1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 6 */ 7 #include <linux/module.h> 8 #include <linux/delay.h> 9 #include <linux/init.h> 10 #include <linux/spinlock.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/interrupt.h> 15 #include <linux/cache.h> 16 #include <linux/profile.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/cpu.h> 21 #include <linux/seq_file.h> 22 #include <linux/irq.h> 23 #include <linux/nmi.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 #include <linux/kernel_stat.h> 30 31 #include <linux/atomic.h> 32 #include <asm/bugs.h> 33 #include <asm/smp.h> 34 #include <asm/cacheflush.h> 35 #include <asm/cpu.h> 36 #include <asm/cputype.h> 37 #include <asm/exception.h> 38 #include <asm/idmap.h> 39 #include <asm/topology.h> 40 #include <asm/mmu_context.h> 41 #include <asm/procinfo.h> 42 #include <asm/processor.h> 43 #include <asm/sections.h> 44 #include <asm/tlbflush.h> 45 #include <asm/ptrace.h> 46 #include <asm/smp_plat.h> 47 #include <asm/virt.h> 48 #include <asm/mach/arch.h> 49 #include <asm/mpu.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/ipi.h> 53 54 /* 55 * as from 2.5, kernels no longer have an init_tasks structure 56 * so we need some other way of telling a new secondary core 57 * where to place its SVC stack 58 */ 59 struct secondary_data secondary_data; 60 61 enum ipi_msg_type { 62 IPI_WAKEUP, 63 IPI_TIMER, 64 IPI_RESCHEDULE, 65 IPI_CALL_FUNC, 66 IPI_CPU_STOP, 67 IPI_IRQ_WORK, 68 IPI_COMPLETION, 69 NR_IPI, 70 /* 71 * CPU_BACKTRACE is special and not included in NR_IPI 72 * or tracable with trace_ipi_* 73 */ 74 IPI_CPU_BACKTRACE = NR_IPI, 75 /* 76 * SGI8-15 can be reserved by secure firmware, and thus may 77 * not be usable by the kernel. Please keep the above limited 78 * to at most 8 entries. 79 */ 80 MAX_IPI 81 }; 82 83 static int ipi_irq_base __read_mostly; 84 static int nr_ipi __read_mostly = NR_IPI; 85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly; 86 87 static void ipi_setup(int cpu); 88 89 static DECLARE_COMPLETION(cpu_running); 90 91 static struct smp_operations smp_ops __ro_after_init; 92 93 void __init smp_set_ops(const struct smp_operations *ops) 94 { 95 if (ops) 96 smp_ops = *ops; 97 }; 98 99 static unsigned long get_arch_pgd(pgd_t *pgd) 100 { 101 #ifdef CONFIG_ARM_LPAE 102 return __phys_to_pfn(virt_to_phys(pgd)); 103 #else 104 return virt_to_phys(pgd); 105 #endif 106 } 107 108 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 109 static int secondary_biglittle_prepare(unsigned int cpu) 110 { 111 if (!cpu_vtable[cpu]) 112 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 113 114 return cpu_vtable[cpu] ? 0 : -ENOMEM; 115 } 116 117 static void secondary_biglittle_init(void) 118 { 119 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 120 } 121 #else 122 static int secondary_biglittle_prepare(unsigned int cpu) 123 { 124 return 0; 125 } 126 127 static void secondary_biglittle_init(void) 128 { 129 } 130 #endif 131 132 int __cpu_up(unsigned int cpu, struct task_struct *idle) 133 { 134 int ret; 135 136 if (!smp_ops.smp_boot_secondary) 137 return -ENOSYS; 138 139 ret = secondary_biglittle_prepare(cpu); 140 if (ret) 141 return ret; 142 143 /* 144 * We need to tell the secondary core where to find 145 * its stack and the page tables. 146 */ 147 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 148 #ifdef CONFIG_ARM_MPU 149 secondary_data.mpu_rgn_info = &mpu_rgn_info; 150 #endif 151 152 #ifdef CONFIG_MMU 153 secondary_data.pgdir = virt_to_phys(idmap_pgd); 154 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 155 #endif 156 secondary_data.task = idle; 157 if (IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)) 158 task_thread_info(idle)->cpu = cpu; 159 160 sync_cache_w(&secondary_data); 161 162 /* 163 * Now bring the CPU into our world. 