1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/smp.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpu.h> 34 #include <asm/cputype.h> 35 #include <asm/exception.h> 36 #include <asm/idmap.h> 37 #include <asm/topology.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/pgalloc.h> 41 #include <asm/processor.h> 42 #include <asm/sections.h> 43 #include <asm/tlbflush.h> 44 #include <asm/ptrace.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ipi.h> 52 53 /* 54 * as from 2.5, kernels no longer have an init_tasks structure 55 * so we need some other way of telling a new secondary core 56 * where to place its SVC stack 57 */ 58 struct secondary_data secondary_data; 59 60 /* 61 * control for which core is the next to come out of the secondary 62 * boot "holding pen" 63 */ 64 volatile int pen_release = -1; 65 66 enum ipi_msg_type { 67 IPI_WAKEUP, 68 IPI_TIMER, 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CALL_FUNC_SINGLE, 72 IPI_CPU_STOP, 73 IPI_IRQ_WORK, 74 IPI_COMPLETION, 75 }; 76 77 static DECLARE_COMPLETION(cpu_running); 78 79 static struct smp_operations smp_ops; 80 81 void __init smp_set_ops(struct smp_operations *ops) 82 { 83 if (ops) 84 smp_ops = *ops; 85 }; 86 87 static unsigned long get_arch_pgd(pgd_t *pgd) 88 { 89 #ifdef CONFIG_ARM_LPAE 90 return __phys_to_pfn(virt_to_phys(pgd)); 91 #else 92 return virt_to_phys(pgd); 93 #endif 94 } 95 96 int __cpu_up(unsigned int cpu, struct task_struct *idle) 97 { 98 int ret; 99 100 if (!smp_ops.smp_boot_secondary) 101 return -ENOSYS; 102 103 /* 104 * We need to tell the secondary core where to find 105 * its stack and the page tables. 106 */ 107 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 108 #ifdef CONFIG_ARM_MPU 109 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 110 #endif 111 112 #ifdef CONFIG_MMU 113 secondary_data.pgdir = virt_to_phys(idmap_pgd); 114 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 115 #endif 116 sync_cache_w(&secondary_data); 117 118 /* 119 * Now bring the CPU into our world. 120 */ 121 ret = smp_ops.smp_boot_secondary(cpu, idle); 122 if (ret == 0) { 123 /* 124 * CPU was successfully started, wait for it 125 * to come online or time out. 126 */ 127 wait_for_completion_timeout(&cpu_running, 128 msecs_to_jiffies(1000)); 129 130 if (!cpu_online(cpu)) { 131 pr_crit("CPU%u: failed to come online\n", cpu); 132 ret = -EIO; 133 } 134 } else { 135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 136 } 137 138 139 memset(&secondary_data, 0, sizeof(secondary_data)); 140 return ret; 141 } 142 143 /* platform specific SMP operations */ 144 void __init smp_init_cpus(void) 145 { 146 if (smp_ops.smp_init_cpus) 147 smp_ops.smp_init_cpus(); 148 } 149 150 int platform_can_secondary_boot(void) 151 { 152 return !!smp_ops.smp_boot_secondary; 153 } 154 155 int platform_can_cpu_hotplug(void) 156 { 157 #ifdef CONFIG_HOTPLUG_CPU 158 if (smp_ops.cpu_kill) 159 return 1; 160 #endif 161 162 return 0; 163 } 164 165 #ifdef CONFIG_HOTPLUG_CPU 166 static int platform_cpu_kill(unsigned int cpu) 167 { 168 if (smp_ops.cpu_kill) 169 return smp_ops.cpu_kill(cpu); 170 return 1; 171 } 172 173 static int platform_cpu_disable(unsigned int cpu) 174 { 175 if (smp_ops.cpu_disable) 176 return smp_ops.cpu_disable(cpu); 177 178 /* 179 * By default, allow disabling all CPUs except the first one, 180 * since this is special on a lot of platforms, e.g. because 181 * of clock tick interrupts. 182 */ 183 return cpu == 0 ? -EPERM : 0; 184 } 185 /* 186 * __cpu_disable runs on the processor to be shutdown. 