1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/smp.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/exception.h> 35 #include <asm/idmap.h> 36 #include <asm/topology.h> 37 #include <asm/mmu_context.h> 38 #include <asm/pgtable.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sections.h> 42 #include <asm/tlbflush.h> 43 #include <asm/ptrace.h> 44 #include <asm/localtimer.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 /* 51 * as from 2.5, kernels no longer have an init_tasks structure 52 * so we need some other way of telling a new secondary core 53 * where to place its SVC stack 54 */ 55 struct secondary_data secondary_data; 56 57 /* 58 * control for which core is the next to come out of the secondary 59 * boot "holding pen" 60 */ 61 volatile int pen_release = -1; 62 63 enum ipi_msg_type { 64 IPI_WAKEUP, 65 IPI_TIMER, 66 IPI_RESCHEDULE, 67 IPI_CALL_FUNC, 68 IPI_CALL_FUNC_SINGLE, 69 IPI_CPU_STOP, 70 }; 71 72 static DECLARE_COMPLETION(cpu_running); 73 74 static struct smp_operations smp_ops; 75 76 void __init smp_set_ops(struct smp_operations *ops) 77 { 78 if (ops) 79 smp_ops = *ops; 80 }; 81 82 static unsigned long get_arch_pgd(pgd_t *pgd) 83 { 84 phys_addr_t pgdir = virt_to_phys(pgd); 85 BUG_ON(pgdir & ARCH_PGD_MASK); 86 return pgdir >> ARCH_PGD_SHIFT; 87 } 88 89 int __cpu_up(unsigned int cpu, struct task_struct *idle) 90 { 91 int ret; 92 93 /* 94 * We need to tell the secondary core where to find 95 * its stack and the page tables. 96 */ 97 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 98 #ifdef CONFIG_ARM_MPU 99 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 100 #endif 101 102 #ifdef CONFIG_MMU 103 secondary_data.pgdir = get_arch_pgd(idmap_pgd); 104 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 105 #endif 106 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 107 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 108 109 /* 110 * Now bring the CPU into our world. 111 */ 112 ret = boot_secondary(cpu, idle); 113 if (ret == 0) { 114 /* 115 * CPU was successfully started, wait for it 116 * to come online or time out. 117 */ 118 wait_for_completion_timeout(&cpu_running, 119 msecs_to_jiffies(1000)); 120 121 if (!cpu_online(cpu)) { 122 pr_crit("CPU%u: failed to come online\n", cpu); 123 ret = -EIO; 124 } 125 } else { 126 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 127 } 128 129 130 memset(&secondary_data, 0, sizeof(secondary_data)); 131 return ret; 132 } 133 134 /* platform specific SMP operations */ 135 void __init smp_init_cpus(void) 136 { 137 if (smp_ops.smp_init_cpus) 138 smp_ops.smp_init_cpus(); 139 } 140 141 int boot_secondary(unsigned int cpu, struct task_struct *idle) 142 { 143 if (smp_ops.smp_boot_secondary) 144 return smp_ops.smp_boot_secondary(cpu, idle); 145 return -ENOSYS; 146 } 147 148 int platform_can_cpu_hotplug(void) 149 { 150 #ifdef CONFIG_HOTPLUG_CPU 151 if (smp_ops.cpu_kill) 152 return 1; 153 #endif 154 155 return 0; 156 } 157 158 #ifdef CONFIG_HOTPLUG_CPU 159 static void percpu_timer_stop(void); 160 161 static int platform_cpu_kill(unsigned int cpu) 162 { 163 if (smp_ops.cpu_kill) 164 return smp_ops.cpu_kill(cpu); 165 return 1; 166 } 167 168 static int platform_cpu_disable(unsigned int cpu) 169 { 170 if (smp_ops.cpu_disable) 171 return smp_ops.cpu_disable(cpu); 172 173 /* 174 * By default, allow disabling all CPUs except the first one, 175 * since this is special on a lot of platforms, e.g. because 176 * of clock tick interrupts. 177 */ 178 return cpu == 0 ? -EPERM : 0; 179 } 180 /* 181 * __cpu_disable runs on the processor to be shutdown. 