1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 28 #include <asm/atomic.h> 29 #include <asm/cacheflush.h> 30 #include <asm/cpu.h> 31 #include <asm/cputype.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/pgalloc.h> 35 #include <asm/processor.h> 36 #include <asm/tlbflush.h> 37 #include <asm/ptrace.h> 38 #include <asm/localtimer.h> 39 #include <asm/smp_plat.h> 40 41 /* 42 * as from 2.5, kernels no longer have an init_tasks structure 43 * so we need some other way of telling a new secondary core 44 * where to place its SVC stack 45 */ 46 struct secondary_data secondary_data; 47 48 /* 49 * structures for inter-processor calls 50 * - A collection of single bit ipi messages. 51 */ 52 struct ipi_data { 53 spinlock_t lock; 54 unsigned long ipi_count; 55 unsigned long bits; 56 }; 57 58 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 59 .lock = SPIN_LOCK_UNLOCKED, 60 }; 61 62 enum ipi_msg_type { 63 IPI_TIMER, 64 IPI_RESCHEDULE, 65 IPI_CALL_FUNC, 66 IPI_CALL_FUNC_SINGLE, 67 IPI_CPU_STOP, 68 }; 69 70 int __cpuinit __cpu_up(unsigned int cpu) 71 { 72 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 73 struct task_struct *idle = ci->idle; 74 pgd_t *pgd; 75 pmd_t *pmd; 76 int ret; 77 78 /* 79 * Spawn a new process manually, if not already done. 80 * Grab a pointer to its task struct so we can mess with it 81 */ 82 if (!idle) { 83 idle = fork_idle(cpu); 84 if (IS_ERR(idle)) { 85 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 86 return PTR_ERR(idle); 87 } 88 ci->idle = idle; 89 } else { 90 /* 91 * Since this idle thread is being re-used, call 92 * init_idle() to reinitialize the thread structure. 93 */ 94 init_idle(idle, cpu); 95 } 96 97 /* 98 * Allocate initial page tables to allow the new CPU to 99 * enable the MMU safely. This essentially means a set 100 * of our "standard" page tables, with the addition of 101 * a 1:1 mapping for the physical address of the kernel. 102 */ 103 pgd = pgd_alloc(&init_mm); 104 pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET); 105 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 106 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 107 flush_pmd_entry(pmd); 108 outer_clean_range(__pa(pmd), __pa(pmd + 1)); 109 110 /* 111 * We need to tell the secondary core where to find 112 * its stack and the page tables. 113 */ 114 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 115 secondary_data.pgdir = virt_to_phys(pgd); 116 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 117 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 118 119 /* 120 * Now bring the CPU into our world. 121 */ 122 ret = boot_secondary(cpu, idle); 123 if (ret == 0) { 124 unsigned long timeout; 125 126 /* 127 * CPU was successfully started, wait for it 128 * to come online or time out. 129 */ 130 timeout = jiffies + HZ; 131 while (time_before(jiffies, timeout)) { 132 if (cpu_online(cpu)) 133 break; 134 135 udelay(10); 136 barrier(); 137 } 138 139 if (!cpu_online(cpu)) 140 ret = -EIO; 141 } 142 143 secondary_data.stack = NULL; 144 secondary_data.pgdir = 0; 145 146 *pmd = __pmd(0); 147 clean_pmd_entry(pmd); 148 pgd_free(&init_mm, pgd); 149 150 if (ret) { 151 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 152 153 /* 154 * FIXME: We need to clean up the new idle thread. --rmk 155 */ 156 } 157 158 return ret; 159 } 160 161 #ifdef CONFIG_HOTPLUG_CPU 162 /* 163 * __cpu_disable runs on the processor to be shutdown. 164 */ 165 int __cpu_disable(void) 166 { 167 unsigned int cpu = smp_processor_id(); 168 struct task_struct *p; 169 int ret; 170 171 ret = platform_cpu_disable(cpu); 172 if (ret) 173 return ret; 174 175 /* 176 * Take this CPU offline. Once we clear this, we can't return, 177 * and we must not schedule until we're ready to give up the cpu. 178 */ 179 set_cpu_online(cpu, false); 180 181 /* 182 * OK - migrate IRQs away from this CPU 183 */ 184 migrate_irqs(); 185 186 /* 187 * Stop the local timer for this CPU. 188 */ 189 local_timer_stop(); 190 191 /* 192 * Flush user cache and TLB mappings, and then remove this CPU 193 * from the vm mask set of all processes. 