xref: /linux/arch/arm/kernel/smp.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
23 
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
33 
34 /*
35  * bitmask of present and online CPUs.
36  * The present bitmask indicates that the CPU is physically present.
37  * The online bitmask indicates that the CPU is up and running.
38  */
39 cpumask_t cpu_present_mask;
40 cpumask_t cpu_online_map;
41 
42 /*
43  * as from 2.5, kernels no longer have an init_tasks structure
44  * so we need some other way of telling a new secondary core
45  * where to place its SVC stack
46  */
47 struct secondary_data secondary_data;
48 
49 /*
50  * structures for inter-processor calls
51  * - A collection of single bit ipi messages.
52  */
53 struct ipi_data {
54 	spinlock_t lock;
55 	unsigned long ipi_count;
56 	unsigned long bits;
57 };
58 
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 	.lock	= SPIN_LOCK_UNLOCKED,
61 };
62 
63 enum ipi_msg_type {
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CPU_STOP,
68 };
69 
70 struct smp_call_struct {
71 	void (*func)(void *info);
72 	void *info;
73 	int wait;
74 	cpumask_t pending;
75 	cpumask_t unfinished;
76 };
77 
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
80 
81 int __init __cpu_up(unsigned int cpu)
82 {
83 	struct task_struct *idle;
84 	pgd_t *pgd;
85 	pmd_t *pmd;
86 	int ret;
87 
88 	/*
89 	 * Spawn a new process manually.  Grab a pointer to
90 	 * its task struct so we can mess with it
91 	 */
92 	idle = fork_idle(cpu);
93 	if (IS_ERR(idle)) {
94 		printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
95 		return PTR_ERR(idle);
96 	}
97 
98 	/*
99 	 * Allocate initial page tables to allow the new CPU to
100 	 * enable the MMU safely.  This essentially means a set
101 	 * of our "standard" page tables, with the addition of
102 	 * a 1:1 mapping for the physical address of the kernel.
103 	 */
104 	pgd = pgd_alloc(&init_mm);
105 	pmd = pmd_offset(pgd, PHYS_OFFSET);
106 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
107 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
108 
109 	/*
110 	 * We need to tell the secondary core where to find
111 	 * its stack and the page tables.
112 	 */
113 	secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8;
114 	secondary_data.pgdir = virt_to_phys(pgd);
115 	wmb();
116 
117 	/*
118 	 * Now bring the CPU into our world.
119 	 */
120 	ret = boot_secondary(cpu, idle);
121 	if (ret == 0) {
122 		unsigned long timeout;
123 
124 		/*
125 		 * CPU was successfully started, wait for it
126 		 * to come online or time out.
127 		 */
128 		timeout = jiffies + HZ;
129 		while (time_before(jiffies, timeout)) {
130 			if (cpu_online(cpu))
131 				break;
132 
133 			udelay(10);
134 			barrier();
135 		}
136 
137 		if (!cpu_online(cpu))
138 			ret = -EIO;
139 	}
140 
141 	secondary_data.stack = 0;
142 	secondary_data.pgdir = 0;
143 
144 	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
145 	pgd_free(pgd);
146 
147 	if (ret) {
148 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
149 
150 		/*
151 		 * FIXME: We need to clean up the new idle thread. --rmk
152 		 */
153 	}
154 
155 	return ret;
156 }
157 
158 /*
159  * This is the secondary CPU boot entry.  We're using this CPUs
160  * idle thread stack, but a set of temporary page tables.
161  */
162 asmlinkage void __init secondary_start_kernel(void)
163 {
164 	struct mm_struct *mm = &init_mm;
165 	unsigned int cpu = smp_processor_id();
166 
167 	printk("CPU%u: Booted secondary processor\n", cpu);
168 
169 	/*
170 	 * All kernel threads share the same mm context; grab a
171 	 * reference and switch to it.