182 */ 183 int __cpu_disable(void) 184 { 185 unsigned int cpu = smp_processor_id(); 186 int ret; 187 188 ret = platform_cpu_disable(cpu); 189 if (ret) 190 return ret; 191 192 /* 193 * Take this CPU offline. Once we clear this, we can't return, 194 * and we must not schedule until we're ready to give up the cpu. 195 */ 196 set_cpu_online(cpu, false); 197 198 /* 199 * OK - migrate IRQs away from this CPU 200 */ 201 migrate_irqs(); 202 203 /* 204 * Stop the local timer for this CPU. 205 */ 206 percpu_timer_stop(); 207 208 /* 209 * Flush user cache and TLB mappings, and then remove this CPU 210 * from the vm mask set of all processes. 211 * 212 * Caches are flushed to the Level of Unification Inner Shareable 213 * to write-back dirty lines to unified caches shared by all CPUs. 214 */ 215 flush_cache_louis(); 216 local_flush_tlb_all(); 217 218 clear_tasks_mm_cpumask(cpu); 219 220 return 0; 221 } 222 223 static DECLARE_COMPLETION(cpu_died); 224 225 /* 226 * called on the thread which is asking for a CPU to be shutdown - 227 * waits until shutdown has completed, or it is timed out. 228 */ 229 void __cpu_die(unsigned int cpu) 230 { 231 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 232 pr_err("CPU%u: cpu didn't die\n", cpu); 233 return; 234 } 235 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 236 237 /* 238 * platform_cpu_kill() is generally expected to do the powering off 239 * and/or cutting of clocks to the dying CPU. Optionally, this may 240 * be done by the CPU which is dying in preference to supporting 241 * this call, but that means there is _no_ synchronisation between 242 * the requesting CPU and the dying CPU actually losing power. 243 */ 244 if (!platform_cpu_kill(cpu)) 245 printk("CPU%u: unable to kill\n", cpu); 246 } 247 248 /* 249 * Called from the idle thread for the CPU which has been shutdown. 250 * 251 * Note that we disable IRQs here, but do not re-enable them 252 * before returning to the caller. This is also the behaviour 253 * of the other hotplug-cpu capable cores, so presumably coming 254 * out of idle fixes this. 255 */ 256 void __ref cpu_die(void) 257 { 258 unsigned int cpu = smp_processor_id(); 259 260 idle_task_exit(); 261 262 local_irq_disable(); 263 264 /* 265 * Flush the data out of the L1 cache for this CPU. This must be 266 * before the completion to ensure that data is safely written out 267 * before platform_cpu_kill() gets called - which may disable 268 * *this* CPU and power down its cache. 269 */ 270 flush_cache_louis(); 271 272 /* 273 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 274 * this returns, power and/or clocks can be removed at any point 275 * from this CPU and its cache by platform_cpu_kill(). 276 */ 277 complete(&cpu_died); 278 279 /* 280 * Ensure that the cache lines associated with that completion are 281 * written out. This covers the case where _this_ CPU is doing the 282 * powering down, to ensure that the completion is visible to the 283 * CPU waiting for this one. 284 */ 285 flush_cache_louis(); 286 287 /* 288 * The actual CPU shutdown procedure is at least platform (if not 289 * CPU) specific. This may remove power, or it may simply spin. 290 * 291 * Platforms are generally expected *NOT* to return from this call, 292 * although there are some which do because they have no way to 293 * power down the CPU. These platforms are the _only_ reason we 294 * have a return path which uses the fragment of assembly below. 295 * 296 * The return path should not be used for platforms which can 297 * power off the CPU. 298 */ 299 if (smp_ops.cpu_die) 300 smp_ops.cpu_die(cpu); 301 302 /* 303 * Do not return to the idle loop - jump back to the secondary 304 * cpu initialisation. There's some initialisation which needs 305 * to be repeated to undo the effects of taking the CPU offline. 