194 */ 195 flush_cache_all(); 196 local_flush_tlb_all(); 197 198 read_lock(&tasklist_lock); 199 for_each_process(p) { 200 if (p->mm) 201 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 202 } 203 read_unlock(&tasklist_lock); 204 205 return 0; 206 } 207 208 /* 209 * called on the thread which is asking for a CPU to be shutdown - 210 * waits until shutdown has completed, or it is timed out. 211 */ 212 void __cpu_die(unsigned int cpu) 213 { 214 if (!platform_cpu_kill(cpu)) 215 printk("CPU%u: unable to kill\n", cpu); 216 } 217 218 /* 219 * Called from the idle thread for the CPU which has been shutdown. 220 * 221 * Note that we disable IRQs here, but do not re-enable them 222 * before returning to the caller. This is also the behaviour 223 * of the other hotplug-cpu capable cores, so presumably coming 224 * out of idle fixes this. 225 */ 226 void __ref cpu_die(void) 227 { 228 unsigned int cpu = smp_processor_id(); 229 230 local_irq_disable(); 231 idle_task_exit(); 232 233 /* 234 * actual CPU shutdown procedure is at least platform (if not 235 * CPU) specific 236 */ 237 platform_cpu_die(cpu); 238 239 /* 240 * Do not return to the idle loop - jump back to the secondary 241 * cpu initialisation. There's some initialisation which needs 242 * to be repeated to undo the effects of taking the CPU offline. 243 */ 244 __asm__("mov sp, %0\n" 245 " b secondary_start_kernel" 246 : 247 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 248 } 249 #endif /* CONFIG_HOTPLUG_CPU */ 250 251 /* 252 * This is the secondary CPU boot entry. We're using this CPUs 253 * idle thread stack, but a set of temporary page tables. 254 */ 255 asmlinkage void __cpuinit secondary_start_kernel(void) 256 { 257 struct mm_struct *mm = &init_mm; 258 unsigned int cpu = smp_processor_id(); 259 260 printk("CPU%u: Booted secondary processor\n", cpu); 261 262 /* 263 * All kernel threads share the same mm context; grab a 264 * reference and switch to it. 265 */ 266 atomic_inc(&mm->mm_users); 267 atomic_inc(&mm->mm_count); 268 current->active_mm = mm; 269 cpumask_set_cpu(cpu, mm_cpumask(mm)); 270 cpu_switch_mm(mm->pgd, mm); 271 enter_lazy_tlb(mm, current); 272 local_flush_tlb_all(); 273 274 cpu_init(); 275 preempt_disable(); 276 277 /* 278 * Give the platform a chance to do its own initialisation. 279 */ 280 platform_secondary_init(cpu); 281 282 /* 283 * Enable local interrupts. 284 */ 285 notify_cpu_starting(cpu); 286 local_irq_enable(); 287 local_fiq_enable(); 288 289 /* 290 * Setup the percpu timer for this CPU. 291 */ 292 percpu_timer_setup(); 293 294 calibrate_delay(); 295 296 smp_store_cpu_info(cpu); 297 298 /* 299 * OK, now it's safe to let the boot CPU continue 300 */ 301 set_cpu_online(cpu, true); 302 303 /* 304 * OK, it's off to the idle thread for us 305 */ 306 cpu_idle(); 307 } 308 309 /* 310 * Called by both boot and secondaries to move global data into 311 * per-processor storage. 312 */ 313 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 314 { 315 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 316 317 cpu_info->loops_per_jiffy = loops_per_jiffy; 318 } 319 320 void __init smp_cpus_done(unsigned int max_cpus) 321 { 322 int cpu; 323 unsigned long bogosum = 0; 324 325 for_each_online_cpu(cpu) 326 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 327 328 printk(KERN_INFO "SMP: Total of %d processors activated " 329 "(%lu.%02lu BogoMIPS).\n", 330 num_online_cpus(), 331 bogosum / (500000/HZ), 332 (bogosum / (5000/HZ)) % 100); 333 } 334 335 void __init smp_prepare_boot_cpu(void) 336 { 337 unsigned int cpu = smp_processor_id(); 338 339 per_cpu(cpu_data, cpu).idle = current; 340 } 341 342 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg) 343 { 344 unsigned long flags; 345 unsigned int cpu; 346 347 local_irq_save(flags); 348 349 for_each_cpu(cpu, mask) { 350 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 351 352 spin_lock(&ipi->lock); 353 ipi->bits |= 1 << msg; 354 spin_unlock(&ipi->lock); 355 } 356 357 /* 358 * Call the platform specific cross-CPU call function. 