1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/config.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/cpu.h> 21 #include <linux/smp.h> 22 #include <linux/seq_file.h> 23 24 #include <asm/atomic.h> 25 #include <asm/cacheflush.h> 26 #include <asm/cpu.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgtable.h> 29 #include <asm/pgalloc.h> 30 #include <asm/processor.h> 31 #include <asm/tlbflush.h> 32 #include <asm/ptrace.h> 33 34 /* 35 * bitmask of present and online CPUs. 36 * The present bitmask indicates that the CPU is physically present. 37 * The online bitmask indicates that the CPU is up and running. 38 */ 39 cpumask_t cpu_present_mask; 40 cpumask_t cpu_online_map; 41 42 /* 43 * as from 2.5, kernels no longer have an init_tasks structure 44 * so we need some other way of telling a new secondary core 45 * where to place its SVC stack 46 */ 47 struct secondary_data secondary_data; 48 49 /* 50 * structures for inter-processor calls 51 * - A collection of single bit ipi messages. 52 */ 53 struct ipi_data { 54 spinlock_t lock; 55 unsigned long ipi_count; 56 unsigned long bits; 57 }; 58 59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 60 .lock = SPIN_LOCK_UNLOCKED, 61 }; 62 63 enum ipi_msg_type { 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CPU_STOP, 68 }; 69 70 struct smp_call_struct { 71 void (*func)(void *info); 72 void *info; 73 int wait; 74 cpumask_t pending; 75 cpumask_t unfinished; 76 }; 77 78 static struct smp_call_struct * volatile smp_call_function_data; 79 static DEFINE_SPINLOCK(smp_call_function_lock); 80 81 int __init __cpu_up(unsigned int cpu) 82 { 83 struct task_struct *idle; 84 pgd_t *pgd; 85 pmd_t *pmd; 86 int ret; 87 88 /* 89 * Spawn a new process manually. Grab a pointer to 90 * its task struct so we can mess with it 91 */ 92 idle = fork_idle(cpu); 93 if (IS_ERR(idle)) { 94 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 95 return PTR_ERR(idle); 96 } 97 98 /* 99 * Allocate initial page tables to allow the new CPU to 100 * enable the MMU safely. This essentially means a set 101 * of our "standard" page tables, with the addition of 102 * a 1:1 mapping for the physical address of the kernel. 103 */ 104 pgd = pgd_alloc(&init_mm); 105 pmd = pmd_offset(pgd, PHYS_OFFSET); 106 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 107 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 108 109 /* 110 * We need to tell the secondary core where to find 111 * its stack and the page tables. 112 */ 113 secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8; 114 secondary_data.pgdir = virt_to_phys(pgd); 115 wmb(); 116 117 /* 118 * Now bring the CPU into our world. 119 */ 120 ret = boot_secondary(cpu, idle); 121 if (ret == 0) { 122 unsigned long timeout; 123 124 /* 125 * CPU was successfully started, wait for it 126 * to come online or time out. 127 */ 128 timeout = jiffies + HZ; 129 while (time_before(jiffies, timeout)) { 130 if (cpu_online(cpu)) 131 break; 132 133 udelay(10); 134 barrier(); 135 } 136 137 if (!cpu_online(cpu)) 138 ret = -EIO; 139 } 140 141 secondary_data.stack = 0; 142 secondary_data.pgdir = 0; 143 144 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0); 145 pgd_free(pgd); 146 147 if (ret) { 148 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 149 150 /* 151 * FIXME: We need to clean up the new idle thread. --rmk 152 */ 153 } 154 155 return ret; 156 } 157 158 /* 159 * This is the secondary CPU boot entry. We're using this CPUs 160 * idle thread stack, but a set of temporary page tables. 