306 */ 307 __asm__("mov sp, %0\n" 308 " mov fp, #0\n" 309 " b secondary_start_kernel" 310 : 311 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 312 } 313 #endif /* CONFIG_HOTPLUG_CPU */ 314 315 /* 316 * Called by both boot and secondaries to move global data into 317 * per-processor storage. 318 */ 319 static void smp_store_cpu_info(unsigned int cpuid) 320 { 321 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 322 323 cpu_info->loops_per_jiffy = loops_per_jiffy; 324 cpu_info->cpuid = read_cpuid_id(); 325 326 store_cpu_topology(cpuid); 327 } 328 329 static void percpu_timer_setup(void); 330 331 /* 332 * This is the secondary CPU boot entry. We're using this CPUs 333 * idle thread stack, but a set of temporary page tables. 334 */ 335 asmlinkage void secondary_start_kernel(void) 336 { 337 struct mm_struct *mm = &init_mm; 338 unsigned int cpu; 339 340 /* 341 * The identity mapping is uncached (strongly ordered), so 342 * switch away from it before attempting any exclusive accesses. 343 */ 344 cpu_switch_mm(mm->pgd, mm); 345 local_flush_bp_all(); 346 enter_lazy_tlb(mm, current); 347 local_flush_tlb_all(); 348 349 /* 350 * All kernel threads share the same mm context; grab a 351 * reference and switch to it. 352 */ 353 cpu = smp_processor_id(); 354 atomic_inc(&mm->mm_count); 355 current->active_mm = mm; 356 cpumask_set_cpu(cpu, mm_cpumask(mm)); 357 358 cpu_init(); 359 360 printk("CPU%u: Booted secondary processor\n", cpu); 361 362 preempt_disable(); 363 trace_hardirqs_off(); 364 365 /* 366 * Give the platform a chance to do its own initialisation. 367 */ 368 if (smp_ops.smp_secondary_init) 369 smp_ops.smp_secondary_init(cpu); 370 371 notify_cpu_starting(cpu); 372 373 calibrate_delay(); 374 375 smp_store_cpu_info(cpu); 376 377 /* 378 * OK, now it's safe to let the boot CPU continue. Wait for 379 * the CPU migration code to notice that the CPU is online 380 * before we continue - which happens after __cpu_up returns. 381 */ 382 set_cpu_online(cpu, true); 383 complete(&cpu_running); 384 385 /* 386 * Setup the percpu timer for this CPU. 387 */ 388 percpu_timer_setup(); 389 390 local_irq_enable(); 391 local_fiq_enable(); 392 393 /* 394 * OK, it's off to the idle thread for us 395 */ 396 cpu_startup_entry(CPUHP_ONLINE); 397 } 398 399 void __init smp_cpus_done(unsigned int max_cpus) 400 { 401 int cpu; 402 unsigned long bogosum = 0; 403 404 for_each_online_cpu(cpu) 405 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 406 407 printk(KERN_INFO "SMP: Total of %d processors activated " 408 "(%lu.%02lu BogoMIPS).\n", 409 num_online_cpus(), 410 bogosum / (500000/HZ), 411 (bogosum / (5000/HZ)) % 100); 412 413 hyp_mode_check(); 414 } 415 416 void __init smp_prepare_boot_cpu(void) 417 { 418 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 419 } 420 421 void __init smp_prepare_cpus(unsigned int max_cpus) 422 { 423 unsigned int ncores = num_possible_cpus(); 424 425 init_cpu_topology(); 426 427 smp_store_cpu_info(smp_processor_id()); 428 429 /* 430 * are we trying to boot more cores than exist? 431 */ 432 if (max_cpus > ncores) 433 max_cpus = ncores; 434 if (ncores > 1 && max_cpus) { 435 /* 436 * Enable the local timer or broadcast device for the 437 * boot CPU, but only if we have more than one CPU. 438 */ 439 percpu_timer_setup(); 440 441 /* 442 * Initialise the present map, which describes the set of CPUs 443 * actually populated at the present time. A platform should 444 * re-initialize the map in the platforms smp_prepare_cpus() 445 * if present != possible (e.g. physical hotplug). 446 */ 447 init_cpu_present(cpu_possible_mask); 448 449 /* 450 * Initialise the SCU if there are more than one CPU 451 * and let them know where to start. 