187 */ 188 int __cpu_disable(void) 189 { 190 unsigned int cpu = smp_processor_id(); 191 int ret; 192 193 ret = platform_cpu_disable(cpu); 194 if (ret) 195 return ret; 196 197 /* 198 * Take this CPU offline. Once we clear this, we can't return, 199 * and we must not schedule until we're ready to give up the cpu. 200 */ 201 set_cpu_online(cpu, false); 202 203 /* 204 * OK - migrate IRQs away from this CPU 205 */ 206 migrate_irqs(); 207 208 /* 209 * Flush user cache and TLB mappings, and then remove this CPU 210 * from the vm mask set of all processes. 211 * 212 * Caches are flushed to the Level of Unification Inner Shareable 213 * to write-back dirty lines to unified caches shared by all CPUs. 214 */ 215 flush_cache_louis(); 216 local_flush_tlb_all(); 217 218 clear_tasks_mm_cpumask(cpu); 219 220 return 0; 221 } 222 223 static DECLARE_COMPLETION(cpu_died); 224 225 /* 226 * called on the thread which is asking for a CPU to be shutdown - 227 * waits until shutdown has completed, or it is timed out. 228 */ 229 void __cpu_die(unsigned int cpu) 230 { 231 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 232 pr_err("CPU%u: cpu didn't die\n", cpu); 233 return; 234 } 235 pr_notice("CPU%u: shutdown\n", cpu); 236 237 /* 238 * platform_cpu_kill() is generally expected to do the powering off 239 * and/or cutting of clocks to the dying CPU. Optionally, this may 240 * be done by the CPU which is dying in preference to supporting 241 * this call, but that means there is _no_ synchronisation between 242 * the requesting CPU and the dying CPU actually losing power. 243 */ 244 if (!platform_cpu_kill(cpu)) 245 pr_err("CPU%u: unable to kill\n", cpu); 246 } 247 248 /* 249 * Called from the idle thread for the CPU which has been shutdown. 250 * 251 * Note that we disable IRQs here, but do not re-enable them 252 * before returning to the caller. This is also the behaviour 253 * of the other hotplug-cpu capable cores, so presumably coming 254 * out of idle fixes this. 255 */ 256 void __ref cpu_die(void) 257 { 258 unsigned int cpu = smp_processor_id(); 259 260 idle_task_exit(); 261 262 local_irq_disable(); 263 264 /* 265 * Flush the data out of the L1 cache for this CPU. This must be 266 * before the completion to ensure that data is safely written out 267 * before platform_cpu_kill() gets called - which may disable 268 * *this* CPU and power down its cache. 269 */ 270 flush_cache_louis(); 271 272 /* 273 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 274 * this returns, power and/or clocks can be removed at any point 275 * from this CPU and its cache by platform_cpu_kill(). 276 */ 277 complete(&cpu_died); 278 279 /* 280 * Ensure that the cache lines associated with that completion are 281 * written out. This covers the case where _this_ CPU is doing the 282 * powering down, to ensure that the completion is visible to the 283 * CPU waiting for this one. 284 */ 285 flush_cache_louis(); 286 287 /* 288 * The actual CPU shutdown procedure is at least platform (if not 289 * CPU) specific. This may remove power, or it may simply spin. 290 * 291 * Platforms are generally expected *NOT* to return from this call, 292 * although there are some which do because they have no way to 293 * power down the CPU. These platforms are the _only_ reason we 294 * have a return path which uses the fragment of assembly below. 