xref: /linux/arch/arm/kernel/smp.c (revision ae77cbc1e7b90473a2b0963bce0e1eb163873214)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 /*
51  * as from 2.5, kernels no longer have an init_tasks structure
52  * so we need some other way of telling a new secondary core
53  * where to place its SVC stack
54  */
55 struct secondary_data secondary_data;
56 
57 /*
58  * control for which core is the next to come out of the secondary
59  * boot "holding pen"
60  */
61 volatile int pen_release = -1;
62 
63 enum ipi_msg_type {
64 	IPI_WAKEUP,
65 	IPI_TIMER,
66 	IPI_RESCHEDULE,
67 	IPI_CALL_FUNC,
68 	IPI_CALL_FUNC_SINGLE,
69 	IPI_CPU_STOP,
70 };
71 
72 static DECLARE_COMPLETION(cpu_running);
73 
74 static struct smp_operations smp_ops;
75 
76 void __init smp_set_ops(struct smp_operations *ops)
77 {
78 	if (ops)
79 		smp_ops = *ops;
80 };
81 
82 static unsigned long get_arch_pgd(pgd_t *pgd)
83 {
84 	phys_addr_t pgdir = virt_to_phys(pgd);
85 	BUG_ON(pgdir & ARCH_PGD_MASK);
86 	return pgdir >> ARCH_PGD_SHIFT;
87 }
88 
89 int __cpu_up(unsigned int cpu, struct task_struct *idle)
90 {
91 	int ret;
92 
93 	/*
94 	 * We need to tell the secondary core where to find
95 	 * its stack and the page tables.
96 	 */
97 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
98 #ifdef CONFIG_ARM_MPU
99 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
100 #endif
101 
102 #ifdef CONFIG_MMU
103 	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
104 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
105 #endif
106 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
107 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
108 
109 	/*
110 	 * Now bring the CPU into our world.
111 	 */
112 	ret = boot_secondary(cpu, idle);
113 	if (ret == 0) {
114 		/*
115 		 * CPU was successfully started, wait for it
116 		 * to come online or time out.
117 		 */
118 		wait_for_completion_timeout(&cpu_running,
119 						 msecs_to_jiffies(1000));
120 
121 		if (!cpu_online(cpu)) {
122 			pr_crit("CPU%u: failed to come online\n", cpu);
123 			ret = -EIO;
124 		}
125 	} else {
126 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
127 	}
128 
129 
130 	memset(&secondary_data, 0, sizeof(secondary_data));
131 	return ret;
132 }
133 
134 /* platform specific SMP operations */
135 void __init smp_init_cpus(void)
136 {
137 	if (smp_ops.smp_init_cpus)
138 		smp_ops.smp_init_cpus();
139 }
140 
141 int boot_secondary(unsigned int cpu, struct task_struct *idle)
142 {
143 	if (smp_ops.smp_boot_secondary)
144 		return smp_ops.smp_boot_secondary(cpu, idle);
145 	return -ENOSYS;
146 }
147 
148 int platform_can_cpu_hotplug(void)
149 {
150 #ifdef CONFIG_HOTPLUG_CPU
151 	if (smp_ops.cpu_kill)
152 		return 1;
153 #endif
154 
155 	return 0;
156 }
157 
158 #ifdef CONFIG_HOTPLUG_CPU
159 static void percpu_timer_stop(void);
160 
161 static int platform_cpu_kill(unsigned int cpu)
162 {
163 	if (smp_ops.cpu_kill)
164 		return smp_ops.cpu_kill(cpu);
165 	return 1;
166 }
167 
168 static int platform_cpu_disable(unsigned int cpu)
169 {
170 	if (smp_ops.cpu_disable)
171 		return smp_ops.cpu_disable(cpu);
172 
173 	/*
174 	 * By default, allow disabling all CPUs except the first one,
175 	 * since this is special on a lot of platforms, e.g. because
176 	 * of clock tick interrupts.
177 	 */
178 	return cpu == 0 ? -EPERM : 0;
179 }
180 /*
181  * __cpu_disable runs on the processor to be shutdown.
182  */
183 int __cpu_disable(void)
184 {
185 	unsigned int cpu = smp_processor_id();
186 	int ret;
187 
188 	ret = platform_cpu_disable(cpu);
189 	if (ret)
190 		return ret;
191 
192 	/*
193 	 * Take this CPU offline.  Once we clear this, we can't return,
194 	 * and we must not schedule until we're ready to give up the cpu.
195 	 */
196 	set_cpu_online(cpu, false);
197 
198 	/*
199 	 * OK - migrate IRQs away from this CPU
200 	 */
201 	migrate_irqs();
202 
203 	/*
204 	 * Stop the local timer for this CPU.
205 	 */
206 	percpu_timer_stop();
207 
208 	/*
209 	 * Flush user cache and TLB mappings, and then remove this CPU
210 	 * from the vm mask set of all processes.