452 */ 453 if (smp_ops.smp_prepare_cpus) 454 smp_ops.smp_prepare_cpus(max_cpus); 455 } 456 } 457 458 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 459 460 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 461 { 462 if (!smp_cross_call) 463 smp_cross_call = fn; 464 } 465 466 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 467 { 468 smp_cross_call(mask, IPI_CALL_FUNC); 469 } 470 471 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 472 { 473 smp_cross_call(mask, IPI_WAKEUP); 474 } 475 476 void arch_send_call_function_single_ipi(int cpu) 477 { 478 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 479 } 480 481 static const char *ipi_types[NR_IPI] = { 482 #define S(x,s) [x] = s 483 S(IPI_WAKEUP, "CPU wakeup interrupts"), 484 S(IPI_TIMER, "Timer broadcast interrupts"), 485 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 486 S(IPI_CALL_FUNC, "Function call interrupts"), 487 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 488 S(IPI_CPU_STOP, "CPU stop interrupts"), 489 }; 490 491 void show_ipi_list(struct seq_file *p, int prec) 492 { 493 unsigned int cpu, i; 494 495 for (i = 0; i < NR_IPI; i++) { 496 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 497 498 for_each_online_cpu(cpu) 499 seq_printf(p, "%10u ", 500 __get_irq_stat(cpu, ipi_irqs[i])); 501 502 seq_printf(p, " %s\n", ipi_types[i]); 503 } 504 } 505 506 u64 smp_irq_stat_cpu(unsigned int cpu) 507 { 508 u64 sum = 0; 509 int i; 510 511 for (i = 0; i < NR_IPI; i++) 512 sum += __get_irq_stat(cpu, ipi_irqs[i]); 513 514 return sum; 515 } 516 517 /* 518 * Timer (local or broadcast) support 519 */ 520 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 521 522 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 523 void tick_broadcast(const struct cpumask *mask) 524 { 525 smp_cross_call(mask, IPI_TIMER); 526 } 527 #endif 528 529 static void broadcast_timer_set_mode(enum clock_event_mode mode, 530 struct clock_event_device *evt) 531 { 532 } 533 534 static void broadcast_timer_setup(struct clock_event_device *evt) 535 { 536 evt->name = "dummy_timer"; 537 evt->features = CLOCK_EVT_FEAT_ONESHOT | 538 CLOCK_EVT_FEAT_PERIODIC | 539 CLOCK_EVT_FEAT_DUMMY; 540 evt->rating = 100; 541 evt->mult = 1; 542 evt->set_mode = broadcast_timer_set_mode; 543 544 clockevents_register_device(evt); 545 } 546 547 static struct local_timer_ops *lt_ops; 548 549 #ifdef CONFIG_LOCAL_TIMERS 550 int local_timer_register(struct local_timer_ops *ops) 551 { 552 if (!is_smp() || !setup_max_cpus) 553 return -ENXIO; 554 555 if (lt_ops) 556 return -EBUSY; 557 558 lt_ops = ops; 559 return 0; 560 } 561 #endif 562 563 static void percpu_timer_setup(void) 564 { 565 unsigned int cpu = smp_processor_id(); 566 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 567 568 evt->cpumask = cpumask_of(cpu); 569 570 if (!lt_ops || lt_ops->setup(evt)) 571 broadcast_timer_setup(evt); 572 } 573 574 #ifdef CONFIG_HOTPLUG_CPU 575 /* 576 * The generic clock events code purposely does not stop the local timer 577 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 578 * manually here. 579 */ 580 static void percpu_timer_stop(void) 581 { 582 unsigned int cpu = smp_processor_id(); 583 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 584 585 if (lt_ops) 586 lt_ops->stop(evt); 587 } 588 #endif 589 590 static DEFINE_RAW_SPINLOCK(stop_lock); 591 592 /* 593 * ipi_cpu_stop - handle IPI from smp_send_stop() 594 */ 595 static void ipi_cpu_stop(unsigned int cpu) 596 { 597 if (system_state == SYSTEM_BOOTING || 598 system_state == SYSTEM_RUNNING) { 599 raw_spin_lock(&stop_lock); 600 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 