359 */ 360 smp_cross_call(mask); 361 362 local_irq_restore(flags); 363 } 364 365 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 366 { 367 send_ipi_message(mask, IPI_CALL_FUNC); 368 } 369 370 void arch_send_call_function_single_ipi(int cpu) 371 { 372 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 373 } 374 375 void show_ipi_list(struct seq_file *p) 376 { 377 unsigned int cpu; 378 379 seq_puts(p, "IPI:"); 380 381 for_each_present_cpu(cpu) 382 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 383 384 seq_putc(p, '\n'); 385 } 386 387 void show_local_irqs(struct seq_file *p) 388 { 389 unsigned int cpu; 390 391 seq_printf(p, "LOC: "); 392 393 for_each_present_cpu(cpu) 394 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs); 395 396 seq_putc(p, '\n'); 397 } 398 399 /* 400 * Timer (local or broadcast) support 401 */ 402 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 403 404 static void ipi_timer(void) 405 { 406 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 407 irq_enter(); 408 evt->event_handler(evt); 409 irq_exit(); 410 } 411 412 #ifdef CONFIG_LOCAL_TIMERS 413 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 414 { 415 struct pt_regs *old_regs = set_irq_regs(regs); 416 int cpu = smp_processor_id(); 417 418 if (local_timer_ack()) { 419 irq_stat[cpu].local_timer_irqs++; 420 ipi_timer(); 421 } 422 423 set_irq_regs(old_regs); 424 } 425 #endif 426 427 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 428 static void smp_timer_broadcast(const struct cpumask *mask) 429 { 430 send_ipi_message(mask, IPI_TIMER); 431 } 432 #else 433 #define smp_timer_broadcast NULL 434 #endif 435 436 #ifndef CONFIG_LOCAL_TIMERS 437 static void broadcast_timer_set_mode(enum clock_event_mode mode, 438 struct clock_event_device *evt) 439 { 440 } 441 442 static void local_timer_setup(struct clock_event_device *evt) 443 { 444 evt->name = "dummy_timer"; 445 evt->features = CLOCK_EVT_FEAT_ONESHOT | 446 CLOCK_EVT_FEAT_PERIODIC | 447 CLOCK_EVT_FEAT_DUMMY; 448 evt->rating = 400; 449 evt->mult = 1; 450 evt->set_mode = broadcast_timer_set_mode; 451 452 clockevents_register_device(evt); 453 } 454 #endif 455 456 void __cpuinit percpu_timer_setup(void) 457 { 458 unsigned int cpu = smp_processor_id(); 459 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 460 461 evt->cpumask = cpumask_of(cpu); 462 evt->broadcast = smp_timer_broadcast; 463 464 local_timer_setup(evt); 465 } 466 467 static DEFINE_SPINLOCK(stop_lock); 468 469 /* 470 * ipi_cpu_stop - handle IPI from smp_send_stop() 471 */ 472 static void ipi_cpu_stop(unsigned int cpu) 473 { 474 if (system_state == SYSTEM_BOOTING || 475 system_state == SYSTEM_RUNNING) { 476 spin_lock(&stop_lock); 477 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 478 dump_stack(); 479 spin_unlock(&stop_lock); 480 } 481 482 set_cpu_online(cpu, false); 483 484 local_fiq_disable(); 485 local_irq_disable(); 486 487 while (1) 488 cpu_relax(); 489 } 490 491 /* 492 * Main handler for inter-processor interrupts 493 * 494 * For ARM, the ipimask now only identifies a single 495 * category of IPI (Bit 1 IPIs have been replaced by a 496 * different mechanism): 497 * 498 * Bit 0 - Inter-processor function call 499 */ 500 asmlinkage void __exception do_IPI(struct pt_regs *regs) 501 { 502 unsigned int cpu = smp_processor_id(); 503 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 504 struct pt_regs *old_regs = set_irq_regs(regs); 505 506 ipi->ipi_count++; 507 508 for (;;) { 509 unsigned long msgs; 510 511 spin_lock(&ipi->lock); 512 msgs = ipi->bits; 513 ipi->bits = 0; 514 spin_unlock(&ipi->lock); 515 516 if (!msgs) 517 break; 518 519 do { 520 unsigned nextmsg; 521 522 nextmsg = msgs & -msgs; 523 msgs &= ~nextmsg; 524 nextmsg = ffz(~nextmsg); 525 526 switch (nextmsg) { 527 case IPI_TIMER: 528 ipi_timer(); 529 break; 530 531 case IPI_RESCHEDULE: 532 /* 533 * nothing more