211 	 *
212 	 * Caches are flushed to the Level of Unification Inner Shareable
213 	 * to write-back dirty lines to unified caches shared by all CPUs.
214 	 */
215 	flush_cache_louis();
216 	local_flush_tlb_all();
217 
218 	clear_tasks_mm_cpumask(cpu);
219 
220 	return 0;
221 }
222 
223 static DECLARE_COMPLETION(cpu_died);
224 
225 /*
226  * called on the thread which is asking for a CPU to be shutdown -
227  * waits until shutdown has completed, or it is timed out.
228  */
229 void __cpu_die(unsigned int cpu)
230 {
231 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
232 		pr_err("CPU%u: cpu didn't die\n", cpu);
233 		return;
234 	}
235 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
236 
237 	/*
238 	 * platform_cpu_kill() is generally expected to do the powering off
239 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
240 	 * be done by the CPU which is dying in preference to supporting
241 	 * this call, but that means there is _no_ synchronisation between
242 	 * the requesting CPU and the dying CPU actually losing power.
243 	 */
244 	if (!platform_cpu_kill(cpu))
245 		printk("CPU%u: unable to kill\n", cpu);
246 }
247 
248 /*
249  * Called from the idle thread for the CPU which has been shutdown.
250  *
251  * Note that we disable IRQs here, but do not re-enable them
252  * before returning to the caller. This is also the behaviour
253  * of the other hotplug-cpu capable cores, so presumably coming
254  * out of idle fixes this.
255  */
256 void __ref cpu_die(void)
257 {
258 	unsigned int cpu = smp_processor_id();
259 
260 	idle_task_exit();
261 
262 	local_irq_disable();
263 
264 	/*
265 	 * Flush the data out of the L1 cache for this CPU.  This must be
266 	 * before the completion to ensure that data is safely written out
267 	 * before platform_cpu_kill() gets called - which may disable
268 	 * *this* CPU and power down its cache.
269 	 */
270 	flush_cache_louis();
271 
272 	/*
273 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
274 	 * this returns, power and/or clocks can be removed at any point
275 	 * from this CPU and its cache by platform_cpu_kill().
276 	 */
277 	complete(&cpu_died);
278 
279 	/*
280 	 * Ensure that the cache lines associated with that completion are
281 	 * written out.  This covers the case where _this_ CPU is doing the
282 	 * powering down, to ensure that the completion is visible to the
283 	 * CPU waiting for this one.
284 	 */
285 	flush_cache_louis();
286 
287 	/*
288 	 * The actual CPU shutdown procedure is at least platform (if not
289 	 * CPU) specific.  This may remove power, or it may simply spin.
290 	 *
291 	 * Platforms are generally expected *NOT* to return from this call,
292 	 * although there are some which do because they have no way to
293 	 * power down the CPU.  These platforms are the _only_ reason we
294 	 * have a return path which uses the fragment of assembly below.
295 	 *
296 	 * The return path should not be used for platforms which can
297 	 * power off the CPU.
298 	 */
299 	if (smp_ops.cpu_die)
300 		smp_ops.cpu_die(cpu);
301 
302 	/*
303 	 * Do not return to the idle loop - jump back to the secondary
304 	 * cpu initialisation.  There's some initialisation which needs
305 	 * to be repeated to undo the effects of taking the CPU offline.
306 	 */
307 	__asm__("mov	sp, %0\n"
308 	"	mov	fp, #0\n"
309 	"	b	secondary_start_kernel"
310 		:
311 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
312 }
313 #endif /* CONFIG_HOTPLUG_CPU */
314 
315 /*
316  * Called by both boot and secondaries to move global data into
317  * per-processor storage.
318  */
319 static void smp_store_cpu_info(unsigned int cpuid)
320 {
321 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
322 
323 	cpu_info->loops_per_jiffy = loops_per_jiffy;
324 	cpu_info->cpuid = read_cpuid_id();
325 
326 	store_cpu_topology(cpuid);
327 }
328 
329 static void percpu_timer_setup(void);
330 
331 /*
332  * This is the secondary CPU boot entry.  We're using this CPUs
333  * idle thread stack, but a set of temporary page tables.
334  */
335 asmlinkage void secondary_start_kernel(void)
336 {
337 	struct mm_struct *mm = &init_mm;
338 	unsigned int cpu;
339 
340 	/*
341 	 * The identity mapping is uncached (strongly ordered), so
342 	 * switch away from it before attempting any exclusive accesses.
343 	 */
344 	cpu_switch_mm(mm->pgd, mm);
345 	local_flush_bp_all();
346 	enter_lazy_tlb(mm, current);
347 	local_flush_tlb_all();
348 
349 	/*
350 	 * All kernel threads share the same mm context; grab a
351 	 * reference and switch to it.