164 */ 165 ret = smp_ops.smp_boot_secondary(cpu, idle); 166 if (ret == 0) { 167 /* 168 * CPU was successfully started, wait for it 169 * to come online or time out. 170 */ 171 wait_for_completion_timeout(&cpu_running, 172 msecs_to_jiffies(1000)); 173 174 if (!cpu_online(cpu)) { 175 pr_crit("CPU%u: failed to come online\n", cpu); 176 ret = -EIO; 177 } 178 } else { 179 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 180 } 181 182 183 memset(&secondary_data, 0, sizeof(secondary_data)); 184 return ret; 185 } 186 187 /* platform specific SMP operations */ 188 void __init smp_init_cpus(void) 189 { 190 if (smp_ops.smp_init_cpus) 191 smp_ops.smp_init_cpus(); 192 } 193 194 int platform_can_secondary_boot(void) 195 { 196 return !!smp_ops.smp_boot_secondary; 197 } 198 199 int platform_can_cpu_hotplug(void) 200 { 201 #ifdef CONFIG_HOTPLUG_CPU 202 if (smp_ops.cpu_kill) 203 return 1; 204 #endif 205 206 return 0; 207 } 208 209 #ifdef CONFIG_HOTPLUG_CPU 210 static int platform_cpu_kill(unsigned int cpu) 211 { 212 if (smp_ops.cpu_kill) 213 return smp_ops.cpu_kill(cpu); 214 return 1; 215 } 216 217 static int platform_cpu_disable(unsigned int cpu) 218 { 219 if (smp_ops.cpu_disable) 220 return smp_ops.cpu_disable(cpu); 221 222 return 0; 223 } 224 225 int platform_can_hotplug_cpu(unsigned int cpu) 226 { 227 /* cpu_die must be specified to support hotplug */ 228 if (!smp_ops.cpu_die) 229 return 0; 230 231 if (smp_ops.cpu_can_disable) 232 return smp_ops.cpu_can_disable(cpu); 233 234 /* 235 * By default, allow disabling all CPUs except the first one, 236 * since this is special on a lot of platforms, e.g. because 237 * of clock tick interrupts. 238 */ 239 return cpu != 0; 240 } 241 242 static void ipi_teardown(int cpu) 243 { 244 int i; 245 246 if (WARN_ON_ONCE(!ipi_irq_base)) 247 return; 248 249 for (i = 0; i < nr_ipi; i++) 250 disable_percpu_irq(ipi_irq_base + i); 251 } 252 253 /* 254 * __cpu_disable runs on the processor to be shutdown. 255 */ 256 int __cpu_disable(void) 257 { 258 unsigned int cpu = smp_processor_id(); 259 int ret; 260 261 ret = platform_cpu_disable(cpu); 262 if (ret) 263 return ret; 264 265 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY 266 remove_cpu_topology(cpu); 267 #endif 268 269 /* 270 * Take this CPU offline. Once we clear this, we can't return, 271 * and we must not schedule until we're ready to give up the cpu. 272 */ 273 set_cpu_online(cpu, false); 274 ipi_teardown(cpu); 275 276 /* 277 * OK - migrate IRQs away from this CPU 278 */ 279 irq_migrate_all_off_this_cpu(); 280 281 /* 282 * Flush user cache and TLB mappings, and then remove this CPU 283 * from the vm mask set of all processes. 284 * 285 * Caches are flushed to the Level of Unification Inner Shareable 286 * to write-back dirty lines to unified caches shared by all CPUs. 287 */ 288 flush_cache_louis(); 289 local_flush_tlb_all(); 290 291 return 0; 292 } 293 294 /* 295 * called on the thread which is asking for a CPU to be shutdown - 296 * waits until shutdown has completed, or it is timed out. 297 */ 298 void __cpu_die(unsigned int cpu) 299 { 300 if (!cpu_wait_death(cpu, 5)) { 301 pr_err("CPU%u: cpu didn't die\n", cpu); 302 return; 303 } 304 pr_debug("CPU%u: shutdown\n", cpu); 305 306 clear_tasks_mm_cpumask(cpu); 307 /* 308 * platform_cpu_kill() is generally expected to do the powering off 309 * and/or cutting of clocks to the dying CPU. Optionally, this may 310 * be done by the CPU which is dying in preference to supporting 311 * this call, but that means there is _no_ synchronisation between 312 * the requesting CPU and the dying CPU actually losing power. 