161 */ 162 asmlinkage void __init secondary_start_kernel(void) 163 { 164 struct mm_struct *mm = &init_mm; 165 unsigned int cpu = smp_processor_id(); 166 167 printk("CPU%u: Booted secondary processor\n", cpu); 168 169 /* 170 * All kernel threads share the same mm context; grab a 171 * reference and switch to it. 172 */ 173 atomic_inc(&mm->mm_users); 174 atomic_inc(&mm->mm_count); 175 current->active_mm = mm; 176 cpu_set(cpu, mm->cpu_vm_mask); 177 cpu_switch_mm(mm->pgd, mm); 178 enter_lazy_tlb(mm, current); 179 180 cpu_init(); 181 182 /* 183 * Give the platform a chance to do its own initialisation. 184 */ 185 platform_secondary_init(cpu); 186 187 /* 188 * Enable local interrupts. 189 */ 190 local_irq_enable(); 191 local_fiq_enable(); 192 193 calibrate_delay(); 194 195 smp_store_cpu_info(cpu); 196 197 /* 198 * OK, now it's safe to let the boot CPU continue 199 */ 200 cpu_set(cpu, cpu_online_map); 201 202 /* 203 * OK, it's off to the idle thread for us 204 */ 205 cpu_idle(); 206 } 207 208 /* 209 * Called by both boot and secondaries to move global data into 210 * per-processor storage. 211 */ 212 void __init smp_store_cpu_info(unsigned int cpuid) 213 { 214 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 215 216 cpu_info->loops_per_jiffy = loops_per_jiffy; 217 } 218 219 void __init smp_cpus_done(unsigned int max_cpus) 220 { 221 int cpu; 222 unsigned long bogosum = 0; 223 224 for_each_online_cpu(cpu) 225 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 226 227 printk(KERN_INFO "SMP: Total of %d processors activated " 228 "(%lu.%02lu BogoMIPS).\n", 229 num_online_cpus(), 230 bogosum / (500000/HZ), 231 (bogosum / (5000/HZ)) % 100); 232 } 233 234 void __init smp_prepare_boot_cpu(void) 235 { 236 unsigned int cpu = smp_processor_id(); 237 238 cpu_set(cpu, cpu_present_mask); 239 cpu_set(cpu, cpu_online_map); 240 } 241 242 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 243 { 244 unsigned long flags; 245 unsigned int cpu; 246 247 local_irq_save(flags); 248 249 for_each_cpu_mask(cpu, callmap) { 250 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 251 252 spin_lock(&ipi->lock); 253 ipi->bits |= 1 << msg; 254 spin_unlock(&ipi->lock); 255 } 256 257 /* 258 * Call the platform specific cross-CPU call function. 259 */ 260 smp_cross_call(callmap); 261 262 local_irq_restore(flags); 263 } 264 265 /* 266 * You must not call this function with disabled interrupts, from a 267 * hardware interrupt handler, nor from a bottom half handler. 268 */ 269 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry, 270 int wait, cpumask_t callmap) 271 { 272 struct smp_call_struct data; 273 unsigned long timeout; 274 int ret = 0; 275 276 data.func = func; 277 data.info = info; 278 data.wait = wait; 279 280 cpu_clear(smp_processor_id(), callmap); 281 if (cpus_empty(callmap)) 282 goto out; 283 284 data.pending = callmap; 285 if (wait) 286 data.unfinished = callmap; 287 288 /* 289 * try to get the mutex on smp_call_function_data 290 */ 291 spin_lock(&smp_call_function_lock); 292 smp_call_function_data = &data; 293 294 send_ipi_message(callmap, IPI_CALL_FUNC); 295 296 timeout = jiffies + HZ; 297 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 298 barrier(); 299 300 /* 301 * did we time out? 302 */ 303 if (!cpus_empty(data.pending)) { 304 /* 305 * this may be causing our panic - report it 306 */ 307 printk(KERN_CRIT 308 "CPU%u: smp_call_function timeout for %p(%p)\n" 309 " callmap %lx pending %lx, %swait\n", 310 smp_processor_id(), func, info, callmap, data.pending, 311 wait ? "" : "no "); 312 313 /* 314 * TRACE 315 */ 316 timeout = jiffies + (5 * HZ); 317 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 318 barrier(); 319 320 if (cpus_empty(data.pending)) 321 printk(KERN_CRIT " RESOLVED\n"); 322 else 323 printk(KERN_CRIT " STILL STUCK\n"); 324 } 325 326 /* 327 * whatever happened, we're done with the data, so release it 328 */ 329 smp_call_function_data = NULL; 330 spin_unlock(&smp_call_function_lock); 331 332 if (!cpus_empty(data.pending)) { 333 ret = -ETIMEDOUT; 334 goto out; 335 } 336 337 if (wait) 338 while (!cpus_empty(data.unfinished)) 339 barrier(); 340 out: 341 342 return 0; 343 } 344 345 int smp_call_function(void (*func)(void *info), void *info, int retry, 346 int wait) 347 { 348 return smp_call_function_on_cpu(func, info, retry, wait, 349 cpu_online_map); 350 } 351 352 void show_ipi_list(struct seq_file *p) 353 { 354 unsigned int cpu; 355 356 seq_puts(p, "IPI:"); 357 358 for_each_online_cpu(cpu) 359 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 360 361 seq_putc(p, '\n'); 362 } 363 364 static void ipi_timer(struct pt_regs *regs) 365 { 366 int user = user_mode(regs); 367 368 irq_enter(); 369 profile_tick(CPU_PROFILING, regs); 370 update_process_times(user); 371 irq_exit(); 372 } 373 374 /* 375 * ipi_call_function - handle IPI from smp_call_function() 376 * 377 * Note that we copy data out of the cross-call structure and then 378 * let the caller know that we're here and have done with their data 379 */ 380 static void ipi_call_function(unsigned int cpu) 381 { 382 struct smp_call_struct *data = smp_call_function_data; 383 void (*func)(void *info) = data->func; 384 void *info = data->info; 385 int wait = data->wait; 386 387 cpu_clear(cpu, data->pending); 388 389 func(info); 390 391 if (wait) 392 cpu_clear(cpu, data->unfinished); 393 } 394 395 static DEFINE_SPINLOCK(stop_lock); 396 397 /* 398 * ipi_cpu_stop - handle IPI from smp_send_stop() 399 */ 400 static void ipi_cpu_stop(unsigned int cpu) 401 { 402 spin_lock(&stop_lock); 403 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 404 dump_stack(); 405 spin_unlock(&stop_lock); 406 407 cpu_clear(cpu, cpu_online_map); 408 409 local_fiq_disable(); 410 local_irq_disable(); 411 412 while (1) 413 cpu_relax(); 414 } 415 416 /* 417 * Main handler for inter-processor interrupts 418 * 419 * For ARM, the ipimask now only identifies a single 420 * category of IPI (Bit 1 IPIs have been replaced by a 421 * different mechanism): 422 * 423 * Bit 0 - Inter-processor function call 424 */ 425 void do_IPI(struct pt_regs *regs) 426 { 427 unsigned int cpu = smp_processor_id(); 428 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 429 430 ipi->ipi_count++; 431 432 for (;;) { 433 unsigned long msgs; 434 435 spin_lock(&ipi->lock); 436 msgs = ipi->bits; 437 ipi->bits = 0; 438 spin_unlock(&ipi->lock); 439 440 if (!msgs) 441 break; 442 443 do { 444 unsigned nextmsg; 445 446 nextmsg = msgs & -msgs; 447 msgs &= ~nextmsg; 448 nextmsg = ffz(~nextmsg); 449 450 switch (nextmsg) { 451 case IPI_TIMER: 452 ipi_timer(regs); 453 break; 454 455 case IPI_RESCHEDULE: 456 /* 457 * nothing more to do - eveything is 458 * done on the interrupt return path 459 */ 460 break; 461 462 case IPI_CALL_FUNC: 463 ipi_call_function(cpu); 464 break; 465 466 case IPI_CPU_STOP: 467 ipi_cpu_stop(cpu); 468 break; 469 470 default: 471 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 