172 	 */
173 	atomic_inc(&mm->mm_users);
174 	atomic_inc(&mm->mm_count);
175 	current->active_mm = mm;
176 	cpu_set(cpu, mm->cpu_vm_mask);
177 	cpu_switch_mm(mm->pgd, mm);
178 	enter_lazy_tlb(mm, current);
179 
180 	cpu_init();
181 
182 	/*
183 	 * Give the platform a chance to do its own initialisation.
184 	 */
185 	platform_secondary_init(cpu);
186 
187 	/*
188 	 * Enable local interrupts.
189 	 */
190 	local_irq_enable();
191 	local_fiq_enable();
192 
193 	calibrate_delay();
194 
195 	smp_store_cpu_info(cpu);
196 
197 	/*
198 	 * OK, now it's safe to let the boot CPU continue
199 	 */
200 	cpu_set(cpu, cpu_online_map);
201 
202 	/*
203 	 * OK, it's off to the idle thread for us
204 	 */
205 	cpu_idle();
206 }
207 
208 /*
209  * Called by both boot and secondaries to move global data into
210  * per-processor storage.
211  */
212 void __init smp_store_cpu_info(unsigned int cpuid)
213 {
214 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
215 
216 	cpu_info->loops_per_jiffy = loops_per_jiffy;
217 }
218 
219 void __init smp_cpus_done(unsigned int max_cpus)
220 {
221 	int cpu;
222 	unsigned long bogosum = 0;
223 
224 	for_each_online_cpu(cpu)
225 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
226 
227 	printk(KERN_INFO "SMP: Total of %d processors activated "
228 	       "(%lu.%02lu BogoMIPS).\n",
229 	       num_online_cpus(),
230 	       bogosum / (500000/HZ),
231 	       (bogosum / (5000/HZ)) % 100);
232 }
233 
234 void __init smp_prepare_boot_cpu(void)
235 {
236 	unsigned int cpu = smp_processor_id();
237 
238 	cpu_set(cpu, cpu_present_mask);
239 	cpu_set(cpu, cpu_online_map);
240 }
241 
242 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
243 {
244 	unsigned long flags;
245 	unsigned int cpu;
246 
247 	local_irq_save(flags);
248 
249 	for_each_cpu_mask(cpu, callmap) {
250 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
251 
252 		spin_lock(&ipi->lock);
253 		ipi->bits |= 1 << msg;
254 		spin_unlock(&ipi->lock);
255 	}
256 
257 	/*
258 	 * Call the platform specific cross-CPU call function.
259 	 */
260 	smp_cross_call(callmap);
261 
262 	local_irq_restore(flags);
263 }
264 
265 /*
266  * You must not call this function with disabled interrupts, from a
267  * hardware interrupt handler, nor from a bottom half handler.
268  */
269 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
270                              int wait, cpumask_t callmap)
271 {
272 	struct smp_call_struct data;
273 	unsigned long timeout;
274 	int ret = 0;
275 
276 	data.func = func;
277 	data.info = info;
278 	data.wait = wait;
279 
280 	cpu_clear(smp_processor_id(), callmap);
281 	if (cpus_empty(callmap))
282 		goto out;
283 
284 	data.pending = callmap;
285 	if (wait)
286 		data.unfinished = callmap;
287 
288 	/*
289 	 * try to get the mutex on smp_call_function_data
290 	 */
291 	spin_lock(&smp_call_function_lock);
292 	smp_call_function_data = &data;
293 
294 	send_ipi_message(callmap, IPI_CALL_FUNC);
295 
296 	timeout = jiffies + HZ;
297 	while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
298 		barrier();
299 
300 	/*
301 	 * did we time out?