313 */ 314 if (!platform_cpu_kill(cpu)) 315 pr_err("CPU%u: unable to kill\n", cpu); 316 } 317 318 /* 319 * Called from the idle thread for the CPU which has been shutdown. 320 * 321 * Note that we disable IRQs here, but do not re-enable them 322 * before returning to the caller. This is also the behaviour 323 * of the other hotplug-cpu capable cores, so presumably coming 324 * out of idle fixes this. 325 */ 326 void arch_cpu_idle_dead(void) 327 { 328 unsigned int cpu = smp_processor_id(); 329 330 idle_task_exit(); 331 332 local_irq_disable(); 333 334 /* 335 * Flush the data out of the L1 cache for this CPU. This must be 336 * before the completion to ensure that data is safely written out 337 * before platform_cpu_kill() gets called - which may disable 338 * *this* CPU and power down its cache. 339 */ 340 flush_cache_louis(); 341 342 /* 343 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 344 * this returns, power and/or clocks can be removed at any point 345 * from this CPU and its cache by platform_cpu_kill(). 346 */ 347 (void)cpu_report_death(); 348 349 /* 350 * Ensure that the cache lines associated with that completion are 351 * written out. This covers the case where _this_ CPU is doing the 352 * powering down, to ensure that the completion is visible to the 353 * CPU waiting for this one. 354 */ 355 flush_cache_louis(); 356 357 /* 358 * The actual CPU shutdown procedure is at least platform (if not 359 * CPU) specific. This may remove power, or it may simply spin. 360 * 361 * Platforms are generally expected *NOT* to return from this call, 362 * although there are some which do because they have no way to 363 * power down the CPU. These platforms are the _only_ reason we 364 * have a return path which uses the fragment of assembly below. 365 * 366 * The return path should not be used for platforms which can 367 * power off the CPU. 368 */ 369 if (smp_ops.cpu_die) 370 smp_ops.cpu_die(cpu); 371 372 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 373 cpu); 374 375 /* 376 * Do not return to the idle loop - jump back to the secondary 377 * cpu initialisation. There's some initialisation which needs 378 * to be repeated to undo the effects of taking the CPU offline. 379 */ 380 __asm__("mov sp, %0\n" 381 " mov fp, #0\n" 382 " mov r0, %1\n" 383 " b secondary_start_kernel" 384 : 385 : "r" (task_stack_page(current) + THREAD_SIZE - 8), 386 "r" (current) 387 : "r0"); 388 } 389 #endif /* CONFIG_HOTPLUG_CPU */ 390 391 /* 392 * Called by both boot and secondaries to move global data into 393 * per-processor storage. 394 */ 395 static void smp_store_cpu_info(unsigned int cpuid) 396 { 397 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 398 399 cpu_info->loops_per_jiffy = loops_per_jiffy; 400 cpu_info->cpuid = read_cpuid_id(); 401 402 store_cpu_topology(cpuid); 403 check_cpu_icache_size(cpuid); 404 } 405 406 /* 407 * This is the secondary CPU boot entry. We're using this CPUs 408 * idle thread stack, but a set of temporary page tables. 409 */ 410 asmlinkage void secondary_start_kernel(struct task_struct *task) 411 { 412 struct mm_struct *mm = &init_mm; 413 unsigned int cpu; 414 415 set_current(task); 416 417 secondary_biglittle_init(); 418 419 /* 420 * The identity mapping is uncached (strongly ordered), so 421 * switch away from it before attempting any exclusive accesses. 