to do - eveything is 534 * done on the interrupt return path 535 */ 536 break; 537 538 case IPI_CALL_FUNC: 539 generic_smp_call_function_interrupt(); 540 break; 541 542 case IPI_CALL_FUNC_SINGLE: 543 generic_smp_call_function_single_interrupt(); 544 break; 545 546 case IPI_CPU_STOP: 547 ipi_cpu_stop(cpu); 548 break; 549 550 default: 551 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 552 cpu, nextmsg); 553 break; 554 } 555 } while (msgs); 556 } 557 558 set_irq_regs(old_regs); 559 } 560 561 void smp_send_reschedule(int cpu) 562 { 563 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE); 564 } 565 566 void smp_send_stop(void) 567 { 568 cpumask_t mask = cpu_online_map; 569 cpu_clear(smp_processor_id(), mask); 570 send_ipi_message(&mask, IPI_CPU_STOP); 571 } 572 573 /* 574 * not supported here 575 */ 576 int setup_profiling_timer(unsigned int multiplier) 577 { 578 return -EINVAL; 579 } 580 581 static void 582 on_each_cpu_mask(void (*func)(void *), void *info, int wait, 583 const struct cpumask *mask) 584 { 585 preempt_disable(); 586 587 smp_call_function_many(mask, func, info, wait); 588 if (cpumask_test_cpu(smp_processor_id(), mask)) 589 func(info); 590 591 preempt_enable(); 592 } 593 594 /**********************************************************************/ 595 596 /* 597 * TLB operations 598 */ 599 struct tlb_args { 600 struct vm_area_struct *ta_vma; 601 unsigned long ta_start; 602 unsigned long ta_end; 603 }; 604 605 static inline void ipi_flush_tlb_all(void *ignored) 606 { 607 local_flush_tlb_all(); 608 } 609 610 static inline void ipi_flush_tlb_mm(void *arg) 611 { 612 struct mm_struct *mm = (struct mm_struct *)arg; 613 614 local_flush_tlb_mm(mm); 615 } 616 617 static inline void ipi_flush_tlb_page(void *arg) 618 { 619 struct tlb_args *ta = (struct tlb_args *)arg; 620 621 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 622 } 623 624 static inline void ipi_flush_tlb_kernel_page(void *arg) 625 { 626 struct tlb_args *ta = (struct tlb_args *)arg; 627 628 local_flush_tlb_kernel_page(ta->ta_start); 629 } 630 631 static inline void ipi_flush_tlb_range(void *arg) 632 { 633 struct tlb_args *ta = (struct tlb_args *)arg; 634 635 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 636 } 637 638 static inline void ipi_flush_tlb_kernel_range(void *arg) 639 { 640 struct tlb_args *ta = (struct tlb_args *)arg; 641 642 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 643 } 644 645 void flush_tlb_all(void) 646 { 647 if (tlb_ops_need_broadcast()) 648 on_each_cpu(ipi_flush_tlb_all, NULL, 1); 649 else 650 local_flush_tlb_all(); 651 } 652 653 void flush_tlb_mm(struct mm_struct *mm) 654 { 655 if (tlb_ops_need_broadcast()) 656 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm)); 657 else 658 local_flush_tlb_mm(mm); 659 } 660 661 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 662 { 663 if (tlb_ops_need_broadcast()) { 664 struct tlb_args ta; 665 ta.ta_vma = vma; 666 ta.ta_start = uaddr; 667 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm)); 668 } else 669 local_flush_tlb_page(vma, uaddr); 670 } 671 672 void flush_tlb_kernel_page(unsigned long kaddr) 673 { 674 if (tlb_ops_need_broadcast()) { 675 struct tlb_args ta; 676 ta.ta_start = kaddr; 677 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1); 678 } else 679 local_flush_tlb_kernel_page(kaddr); 680 } 681 682 void flush_tlb_range(struct vm_area_struct *vma, 683 unsigned long start, unsigned long end) 684 { 685 if (tlb_ops_need_broadcast()) { 686 struct tlb_args ta; 687 ta.ta_vma = vma; 688 ta.ta_start = start; 689 ta.ta_end = end; 690 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm)); 691 } else 692 local_flush_tlb_range(vma, start, end); 693 } 694 695 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 696 { 697 if (tlb_ops_need_broadcast()) { 698 struct tlb_args ta; 699 ta.ta_start = start; 700 ta.ta_end = end; 701 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 702 } else 703 local_flush_tlb_kernel_range(start, end); 704 } 705