302 	 */
303 	if (!cpus_empty(data.pending)) {
304 		/*
305 		 * this may be causing our panic - report it
306 		 */
307 		printk(KERN_CRIT
308 		       "CPU%u: smp_call_function timeout for %p(%p)\n"
309 		       "      callmap %lx pending %lx, %swait\n",
310 		       smp_processor_id(), func, info, callmap, data.pending,
311 		       wait ? "" : "no ");
312 
313 		/*
314 		 * TRACE
315 		 */
316 		timeout = jiffies + (5 * HZ);
317 		while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
318 			barrier();
319 
320 		if (cpus_empty(data.pending))
321 			printk(KERN_CRIT "     RESOLVED\n");
322 		else
323 			printk(KERN_CRIT "     STILL STUCK\n");
324 	}
325 
326 	/*
327 	 * whatever happened, we're done with the data, so release it
328 	 */
329 	smp_call_function_data = NULL;
330 	spin_unlock(&smp_call_function_lock);
331 
332 	if (!cpus_empty(data.pending)) {
333 		ret = -ETIMEDOUT;
334 		goto out;
335 	}
336 
337 	if (wait)
338 		while (!cpus_empty(data.unfinished))
339 			barrier();
340  out:
341 
342 	return 0;
343 }
344 
345 int smp_call_function(void (*func)(void *info), void *info, int retry,
346                       int wait)
347 {
348 	return smp_call_function_on_cpu(func, info, retry, wait,
349 					cpu_online_map);
350 }
351 
352 void show_ipi_list(struct seq_file *p)
353 {
354 	unsigned int cpu;
355 
356 	seq_puts(p, "IPI:");
357 
358 	for_each_online_cpu(cpu)
359 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
360 
361 	seq_putc(p, '\n');
362 }
363 
364 static void ipi_timer(struct pt_regs *regs)
365 {
366 	int user = user_mode(regs);
367 
368 	irq_enter();
369 	profile_tick(CPU_PROFILING, regs);
370 	update_process_times(user);
371 	irq_exit();
372 }
373 
374 /*
375  * ipi_call_function - handle IPI from smp_call_function()
376  *
377  * Note that we copy data out of the cross-call structure and then
378  * let the caller know that we're here and have done with their data
379  */
380 static void ipi_call_function(unsigned int cpu)
381 {
382 	struct smp_call_struct *data = smp_call_function_data;
383 	void (*func)(void *info) = data->func;
384 	void *info = data->info;
385 	int wait = data->wait;
386 
387 	cpu_clear(cpu, data->pending);
388 
389 	func(info);
390 
391 	if (wait)
392 		cpu_clear(cpu, data->unfinished);
393 }
394 
395 static DEFINE_SPINLOCK(stop_lock);
396 
397 /*
398  * ipi_cpu_stop - handle IPI from smp_send_stop()
399  */
400 static void ipi_cpu_stop(unsigned int cpu)
401 {
402 	spin_lock(&stop_lock);
403 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
404 	dump_stack();
405 	spin_unlock(&stop_lock);
406 
407 	cpu_clear(cpu, cpu_online_map);
408 
409 	local_fiq_disable();
410 	local_irq_disable();
411 
412 	while (1)
413 		cpu_relax();
414 }
415 
416 /*
417  * Main handler for inter-processor interrupts
418  *
419  * For ARM, the ipimask now only identifies a single
420  * category of IPI (Bit 1 IPIs have been replaced by a
421  * different mechanism):
422  *
423  *  Bit 0 - Inter-processor function call
424  */
425 void do_IPI(struct pt_regs *regs)
426 {
427 	unsigned int cpu = smp_processor_id();
428 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
429 
430 	ipi->ipi_count++;
431 
432 	for (;;) {
433 		unsigned long msgs;
434 
435 		spin_lock(&ipi->lock);
436 		msgs = ipi->bits;
437 		ipi->bits = 0;
438 		spin_unlock(&ipi->lock);
439 
440 		if (!msgs)
441 			break;
442 
443 		do {
444 			unsigned nextmsg;
445 
446 			nextmsg = msgs & -msgs;
447 			msgs &= ~nextmsg;
448 			nextmsg = ffz(~nextmsg);
449 
450 			switch (nextmsg) {
451 			case IPI_TIMER:
452 				ipi_timer(regs);
453 				break;
454 
455 			case IPI_RESCHEDULE:
456 				/*
457 				 * nothing more to do - eveything is
458 				 * done on the interrupt return path
459 				 */
460 				break;
461 