295 * 296 * The return path should not be used for platforms which can 297 * power off the CPU. 298 */ 299 if (smp_ops.cpu_die) 300 smp_ops.cpu_die(cpu); 301 302 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 303 cpu); 304 305 /* 306 * Do not return to the idle loop - jump back to the secondary 307 * cpu initialisation. There's some initialisation which needs 308 * to be repeated to undo the effects of taking the CPU offline. 309 */ 310 __asm__("mov sp, %0\n" 311 " mov fp, #0\n" 312 " b secondary_start_kernel" 313 : 314 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 315 } 316 #endif /* CONFIG_HOTPLUG_CPU */ 317 318 /* 319 * Called by both boot and secondaries to move global data into 320 * per-processor storage. 321 */ 322 static void smp_store_cpu_info(unsigned int cpuid) 323 { 324 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 325 326 cpu_info->loops_per_jiffy = loops_per_jiffy; 327 cpu_info->cpuid = read_cpuid_id(); 328 329 store_cpu_topology(cpuid); 330 } 331 332 /* 333 * This is the secondary CPU boot entry. We're using this CPUs 334 * idle thread stack, but a set of temporary page tables. 335 */ 336 asmlinkage void secondary_start_kernel(void) 337 { 338 struct mm_struct *mm = &init_mm; 339 unsigned int cpu; 340 341 /* 342 * The identity mapping is uncached (strongly ordered), so 343 * switch away from it before attempting any exclusive accesses. 344 */ 345 cpu_switch_mm(mm->pgd, mm); 346 local_flush_bp_all(); 347 enter_lazy_tlb(mm, current); 348 local_flush_tlb_all(); 349 350 /* 351 * All kernel threads share the same mm context; grab a 352 * reference and switch to it. 353 */ 354 cpu = smp_processor_id(); 355 atomic_inc(&mm->mm_count); 356 current->active_mm = mm; 357 cpumask_set_cpu(cpu, mm_cpumask(mm)); 358 359 cpu_init(); 360 361 pr_debug("CPU%u: Booted secondary processor\n", cpu); 362 363 preempt_disable(); 364 trace_hardirqs_off(); 365 366 /* 367 * Give the platform a chance to do its own initialisation. 368 */ 369 if (smp_ops.smp_secondary_init) 370 smp_ops.smp_secondary_init(cpu); 371 372 notify_cpu_starting(cpu); 373 374 calibrate_delay(); 375 376 smp_store_cpu_info(cpu); 377 378 /* 379 * OK, now it's safe to let the boot CPU continue. Wait for 380 * the CPU migration code to notice that the CPU is online 381 * before we continue - which happens after __cpu_up returns. 382 */ 383 set_cpu_online(cpu, true); 384 complete(&cpu_running); 385 386 local_irq_enable(); 387 local_fiq_enable(); 388 389 /* 390 * OK, it's off to the idle thread for us 391 */ 392 cpu_startup_entry(CPUHP_ONLINE); 393 } 394 395 void __init smp_cpus_done(unsigned int max_cpus) 396 { 397 int cpu; 398 unsigned long bogosum = 0; 399 400 for_each_online_cpu(cpu) 401 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 402 403 printk(KERN_INFO "SMP: Total of %d processors activated " 404 "(%lu.%02lu BogoMIPS).\n", 405 num_online_cpus(), 406 bogosum / (500000/HZ), 407 (bogosum / (5000/HZ)) % 100); 408 409 hyp_mode_check(); 410 } 411 412 void __init smp_prepare_boot_cpu(void) 413 { 414 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 415 } 416 417 void __init smp_prepare_cpus(unsigned int max_cpus) 418 { 419 unsigned int ncores = num_possible_cpus(); 420 421 init_cpu_topology(); 422 423 smp_store_cpu_info(smp_processor_id()); 424 425 /* 426 * are we trying to boot more cores than exist? 427 */ 428 if (max_cpus > ncores) 429 max_cpus = ncores; 430 if (ncores > 1 && max_cpus) { 431 /* 432 * Initialise the present map, which describes the set of CPUs 433 * actually populated at the present time. A platform should 434 * re-initialize the map in the platforms smp_prepare_cpus() 435 * if present != possible (e.g. physical hotplug). 