xref: /linux/arch/arm/kernel/smp.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 
28 #include <asm/atomic.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/pgalloc.h>
35 #include <asm/processor.h>
36 #include <asm/tlbflush.h>
37 #include <asm/ptrace.h>
38 #include <asm/localtimer.h>
39 #include <asm/smp_plat.h>
40 
41 /*
42  * as from 2.5, kernels no longer have an init_tasks structure
43  * so we need some other way of telling a new secondary core
44  * where to place its SVC stack
45  */
46 struct secondary_data secondary_data;
47 
48 /*
49  * structures for inter-processor calls
50  * - A collection of single bit ipi messages.
51  */
52 struct ipi_data {
53 	spinlock_t lock;
54 	unsigned long ipi_count;
55 	unsigned long bits;
56 };
57 
58 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
59 	.lock	= SPIN_LOCK_UNLOCKED,
60 };
61 
62 enum ipi_msg_type {
63 	IPI_TIMER,
64 	IPI_RESCHEDULE,
65 	IPI_CALL_FUNC,
66 	IPI_CALL_FUNC_SINGLE,
67 	IPI_CPU_STOP,
68 };
69 
70 int __cpuinit __cpu_up(unsigned int cpu)
71 {
72 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
73 	struct task_struct *idle = ci->idle;
74 	pgd_t *pgd;
75 	pmd_t *pmd;
76 	int ret;
77 
78 	/*
79 	 * Spawn a new process manually, if not already done.
80 	 * Grab a pointer to its task struct so we can mess with it
81 	 */
82 	if (!idle) {
83 		idle = fork_idle(cpu);
84 		if (IS_ERR(idle)) {
85 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
86 			return PTR_ERR(idle);
87 		}
88 		ci->idle = idle;
89 	} else {
90 		/*
91 		 * Since this idle thread is being re-used, call
92 		 * init_idle() to reinitialize the thread structure.
93 		 */
94 		init_idle(idle, cpu);
95 	}
96 
97 	/*
98 	 * Allocate initial page tables to allow the new CPU to
99 	 * enable the MMU safely.  This essentially means a set
100 	 * of our "standard" page tables, with the addition of
101 	 * a 1:1 mapping for the physical address of the kernel.
102 	 */
103 	pgd = pgd_alloc(&init_mm);
104 	pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
105 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
106 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
107 	flush_pmd_entry(pmd);
108 	outer_clean_range(__pa(pmd), __pa(pmd + 1));
109 
110 	/*
111 	 * We need to tell the secondary core where to find
112 	 * its stack and the page tables.
113 	 */
114 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
115 	secondary_data.pgdir = virt_to_phys(pgd);
116 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
117 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
118 
119 	/*
120 	 * Now bring the CPU into our world.
121 	 */
122 	ret = boot_secondary(cpu, idle);
123 	if (ret == 0) {
124 		unsigned long timeout;
125 
126 		/*
127 		 * CPU was successfully started, wait for it
128 		 * to come online or time out.
129 		 */
130 		timeout = jiffies + HZ;
131 		while (time_before(jiffies, timeout)) {
132 			if (cpu_online(cpu))
133 				break;
134 
135 			udelay(10);
136 			barrier();
137 		}
138 
139 		if (!cpu_online(cpu))
140 			ret = -EIO;
141 	}
142 
143 	secondary_data.stack = NULL;
144 	secondary_data.pgdir = 0;
145 
146 	*pmd = __pmd(0);
147 	clean_pmd_entry(pmd);
148 	pgd_free(&init_mm, pgd);
149 
150 	if (ret) {
151 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
152 
153 		/*
154 		 * FIXME: We need to clean up the new idle thread. --rmk
155 		 */
156 	}
157 
158 	return ret;
159 }
160 
161 #ifdef CONFIG_HOTPLUG_CPU
162 /*
163  * __cpu_disable runs on the processor to be shutdown.
164  */
165 int __cpu_disable(void)
166 {
167 	unsigned int cpu = smp_processor_id();
168 	struct task_struct *p;
169 	int ret;
170 
171 	ret = platform_cpu_disable(cpu);
172 	if (ret)
173 		return ret;
174 
175 	/*
176 	 * Take this CPU offline.  Once we clear this, we can't return,
177 	 * and we must not schedule until we're ready to give up the cpu.
178 	 */
179 	set_cpu_online(cpu, false);
180 
181 	/*
182 	 * OK - migrate IRQs away from this CPU
183 	 */
184 	migrate_irqs();
185 
186 	/*
187 	 * Stop the local timer for this CPU.
188 	 */
189 	local_timer_stop();
190 
191 	/*
192 	 * Flush user cache and TLB mappings, and then remove this CPU
193 	 * from the vm mask set of all processes.