462 			case IPI_CALL_FUNC:
463 				ipi_call_function(cpu);
464 				break;
465 
466 			case IPI_CPU_STOP:
467 				ipi_cpu_stop(cpu);
468 				break;
469 
470 			default:
471 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
472 				       cpu, nextmsg);
473 				break;
474 			}
475 		} while (msgs);
476 	}
477 }
478 
479 void smp_send_reschedule(int cpu)
480 {
481 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
482 }
483 
484 void smp_send_timer(void)
485 {
486 	cpumask_t mask = cpu_online_map;
487 	cpu_clear(smp_processor_id(), mask);
488 	send_ipi_message(mask, IPI_TIMER);
489 }
490 
491 void smp_send_stop(void)
492 {
493 	cpumask_t mask = cpu_online_map;
494 	cpu_clear(smp_processor_id(), mask);
495 	send_ipi_message(mask, IPI_CPU_STOP);
496 }
497 
498 /*
499  * not supported here
500  */
501 int __init setup_profiling_timer(unsigned int multiplier)
502 {
503 	return -EINVAL;
504 }
505 
506 static int
507 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
508 		 cpumask_t mask)
509 {
510 	int ret = 0;
511 
512 	preempt_disable();
513 
514 	ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
515 	if (cpu_isset(smp_processor_id(), mask))
516 		func(info);
517 
518 	preempt_enable();
519 
520 	return ret;
521 }
522 
523 /**********************************************************************/
524 
525 /*
526  * TLB operations
527  */
528 struct tlb_args {
529 	struct vm_area_struct *ta_vma;
530 	unsigned long ta_start;
531 	unsigned long ta_end;
532 };
533 
534 static inline void ipi_flush_tlb_all(void *ignored)
535 {
536 	local_flush_tlb_all();
537 }
538 
539 static inline void ipi_flush_tlb_mm(void *arg)
540 {
541 	struct mm_struct *mm = (struct mm_struct *)arg;
542 
543 	local_flush_tlb_mm(mm);
544 }
545 
546 static inline void ipi_flush_tlb_page(void *arg)
547 {
548 	struct tlb_args *ta = (struct tlb_args *)arg;
549 
550 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
551 }
552 
553 static inline void ipi_flush_tlb_kernel_page(void *arg)
554 {
555 	struct tlb_args *ta = (struct tlb_args *)arg;
556 
557 	local_flush_tlb_kernel_page(ta->ta_start);
558 }
559 
560 static inline void ipi_flush_tlb_range(void *arg)
561 {
562 	struct tlb_args *ta = (struct tlb_args *)arg;
563 
564 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
565 }
566 
567 static inline void ipi_flush_tlb_kernel_range(void *arg)
568 {
569 	struct tlb_args *ta = (struct tlb_args *)arg;
570 
571 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
572 }
573 
574 void flush_tlb_all(void)
575 {
576 	on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
577 }
578 
579 void flush_tlb_mm(struct mm_struct *mm)
580 {
581 	cpumask_t mask = mm->cpu_vm_mask;
582 
583 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
584 }
585 
586 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
587 {
588 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
589 	struct tlb_args ta;
590 
591 	ta.ta_vma = vma;
592 	ta.ta_start = uaddr;
593 
594 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
595 }
596 
597 void flush_tlb_kernel_page(unsigned long kaddr)
598 {
599 	struct tlb_args ta;
600 
601 	ta.ta_start = kaddr;
602 
603 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
604 }
605 
606 void flush_tlb_range(struct vm_area_struct *vma,
607                      unsigned long start, unsigned long end)
608 {
609 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
610 	struct tlb_args ta;
611 
612 	ta.ta_vma = vma;
613 	ta.ta_start = start;
614 	ta.ta_end = end;
615 
616 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
617 }
618 
619 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
620 {
621 	struct tlb_args ta;
622 
623 	ta.ta_start = start;
624 	ta.ta_end = end;
625 
626 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
627 }
628