void smp_send_reschedule(int cpu)
617 {
618 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
619 }
620 
621 #ifdef CONFIG_HOTPLUG_CPU
622 static void smp_kill_cpus(cpumask_t *mask)
623 {
624 	unsigned int cpu;
625 	for_each_cpu(cpu, mask)
626 		platform_cpu_kill(cpu);
627 }
628 #else
629 static void smp_kill_cpus(cpumask_t *mask) { }
630 #endif
631 
632 void smp_send_stop(void)
633 {
634 	unsigned long timeout;
635 	struct cpumask mask;
636 
637 	cpumask_copy(&mask, cpu_online_mask);
638 	cpumask_clear_cpu(smp_processor_id(), &mask);
639 	if (!cpumask_empty(&mask))
640 		smp_cross_call(&mask, IPI_CPU_STOP);
641 
642 	/* Wait up to one second for other CPUs to stop */
643 	timeout = USEC_PER_SEC;
644 	while (num_online_cpus() > 1 && timeout--)
645 		udelay(1);
646 
647 	if (num_online_cpus() > 1)
648 		pr_warning("SMP: failed to stop secondary CPUs\n");
649 
650 	smp_kill_cpus(&mask);
651 }
652 
653 /*
654  * not supported here
655  */
656 int setup_profiling_timer(unsigned int multiplier)
657 {
658 	return -EINVAL;
659 }
660 
661 #ifdef CONFIG_CPU_FREQ
662 
663 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
664 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
665 static unsigned long global_l_p_j_ref;
666 static unsigned long global_l_p_j_ref_freq;
667 
668 static int cpufreq_callback(struct notifier_block *nb,
669 					unsigned long val, void *data)
670 {
671 	struct cpufreq_freqs *freq = data;
672 	int cpu = freq->cpu;
673 
674 	if (freq->flags & CPUFREQ_CONST_LOOPS)
675 		return NOTIFY_OK;
676 
677 	if (!per_cpu(l_p_j_ref, cpu)) {
678 		per_cpu(l_p_j_ref, cpu) =
679 			per_cpu(cpu_data, cpu).loops_per_jiffy;
680 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
681 		if (!global_l_p_j_ref) {
682 			global_l_p_j_ref = loops_per_jiffy;
683 			global_l_p_j_ref_freq = freq->old;
684 		}
685 	}
686 
687 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
688 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
689 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
690 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
691 						global_l_p_j_ref_freq,
692 						freq->new);
693 		per_cpu(cpu_data, cpu).loops_per_jiffy =
694 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
695 					per_cpu(l_p_j_ref_freq, cpu),
696 					freq->new);
697 	}
698 	return NOTIFY_OK;
699 }
700 
701 static struct notifier_block cpufreq_notifier = {
702 	.notifier_call  = cpufreq_callback,
703 };
704 
705 static int __init register_cpufreq_notifier(void)
706 {
707 	return cpufreq_register_notifier(&cpufreq_notifier,
708 						CPUFREQ_TRANSITION_NOTIFIER);
709 }
710 core_initcall(register_cpufreq_notifier);
711 
712 #endif
713