194 	 */
195 	flush_cache_all();
196 	local_flush_tlb_all();
197 
198 	read_lock(&tasklist_lock);
199 	for_each_process(p) {
200 		if (p->mm)
201 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
202 	}
203 	read_unlock(&tasklist_lock);
204 
205 	return 0;
206 }
207 
208 /*
209  * called on the thread which is asking for a CPU to be shutdown -
210  * waits until shutdown has completed, or it is timed out.
211  */
212 void __cpu_die(unsigned int cpu)
213 {
214 	if (!platform_cpu_kill(cpu))
215 		printk("CPU%u: unable to kill\n", cpu);
216 }
217 
218 /*
219  * Called from the idle thread for the CPU which has been shutdown.
220  *
221  * Note that we disable IRQs here, but do not re-enable them
222  * before returning to the caller. This is also the behaviour
223  * of the other hotplug-cpu capable cores, so presumably coming
224  * out of idle fixes this.
225  */
226 void __ref cpu_die(void)
227 {
228 	unsigned int cpu = smp_processor_id();
229 
230 	local_irq_disable();
231 	idle_task_exit();
232 
233 	/*
234 	 * actual CPU shutdown procedure is at least platform (if not
235 	 * CPU) specific
236 	 */
237 	platform_cpu_die(cpu);
238 
239 	/*
240 	 * Do not return to the idle loop - jump back to the secondary
241 	 * cpu initialisation.  There's some initialisation which needs
242 	 * to be repeated to undo the effects of taking the CPU offline.
243 	 */
244 	__asm__("mov	sp, %0\n"
245 	"	b	secondary_start_kernel"
246 		:
247 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
248 }
249 #endif /* CONFIG_HOTPLUG_CPU */
250 
251 /*
252  * This is the secondary CPU boot entry.  We're using this CPUs
253  * idle thread stack, but a set of temporary page tables.
254  */
255 asmlinkage void __cpuinit secondary_start_kernel(void)
256 {
257 	struct mm_struct *mm = &init_mm;
258 	unsigned int cpu = smp_processor_id();
259 
260 	printk("CPU%u: Booted secondary processor\n", cpu);
261 
262 	/*
263 	 * All kernel threads share the same mm context; grab a
264 	 * reference and switch to it.
265 	 */
266 	atomic_inc(&mm->mm_users);
267 	atomic_inc(&mm->mm_count);
268 	current->active_mm = mm;
269 	cpumask_set_cpu(cpu, mm_cpumask(mm));
270 	cpu_switch_mm(mm->pgd, mm);
271 	enter_lazy_tlb(mm, current);
272 	local_flush_tlb_all();
273 
274 	cpu_init();
275 	preempt_disable();
276 
277 	/*
278 	 * Give the platform a chance to do its own initialisation.
279 	 */
280 	platform_secondary_init(cpu);
281 
282 	/*
283 	 * Enable local interrupts.
284 	 */
285 	notify_cpu_starting(cpu);
286 	local_irq_enable();
287 	local_fiq_enable();
288 
289 	/*
290 	 * Setup the percpu timer for this CPU.
291 	 */
292 	percpu_timer_setup();
293 
294 	calibrate_delay();
295 
296 	smp_store_cpu_info(cpu);
297 
298 	/*
299 	 * OK, now it's safe to let the boot CPU continue
300 	 */
301 	set_cpu_online(cpu, true);
302 
303 	/*
304 	 * OK, it's off to the idle thread for us
305 	 */
306 	cpu_idle();
307 }
308 
309 /*
310  * Called by both boot and secondaries to move global data into
311  * per-processor storage.
312  */
313 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
314 {
315 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
316 
317 	cpu_info->loops_per_jiffy = loops_per_jiffy;
318 }
319 
320 void __init smp_cpus_done(unsigned int max_cpus)
321 {
322 	int cpu;
323 	unsigned long bogosum = 0;
324 
325 	for_each_online_cpu(cpu)
326 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
327 
328 	printk(KERN_INFO "SMP: Total of %d processors activated "
329 	       "(%lu.%02lu BogoMIPS).\n",
330 	       num_online_cpus(),
331 	       bogosum / (500000/HZ),
332 	       (bogosum / (5000/HZ)) % 100);
333 }
334 
335 void __init smp_prepare_boot_cpu(void)
336 {
337 	unsigned int cpu = smp_processor_id();
338 
339 	per_cpu(cpu_data, cpu).idle = current;
340 }
341 
342 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
343 {
344 	unsigned long flags;
345 	unsigned int cpu;
346 
347 	local_irq_save(flags);
348 
349 	for_each_cpu(cpu, mask) {
350 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
351 
352 		spin_lock(&ipi->lock);
353 		ipi->bits |= 1 << msg;
354 		spin_unlock(&ipi->lock);
355 	}
356 
357 	/*
358 	 * Call the platform specific cross-CPU call function.