436 */ 437 init_cpu_present(cpu_possible_mask); 438 439 /* 440 * Initialise the SCU if there are more than one CPU 441 * and let them know where to start. 442 */ 443 if (smp_ops.smp_prepare_cpus) 444 smp_ops.smp_prepare_cpus(max_cpus); 445 } 446 } 447 448 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 449 450 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 451 { 452 if (!__smp_cross_call) 453 __smp_cross_call = fn; 454 } 455 456 static const char *ipi_types[NR_IPI] __tracepoint_string = { 457 #define S(x,s) [x] = s 458 S(IPI_WAKEUP, "CPU wakeup interrupts"), 459 S(IPI_TIMER, "Timer broadcast interrupts"), 460 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 461 S(IPI_CALL_FUNC, "Function call interrupts"), 462 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 463 S(IPI_CPU_STOP, "CPU stop interrupts"), 464 S(IPI_IRQ_WORK, "IRQ work interrupts"), 465 S(IPI_COMPLETION, "completion interrupts"), 466 }; 467 468 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 469 { 470 trace_ipi_raise(target, ipi_types[ipinr]); 471 __smp_cross_call(target, ipinr); 472 } 473 474 void show_ipi_list(struct seq_file *p, int prec) 475 { 476 unsigned int cpu, i; 477 478 for (i = 0; i < NR_IPI; i++) { 479 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 480 481 for_each_online_cpu(cpu) 482 seq_printf(p, "%10u ", 483 __get_irq_stat(cpu, ipi_irqs[i])); 484 485 seq_printf(p, " %s\n", ipi_types[i]); 486 } 487 } 488 489 u64 smp_irq_stat_cpu(unsigned int cpu) 490 { 491 u64 sum = 0; 492 int i; 493 494 for (i = 0; i < NR_IPI; i++) 495 sum += __get_irq_stat(cpu, ipi_irqs[i]); 496 497 return sum; 498 } 499 500 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 501 { 502 smp_cross_call(mask, IPI_CALL_FUNC); 503 } 504 505 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 506 { 507 smp_cross_call(mask, IPI_WAKEUP); 508 } 509 510 void arch_send_call_function_single_ipi(int cpu) 511 { 512 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 513 } 514 515 #ifdef CONFIG_IRQ_WORK 516 void arch_irq_work_raise(void) 517 { 518 if (arch_irq_work_has_interrupt()) 519 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 520 } 521 #endif 522 523 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 524 void tick_broadcast(const struct cpumask *mask) 525 { 526 smp_cross_call(mask, IPI_TIMER); 527 } 528 #endif 529 530 static DEFINE_RAW_SPINLOCK(stop_lock); 531 532 /* 533 * ipi_cpu_stop - handle IPI from smp_send_stop() 534 */ 535 static void ipi_cpu_stop(unsigned int cpu) 536 { 537 if (system_state == SYSTEM_BOOTING || 538 system_state == SYSTEM_RUNNING) { 539 raw_spin_lock(&stop_lock); 540 pr_crit("CPU%u: stopping\n", cpu); 541 dump_stack(); 542 raw_spin_unlock(&stop_lock); 543 } 544 545 set_cpu_online(cpu, false); 546 547 local_fiq_disable(); 548 local_irq_disable(); 549 550 while (1) 551 cpu_relax(); 552 } 553 554 static DEFINE_PER_CPU(struct completion *, cpu_completion); 555 556 int register_ipi_completion(struct completion *completion, int cpu) 557 { 558 per_cpu(cpu_completion, cpu) = completion; 559 return IPI_COMPLETION; 560 } 561 562 static void ipi_complete(unsigned int cpu) 563 { 564 complete(per_cpu(cpu_completion, cpu)); 565 } 566 567 /* 568 * Main handler for inter-processor interrupts 569 */ 570 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 571 { 572 handle_IPI(ipinr, regs); 573 } 574 575 void handle_IPI(int ipinr, struct pt_regs *regs) 576 { 577 unsigned int cpu = smp_processor_id(); 578 struct pt_regs *old_regs = set_irq_regs(regs); 579 580 if ((unsigned)ipinr < NR_IPI) { 581 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 582 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 583 } 584 585 switch (ipinr) { 586 case IPI_WAKEUP: 587 break; 588 589 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 590 case IPI_TIMER: 591 irq_enter(); 592 tick_receive_broadcast(); 593 irq_exit(); 594 break; 595 #endif 596 597 case IPI_RESCHEDULE: 598 scheduler_ipi(); 599 break; 600 601 case IPI_CALL_FUNC: 602 irq_enter(); 603 generic_smp_call_function_interrupt(); 604 irq_exit(); 605 break; 606 607 case IPI_CALL_FUNC_SINGLE: 608 irq_enter(); 609 generic_smp_call_function_single_interrupt(); 610 irq_exit(); 611 break; 612 613 case IPI_CPU_STOP: 614 irq_enter(); 615 ipi_cpu_stop(cpu); 616 irq_exit(); 617 break; 618 619 #ifdef CONFIG_IRQ_WORK 620 case IPI_IRQ_WORK: 621 irq_enter(); 622 irq_work_run(); 623 irq_exit(); 624 break; 625 #endif 626 627 case IPI_COMPLETION: 628 irq_enter(); 629 ipi_complete(cpu); 630 irq_exit(); 631 break; 632 633 default: 634 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 635 cpu, ipinr); 636 break; 637 } 638 639 if ((unsigned)ipinr < NR_IPI) 640 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 641 set_irq_regs(old_regs); 642 } 643 644 void smp_send_reschedule(int cpu) 645 { 646 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 647 } 648 649 void smp_send_stop(void) 650 { 651 unsigned long timeout; 652 struct cpumask mask; 653 654 cpumask_copy(&mask, cpu_online_mask); 655 cpumask_clear_cpu(smp_processor_id(), &mask); 656 if (!cpumask_empty(&mask)) 657 smp_cross_call(&mask, IPI_CPU_STOP); 658 659 /* Wait up to one second for other CPUs to stop */ 660 timeout = USEC_PER_SEC; 661 while (num_online_cpus() > 1 && timeout--) 662 udelay(1); 663 664 if (num_online_cpus() > 1) 665 pr_warn("SMP: failed to stop secondary CPUs\n"); 666 } 667 668 /* 669 * not supported here 670 */ 671 int setup_profiling_timer(unsigned int multiplier) 672 { 673 return -EINVAL; 674 } 675 676 #ifdef CONFIG_CPU_FREQ 677 678 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 679 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 680 static unsigned long global_l_p_j_ref; 681 static unsigned long global_l_p_j_ref_freq; 682 683 static int cpufreq_callback(struct notifier_block *nb, 684 unsigned long val, void *data) 685 { 686 struct cpufreq_freqs *freq = data; 687 int cpu = freq->cpu; 688 689 if (freq->flags & CPUFREQ_CONST_LOOPS) 690 return NOTIFY_OK; 691 692 if (!per_cpu(l_p_j_ref, cpu)) { 693 per_cpu(l_p_j_ref, cpu) = 694 per_cpu(cpu_data, cpu).loops_per_jiffy; 695 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 696 if (!global_l_p_j_ref) { 697 global_l_p_j_ref = loops_per_jiffy; 698 global_l_p_j_ref_freq = freq->old; 699 } 700 } 701 702 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 703 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 704 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 705 global_l_p_j_ref_freq, 706 freq->new); 707 per_cpu(cpu_data, cpu).loops_per_jiffy = 708 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 709 per_cpu(l_p_j_ref_freq, cpu), 710 freq->new); 711 } 712 return NOTIFY_OK; 713 } 714 715 static struct notifier_block cpufreq_notifier = { 716 .notifier_call = cpufreq_callback, 717 }; 718 719 static int __init register_cpufreq_notifier(void) 720 { 721 return cpufreq_register_notifier(&cpufreq_notifier, 722 CPUFREQ_TRANSITION_NOTIFIER); 723 } 724 core_initcall(register_cpufreq_notifier); 725 726 #endif 727