422 */ 423 cpu_switch_mm(mm->pgd, mm); 424 local_flush_bp_all(); 425 enter_lazy_tlb(mm, current); 426 local_flush_tlb_all(); 427 428 /* 429 * All kernel threads share the same mm context; grab a 430 * reference and switch to it. 431 */ 432 cpu = smp_processor_id(); 433 mmgrab(mm); 434 current->active_mm = mm; 435 cpumask_set_cpu(cpu, mm_cpumask(mm)); 436 437 cpu_init(); 438 439 #ifndef CONFIG_MMU 440 setup_vectors_base(); 441 #endif 442 pr_debug("CPU%u: Booted secondary processor\n", cpu); 443 444 trace_hardirqs_off(); 445 446 /* 447 * Give the platform a chance to do its own initialisation. 448 */ 449 if (smp_ops.smp_secondary_init) 450 smp_ops.smp_secondary_init(cpu); 451 452 notify_cpu_starting(cpu); 453 454 ipi_setup(cpu); 455 456 calibrate_delay(); 457 458 smp_store_cpu_info(cpu); 459 460 /* 461 * OK, now it's safe to let the boot CPU continue. Wait for 462 * the CPU migration code to notice that the CPU is online 463 * before we continue - which happens after __cpu_up returns. 464 */ 465 set_cpu_online(cpu, true); 466 467 check_other_bugs(); 468 469 complete(&cpu_running); 470 471 local_irq_enable(); 472 local_fiq_enable(); 473 local_abt_enable(); 474 475 /* 476 * OK, it's off to the idle thread for us 477 */ 478 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 479 } 480 481 void __init smp_cpus_done(unsigned int max_cpus) 482 { 483 int cpu; 484 unsigned long bogosum = 0; 485 486 for_each_online_cpu(cpu) 487 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 488 489 printk(KERN_INFO "SMP: Total of %d processors activated " 490 "(%lu.%02lu BogoMIPS).\n", 491 num_online_cpus(), 492 bogosum / (500000/HZ), 493 (bogosum / (5000/HZ)) % 100); 494 495 hyp_mode_check(); 496 } 497 498 void __init smp_prepare_boot_cpu(void) 499 { 500 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 501 } 502 503 void __init smp_prepare_cpus(unsigned int max_cpus) 504 { 505 unsigned int ncores = num_possible_cpus(); 506 507 init_cpu_topology(); 508 509 smp_store_cpu_info(smp_processor_id()); 510 511 /* 512 * are we trying to boot more cores than exist? 513 */ 514 if (max_cpus > ncores) 515 max_cpus = ncores; 516 if (ncores > 1 && max_cpus) { 517 /* 518 * Initialise the present map, which describes the set of CPUs 519 * actually populated at the present time. A platform should 520 * re-initialize the map in the platforms smp_prepare_cpus() 521 * if present != possible (e.g. physical hotplug). 522 */ 523 init_cpu_present(cpu_possible_mask); 524 525 /* 526 * Initialise the SCU if there are more than one CPU 527 * and let them know where to start. 528 */ 529 if (smp_ops.smp_prepare_cpus) 530 smp_ops.smp_prepare_cpus(max_cpus); 531 } 532 } 533 534 static const char *ipi_types[NR_IPI] __tracepoint_string = { 535 [IPI_WAKEUP] = "CPU wakeup interrupts", 536 [IPI_TIMER] = "Timer broadcast interrupts", 537 [IPI_RESCHEDULE] = "Rescheduling interrupts", 538 [IPI_CALL_FUNC] = "Function call interrupts", 539 [IPI_CPU_STOP] = "CPU stop interrupts", 540 [IPI_IRQ_WORK] = "IRQ work interrupts", 541 [IPI_COMPLETION] = "completion interrupts", 542 }; 543 544 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 545 546 void show_ipi_list(struct seq_file *p, int prec) 547 { 548 unsigned int cpu, i; 549 550 for (i = 0; i < NR_IPI; i++) { 551 if (!ipi_desc[i]) 552 continue; 553 554 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 555 556 for_each_online_cpu(cpu) 557 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 558 559 seq_printf(p, " %s\n", ipi_types[i]); 560 } 561 } 562 563 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 564 { 565 smp_cross_call(mask, IPI_CALL_FUNC); 566 } 567 568 