359 	 */
360 	smp_cross_call(mask);
361 
362 	local_irq_restore(flags);
363 }
364 
365 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
366 {
367 	send_ipi_message(mask, IPI_CALL_FUNC);
368 }
369 
370 void arch_send_call_function_single_ipi(int cpu)
371 {
372 	send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
373 }
374 
375 void show_ipi_list(struct seq_file *p)
376 {
377 	unsigned int cpu;
378 
379 	seq_puts(p, "IPI:");
380 
381 	for_each_present_cpu(cpu)
382 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
383 
384 	seq_putc(p, '\n');
385 }
386 
387 void show_local_irqs(struct seq_file *p)
388 {
389 	unsigned int cpu;
390 
391 	seq_printf(p, "LOC: ");
392 
393 	for_each_present_cpu(cpu)
394 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
395 
396 	seq_putc(p, '\n');
397 }
398 
399 /*
400  * Timer (local or broadcast) support
401  */
402 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
403 
404 static void ipi_timer(void)
405 {
406 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
407 	irq_enter();
408 	evt->event_handler(evt);
409 	irq_exit();
410 }
411 
412 #ifdef CONFIG_LOCAL_TIMERS
413 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
414 {
415 	struct pt_regs *old_regs = set_irq_regs(regs);
416 	int cpu = smp_processor_id();
417 
418 	if (local_timer_ack()) {
419 		irq_stat[cpu].local_timer_irqs++;
420 		ipi_timer();
421 	}
422 
423 	set_irq_regs(old_regs);
424 }
425 #endif
426 
427 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
428 static void smp_timer_broadcast(const struct cpumask *mask)
429 {
430 	send_ipi_message(mask, IPI_TIMER);
431 }
432 #else
433 #define smp_timer_broadcast	NULL
434 #endif
435 
436 #ifndef CONFIG_LOCAL_TIMERS
437 static void broadcast_timer_set_mode(enum clock_event_mode mode,
438 	struct clock_event_device *evt)
439 {
440 }
441 
442 static void local_timer_setup(struct clock_event_device *evt)
443 {
444 	evt->name	= "dummy_timer";
445 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
446 			  CLOCK_EVT_FEAT_PERIODIC |
447 			  CLOCK_EVT_FEAT_DUMMY;
448 	evt->rating	= 400;
449 	evt->mult	= 1;
450 	evt->set_mode	= broadcast_timer_set_mode;
451 
452 	clockevents_register_device(evt);
453 }
454 #endif
455 
456 void __cpuinit percpu_timer_setup(void)
457 {
458 	unsigned int cpu = smp_processor_id();
459 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
460 
461 	evt->cpumask = cpumask_of(cpu);
462 	evt->broadcast = smp_timer_broadcast;
463 
464 	local_timer_setup(evt);
465 }
466 
467 static DEFINE_SPINLOCK(stop_lock);
468 
469 /*
470  * ipi_cpu_stop - handle IPI from smp_send_stop()
471  */
472 static void ipi_cpu_stop(unsigned int cpu)
473 {
474 	if (system_state == SYSTEM_BOOTING ||
475 	    system_state == SYSTEM_RUNNING) {
476 		spin_lock(&stop_lock);
477 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
478 		dump_stack();
479 		spin_unlock(&stop_lock);
480 	}
481 
482 	set_cpu_online(cpu, false);
483 
484 	local_fiq_disable();
485 	local_irq_disable();
486 
487 	while (1)
488 		cpu_relax();
489 }
490 
491 /*
492  * Main handler for inter-processor interrupts
493  *
494  * For ARM, the ipimask now only identifies a single
495  * category of IPI (Bit 1 IPIs have been replaced by a
496  * different mechanism):
497  *
498  *  Bit 0 - Inter-processor function call
499  */
500 asmlinkage void __exception do_IPI(struct pt_regs *regs)
501 {
502 	unsigned int cpu = smp_processor_id();
503 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
504 	struct pt_regs *old_regs = set_irq_regs(regs);
505 
506 	ipi->ipi_count++;
507 
508 	for (;;) {
509 		unsigned long msgs;
510 
511 		spin_lock(&ipi->lock);
512 		msgs = ipi->bits;
513 		ipi->bits = 0;
514 		spin_unlock(&ipi->lock);
515 
516 		if (!msgs)
517 			break;
518 
519 		do {
520 			unsigned nextmsg;
521 
522 			nextmsg = msgs & -msgs;
523 			msgs &= ~nextmsg;
524 			nextmsg = ffz(~nextmsg);
525 
526 			switch (nextmsg) {
527 			case IPI_TIMER:
528 				ipi_timer();
529 				break;
530 
531 			case IPI_RESCHEDULE:
532 				/*
533 				 * nothing more to do - eveything is
534 				 * done on the interrupt return path