472 cpu, nextmsg); 473 break; 474 } 475 } while (msgs); 476 } 477 } 478 479 void smp_send_reschedule(int cpu) 480 { 481 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 482 } 483 484 void smp_send_timer(void) 485 { 486 cpumask_t mask = cpu_online_map; 487 cpu_clear(smp_processor_id(), mask); 488 send_ipi_message(mask, IPI_TIMER); 489 } 490 491 void smp_send_stop(void) 492 { 493 cpumask_t mask = cpu_online_map; 494 cpu_clear(smp_processor_id(), mask); 495 send_ipi_message(mask, IPI_CPU_STOP); 496 } 497 498 /* 499 * not supported here 500 */ 501 int __init setup_profiling_timer(unsigned int multiplier) 502 { 503 return -EINVAL; 504 } 505 506 static int 507 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait, 508 cpumask_t mask) 509 { 510 int ret = 0; 511 512 preempt_disable(); 513 514 ret = smp_call_function_on_cpu(func, info, retry, wait, mask); 515 if (cpu_isset(smp_processor_id(), mask)) 516 func(info); 517 518 preempt_enable(); 519 520 return ret; 521 } 522 523 /**********************************************************************/ 524 525 /* 526 * TLB operations 527 */ 528 struct tlb_args { 529 struct vm_area_struct *ta_vma; 530 unsigned long ta_start; 531 unsigned long ta_end; 532 }; 533 534 static inline void ipi_flush_tlb_all(void *ignored) 535 { 536 local_flush_tlb_all(); 537 } 538 539 static inline void ipi_flush_tlb_mm(void *arg) 540 { 541 struct mm_struct *mm = (struct mm_struct *)arg; 542 543 local_flush_tlb_mm(mm); 544 } 545 546 static inline void ipi_flush_tlb_page(void *arg) 547 { 548 struct tlb_args *ta = (struct tlb_args *)arg; 549 550 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 551 } 552 553 static inline void ipi_flush_tlb_kernel_page(void *arg) 554 { 555 struct tlb_args *ta = (struct tlb_args *)arg; 556 557 local_flush_tlb_kernel_page(ta->ta_start); 558 } 559 560 static inline void ipi_flush_tlb_range(void *arg) 561 { 562 struct tlb_args *ta = (struct tlb_args *)arg; 563 564 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 565 } 566 567 static inline void ipi_flush_tlb_kernel_range(void *arg) 568 { 569 struct tlb_args *ta = (struct tlb_args *)arg; 570 571 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 572 } 573 574 void flush_tlb_all(void) 575 { 576 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1); 577 } 578 579 void flush_tlb_mm(struct mm_struct *mm) 580 { 581 cpumask_t mask = mm->cpu_vm_mask; 582 583 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask); 584 } 585 586 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 587 { 588 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 589 struct tlb_args ta; 590 591 ta.ta_vma = vma; 592 ta.ta_start = uaddr; 593 594 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask); 595 } 596 597 void flush_tlb_kernel_page(unsigned long kaddr) 598 { 599 struct tlb_args ta; 600 601 ta.ta_start = kaddr; 602 603 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1); 604 } 605 606 void flush_tlb_range(struct vm_area_struct *vma, 607 unsigned long start, unsigned long end) 608 { 609 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 610 struct tlb_args ta; 611 612 ta.ta_vma = vma; 613 ta.ta_start = start; 614 ta.ta_end = end; 615 616 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask); 617 } 618 619 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 620 { 621 struct tlb_args ta; 622 623 ta.ta_start = start; 624 ta.ta_end = end; 625 626 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1); 627 } 628