601 dump_stack(); 602 raw_spin_unlock(&stop_lock); 603 } 604 605 set_cpu_online(cpu, false); 606 607 local_fiq_disable(); 608 local_irq_disable(); 609 610 while (1) 611 cpu_relax(); 612 } 613 614 /* 615 * Main handler for inter-processor interrupts 616 */ 617 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 618 { 619 handle_IPI(ipinr, regs); 620 } 621 622 void handle_IPI(int ipinr, struct pt_regs *regs) 623 { 624 unsigned int cpu = smp_processor_id(); 625 struct pt_regs *old_regs = set_irq_regs(regs); 626 627 if (ipinr < NR_IPI) 628 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 629 630 switch (ipinr) { 631 case IPI_WAKEUP: 632 break; 633 634 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 635 case IPI_TIMER: 636 irq_enter(); 637 tick_receive_broadcast(); 638 irq_exit(); 639 break; 640 #endif 641 642 case IPI_RESCHEDULE: 643 scheduler_ipi(); 644 break; 645 646 case IPI_CALL_FUNC: 647 irq_enter(); 648 generic_smp_call_function_interrupt(); 649 irq_exit(); 650 break; 651 652 case IPI_CALL_FUNC_SINGLE: 653 irq_enter(); 654 generic_smp_call_function_single_interrupt(); 655 irq_exit(); 656 break; 657 658 case IPI_CPU_STOP: 659 irq_enter(); 660 ipi_cpu_stop(cpu); 661 irq_exit(); 662 break; 663 664 default: 665 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 666 cpu, ipinr); 667 break; 668 } 669 set_irq_regs(old_regs); 670 } 671 672 void smp_send_reschedule(int cpu) 673 { 674 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 675 } 676 677 void smp_send_stop(void) 678 { 679 unsigned long timeout; 680 struct cpumask mask; 681 682 cpumask_copy(&mask, cpu_online_mask); 683 cpumask_clear_cpu(smp_processor_id(), &mask); 684 if (!cpumask_empty(&mask)) 685 smp_cross_call(&mask, IPI_CPU_STOP); 686 687 /* Wait up to one second for other CPUs to stop */ 688 timeout = USEC_PER_SEC; 689 while (num_online_cpus() > 1 && timeout--) 690 udelay(1); 691 692 if (num_online_cpus() > 1) 693 pr_warning("SMP: failed to stop secondary CPUs\n"); 694 } 695 696 /* 697 * not supported here 698 */ 699 int setup_profiling_timer(unsigned int multiplier) 700 { 701 return -EINVAL; 702 } 703 704 #ifdef CONFIG_CPU_FREQ 705 706 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 707 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 708 static unsigned long global_l_p_j_ref; 709 static unsigned long global_l_p_j_ref_freq; 710 711 static int cpufreq_callback(struct notifier_block *nb, 712 unsigned long val, void *data) 713 { 714 struct cpufreq_freqs *freq = data; 715 int cpu = freq->cpu; 716 717 if (freq->flags & CPUFREQ_CONST_LOOPS) 718 return NOTIFY_OK; 719 720 if (!per_cpu(l_p_j_ref, cpu)) { 721 per_cpu(l_p_j_ref, cpu) = 722 per_cpu(cpu_data, cpu).loops_per_jiffy; 723 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 724 if (!global_l_p_j_ref) { 725 global_l_p_j_ref = loops_per_jiffy; 726 global_l_p_j_ref_freq = freq->old; 727 } 728 } 729 730 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 731 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 732 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 733 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 734 global_l_p_j_ref_freq, 735 freq->new); 736 per_cpu(cpu_data, cpu).loops_per_jiffy = 737 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 738 per_cpu(l_p_j_ref_freq, cpu), 739 freq->new); 740 } 741 return NOTIFY_OK; 742 } 743 744 static struct notifier_block cpufreq_notifier = { 745 .notifier_call = cpufreq_callback, 746 }; 747 748 static int __init register_cpufreq_notifier(void) 749 { 750 return cpufreq_register_notifier(&cpufreq_notifier, 751 CPUFREQ_TRANSITION_NOTIFIER); 752 } 753 core_initcall(register_cpufreq_notifier); 754 755 #endif 756