535 				 */
536 				break;
537 
538 			case IPI_CALL_FUNC:
539 				generic_smp_call_function_interrupt();
540 				break;
541 
542 			case IPI_CALL_FUNC_SINGLE:
543 				generic_smp_call_function_single_interrupt();
544 				break;
545 
546 			case IPI_CPU_STOP:
547 				ipi_cpu_stop(cpu);
548 				break;
549 
550 			default:
551 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
552 				       cpu, nextmsg);
553 				break;
554 			}
555 		} while (msgs);
556 	}
557 
558 	set_irq_regs(old_regs);
559 }
560 
561 void smp_send_reschedule(int cpu)
562 {
563 	send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
564 }
565 
566 void smp_send_stop(void)
567 {
568 	cpumask_t mask = cpu_online_map;
569 	cpu_clear(smp_processor_id(), mask);
570 	send_ipi_message(&mask, IPI_CPU_STOP);
571 }
572 
573 /*
574  * not supported here
575  */
576 int setup_profiling_timer(unsigned int multiplier)
577 {
578 	return -EINVAL;
579 }
580 
581 static void
582 on_each_cpu_mask(void (*func)(void *), void *info, int wait,
583 		const struct cpumask *mask)
584 {
585 	preempt_disable();
586 
587 	smp_call_function_many(mask, func, info, wait);
588 	if (cpumask_test_cpu(smp_processor_id(), mask))
589 		func(info);
590 
591 	preempt_enable();
592 }
593 
594 /**********************************************************************/
595 
596 /*
597  * TLB operations
598  */
599 struct tlb_args {
600 	struct vm_area_struct *ta_vma;
601 	unsigned long ta_start;
602 	unsigned long ta_end;
603 };
604 
605 static inline void ipi_flush_tlb_all(void *ignored)
606 {
607 	local_flush_tlb_all();
608 }
609 
610 static inline void ipi_flush_tlb_mm(void *arg)
611 {
612 	struct mm_struct *mm = (struct mm_struct *)arg;
613 
614 	local_flush_tlb_mm(mm);
615 }
616 
617 static inline void ipi_flush_tlb_page(void *arg)
618 {
619 	struct tlb_args *ta = (struct tlb_args *)arg;
620 
621 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
622 }
623 
624 static inline void ipi_flush_tlb_kernel_page(void *arg)
625 {
626 	struct tlb_args *ta = (struct tlb_args *)arg;
627 
628 	local_flush_tlb_kernel_page(ta->ta_start);
629 }
630 
631 static inline void ipi_flush_tlb_range(void *arg)
632 {
633 	struct tlb_args *ta = (struct tlb_args *)arg;
634 
635 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
636 }
637 
638 static inline void ipi_flush_tlb_kernel_range(void *arg)
639 {
640 	struct tlb_args *ta = (struct tlb_args *)arg;
641 
642 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
643 }
644 
645 void flush_tlb_all(void)
646 {
647 	if (tlb_ops_need_broadcast())
648 		on_each_cpu(ipi_flush_tlb_all, NULL, 1);
649 	else
650 		local_flush_tlb_all();
651 }
652 
653 void flush_tlb_mm(struct mm_struct *mm)
654 {
655 	if (tlb_ops_need_broadcast())
656 		on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
657 	else
658 		local_flush_tlb_mm(mm);
659 }
660 
661 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
662 {
663 	if (tlb_ops_need_broadcast()) {
664 		struct tlb_args ta;
665 		ta.ta_vma = vma;
666 		ta.ta_start = uaddr;
667 		on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
668 	} else
669 		local_flush_tlb_page(vma, uaddr);
670 }
671 
672 void flush_tlb_kernel_page(unsigned long kaddr)
673 {
674 	if (tlb_ops_need_broadcast()) {
675 		struct tlb_args ta;
676 		ta.ta_start = kaddr;
677 		on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
678 	} else
679 		local_flush_tlb_kernel_page(kaddr);
680 }
681 
682 void flush_tlb_range(struct vm_area_struct *vma,
683                      unsigned long start, unsigned long end)
684 {
685 	if (tlb_ops_need_broadcast()) {
686 		struct tlb_args ta;
687 		ta.ta_vma = vma;
688 		ta.ta_start = start;
689 		ta.ta_end = end;
690 		on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
691 	} else
692 		local_flush_tlb_range(vma, start, end);
693 }
694 
695 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
696 {
697 	if (tlb_ops_need_broadcast()) {
698 		struct tlb_args ta;
699 		ta.ta_start = start;
700 		ta.ta_end = end;
701 		on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
702 	} else
703 		local_flush_tlb_kernel_range(start, end);
704 }
705