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 569 { 570 smp_cross_call(mask, IPI_WAKEUP); 571 } 572 573 void arch_send_call_function_single_ipi(int cpu) 574 { 575 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 576 } 577 578 #ifdef CONFIG_IRQ_WORK 579 void arch_irq_work_raise(void) 580 { 581 if (arch_irq_work_has_interrupt()) 582 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 583 } 584 #endif 585 586 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 587 void tick_broadcast(const struct cpumask *mask) 588 { 589 smp_cross_call(mask, IPI_TIMER); 590 } 591 #endif 592 593 static DEFINE_RAW_SPINLOCK(stop_lock); 594 595 /* 596 * ipi_cpu_stop - handle IPI from smp_send_stop() 597 */ 598 static void ipi_cpu_stop(unsigned int cpu) 599 { 600 if (system_state <= SYSTEM_RUNNING) { 601 raw_spin_lock(&stop_lock); 602 pr_crit("CPU%u: stopping\n", cpu); 603 dump_stack(); 604 raw_spin_unlock(&stop_lock); 605 } 606 607 set_cpu_online(cpu, false); 608 609 local_fiq_disable(); 610 local_irq_disable(); 611 612 while (1) { 613 cpu_relax(); 614 wfe(); 615 } 616 } 617 618 static DEFINE_PER_CPU(struct completion *, cpu_completion); 619 620 int register_ipi_completion(struct completion *completion, int cpu) 621 { 622 per_cpu(cpu_completion, cpu) = completion; 623 return IPI_COMPLETION; 624 } 625 626 static void ipi_complete(unsigned int cpu) 627 { 628 complete(per_cpu(cpu_completion, cpu)); 629 } 630 631 /* 632 * Main handler for inter-processor interrupts 633 */ 634 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 635 { 636 handle_IPI(ipinr, regs); 637 } 638 639 static void do_handle_IPI(int ipinr) 640 { 641 unsigned int cpu = smp_processor_id(); 642 643 if ((unsigned)ipinr < NR_IPI) 644 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 645 646 switch (ipinr) { 647 case IPI_WAKEUP: 648 break; 649 650 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 651 case IPI_TIMER: 652 tick_receive_broadcast(); 653 break; 654 #endif 655 656 case IPI_RESCHEDULE: 657 scheduler_ipi(); 658 break; 659 660 case IPI_CALL_FUNC: 661 generic_smp_call_function_interrupt(); 662 break; 663 664 case IPI_CPU_STOP: 665 ipi_cpu_stop(cpu); 666 break; 667 668 #ifdef CONFIG_IRQ_WORK 669 case IPI_IRQ_WORK: 670 irq_work_run(); 671 break; 672 #endif 673 674 case IPI_COMPLETION: 675 ipi_complete(cpu); 676 break; 677 678 case IPI_CPU_BACKTRACE: 679 printk_deferred_enter(); 680 nmi_cpu_backtrace(get_irq_regs()); 681 printk_deferred_exit(); 682 break; 683 684 default: 685 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 686 cpu, ipinr); 687 break; 688 } 689 690 if ((unsigned)ipinr < NR_IPI) 691 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 692 } 693 694 /* Legacy version, should go away once all irqchips have been converted */ 695 void handle_IPI(int ipinr, struct pt_regs *regs) 696 { 697 struct pt_regs *old_regs = set_irq_regs(regs); 698 699 irq_enter(); 700 do_handle_IPI(ipinr); 701 irq_exit(); 702 703 set_irq_regs(old_regs); 704 } 705 706 static irqreturn_t ipi_handler(int irq, void *data) 707 { 708 do_handle_IPI(irq - ipi_irq_base); 709 return IRQ_HANDLED; 710 } 711 712 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 713 { 714 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 715 __ipi_send_mask(ipi_desc[ipinr], target); 716 } 717 718 static void ipi_setup(int cpu) 719 { 720 int i; 721 722 if (WARN_ON_ONCE(!ipi_irq_base)) 723 return; 724 725 for (i = 0; i < nr_ipi; i++) 726 enable_percpu_irq(ipi_irq_base + i, 0); 727 } 728 729 void __init set_smp_ipi_range(int ipi_base, int n) 730 { 731 int i; 732 733 WARN_ON(n < MAX_IPI); 734 nr_ipi = min(n, MAX_IPI); 735 736 for (i = 0; i < nr_ipi; i++) { 737 int err; 738 739 err = request_percpu_irq(ipi_base + i, ipi_handler, 740 "IPI", &irq_stat); 741 WARN_ON(err); 742 743 ipi_desc[i] = irq_to_desc(ipi_base + i); 744 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 745 } 746 747 ipi_irq_base = ipi_base; 748 749 /* Setup the boot CPU immediately */ 750 ipi_setup(smp_processor_id()); 751 } 752 753 void smp_send_reschedule(int cpu) 754 { 755 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 756 } 757 758 void smp_send_stop(void) 759 { 760 unsigned long timeout; 761 struct cpumask mask; 762 763 cpumask_copy(&mask, cpu_online_mask); 764 cpumask_clear_cpu(smp_processor_id(), &mask); 765 if (!cpumask_empty(&mask)) 766 smp_cross_call(&mask, IPI_CPU_STOP); 767 768 /* Wait up to one second for other CPUs to stop */ 769 timeout = USEC_PER_SEC; 770 while (num_online_cpus() > 1 && timeout--) 771 udelay(1); 772 773 if (num_online_cpus() > 1) 774 pr_warn("SMP: failed to stop secondary CPUs\n"); 775 } 776 777 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 778 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 779 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 780 * kdump fails. So split out the panic_smp_self_stop() and add 781 * set_cpu_online(smp_processor_id(), false). 782 */ 783 void panic_smp_self_stop(void) 784 { 785 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 786 smp_processor_id()); 787 set_cpu_online(smp_processor_id(), false); 788 while (1) 789 cpu_relax(); 790 } 791 792 /* 793 * not supported here 794 */ 795 int setup_profiling_timer(unsigned int multiplier) 796 { 797 return -EINVAL; 798 } 799 800 #ifdef CONFIG_CPU_FREQ 801 802 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 803 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 804 static unsigned long global_l_p_j_ref; 805 static unsigned long global_l_p_j_ref_freq; 806 807 static int cpufreq_callback(struct notifier_block *nb, 808 unsigned long val, void *data) 809 { 810 struct cpufreq_freqs *freq = data; 811 struct cpumask *cpus = freq->policy->cpus; 812 int cpu, first = cpumask_first(cpus); 813 unsigned int lpj; 814 815 if (freq->flags & CPUFREQ_CONST_LOOPS) 816 return NOTIFY_OK; 817 818 if (!per_cpu(l_p_j_ref, first)) { 819 for_each_cpu(cpu, cpus) { 820 per_cpu(l_p_j_ref, cpu) = 821 per_cpu(cpu_data, cpu).loops_per_jiffy; 822 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 823 } 824 825 if (!global_l_p_j_ref) { 826 global_l_p_j_ref = loops_per_jiffy; 827 global_l_p_j_ref_freq = freq->old; 828 } 829 } 830 831 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 832 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 833 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 834 global_l_p_j_ref_freq, 835 freq->new); 836 837 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), 838 per_cpu(l_p_j_ref_freq, first), freq->new); 839 for_each_cpu(cpu, cpus) 840 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; 841 } 842 return NOTIFY_OK; 843 } 844 845 static struct notifier_block cpufreq_notifier = { 846 .notifier_call = cpufreq_callback, 847 }; 848 849 static int __init register_cpufreq_notifier(void) 850 { 851 return cpufreq_register_notifier(&cpufreq_notifier, 852 CPUFREQ_TRANSITION_NOTIFIER); 853 } 854 core_initcall(register_cpufreq_notifier); 855 856 #endif 857 858 static void raise_nmi(cpumask_t *mask) 859 { 860 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); 861 } 862 863 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 864 { 865 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 866 } 867