352 	 */
353 	cpu = smp_processor_id();
354 	atomic_inc(&mm->mm_count);
355 	current->active_mm = mm;
356 	cpumask_set_cpu(cpu, mm_cpumask(mm));
357 
358 	cpu_init();
359 
360 	printk("CPU%u: Booted secondary processor\n", cpu);
361 
362 	preempt_disable();
363 	trace_hardirqs_off();
364 
365 	/*
366 	 * Give the platform a chance to do its own initialisation.
367 	 */
368 	if (smp_ops.smp_secondary_init)
369 		smp_ops.smp_secondary_init(cpu);
370 
371 	notify_cpu_starting(cpu);
372 
373 	calibrate_delay();
374 
375 	smp_store_cpu_info(cpu);
376 
377 	/*
378 	 * OK, now it's safe to let the boot CPU continue.  Wait for
379 	 * the CPU migration code to notice that the CPU is online
380 	 * before we continue - which happens after __cpu_up returns.
381 	 */
382 	set_cpu_online(cpu, true);
383 	complete(&cpu_running);
384 
385 	/*
386 	 * Setup the percpu timer for this CPU.
387 	 */
388 	percpu_timer_setup();
389 
390 	local_irq_enable();
391 	local_fiq_enable();
392 
393 	/*
394 	 * OK, it's off to the idle thread for us
395 	 */
396 	cpu_startup_entry(CPUHP_ONLINE);
397 }
398 
399 void __init smp_cpus_done(unsigned int max_cpus)
400 {
401 	int cpu;
402 	unsigned long bogosum = 0;
403 
404 	for_each_online_cpu(cpu)
405 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
406 
407 	printk(KERN_INFO "SMP: Total of %d processors activated "
408 	       "(%lu.%02lu BogoMIPS).\n",
409 	       num_online_cpus(),
410 	       bogosum / (500000/HZ),
411 	       (bogosum / (5000/HZ)) % 100);
412 
413 	hyp_mode_check();
414 }
415 
416 void __init smp_prepare_boot_cpu(void)
417 {
418 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
419 }
420 
421 void __init smp_prepare_cpus(unsigned int max_cpus)
422 {
423 	unsigned int ncores = num_possible_cpus();
424 
425 	init_cpu_topology();
426 
427 	smp_store_cpu_info(smp_processor_id());
428 
429 	/*
430 	 * are we trying to boot more cores than exist?
431 	 */
432 	if (max_cpus > ncores)
433 		max_cpus = ncores;
434 	if (ncores > 1 && max_cpus) {
435 		/*
436 		 * Enable the local timer or broadcast device for the
437 		 * boot CPU, but only if we have more than one CPU.
438 		 */
439 		percpu_timer_setup();
440 
441 		/*
442 		 * Initialise the present map, which describes the set of CPUs
443 		 * actually populated at the present time. A platform should
444 		 * re-initialize the map in the platforms smp_prepare_cpus()
445 		 * if present != possible (e.g. physical hotplug).
446 		 */
447 		init_cpu_present(cpu_possible_mask);
448 
449 		/*
450 		 * Initialise the SCU if there are more than one CPU
451 		 * and let them know where to start.
452 		 */
453 		if (smp_ops.smp_prepare_cpus)
454 			smp_ops.smp_prepare_cpus(max_cpus);
455 	}
456 }
457 
458 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
459 
460 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
461 {
462 	if (!smp_cross_call)
463 		smp_cross_call = fn;
464 }
465 
466 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
467 {
468 	smp_cross_call(mask, IPI_CALL_FUNC);
469 }
470 
471 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
472 {
473 	smp_cross_call(mask, IPI_WAKEUP);
474 }
475 
476 void arch_send_call_function_single_ipi(int cpu)
477 {
478 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
479 }
480 
481 static const char *ipi_types[NR_IPI] = {
482 #define S(x,s)	[x] = s
483 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
484 	S(IPI_TIMER, "Timer broadcast interrupts"),
485 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
486 	S(IPI_CALL_FUNC, "Function call interrupts"),
487 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
488 	S(IPI_CPU_STOP, "CPU stop interrupts"),
489 };
490 
491 void show_ipi_list(struct seq_file *p, int prec)
492 {
493 	unsigned int cpu, i;
494 
495 	for (i = 0; i < NR_IPI; i++) {
496 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
497 
498 		for_each_online_cpu(cpu)
499 			seq_printf(p, "%10u ",
500 				   __get_irq_stat(cpu, ipi_irqs[i]));
501 
502 		seq_printf(p, " %s\n", ipi_types[i]);
503 	}
504 }
505 
506 u64 smp_irq_stat_cpu(unsigned int cpu)
507 {
508 	u64 sum = 0;
509 	int i;
510 
511 	for (i = 0; i < NR_IPI; i++)
512 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
513 
514 	return sum;
515 }
516 
517 /*
518  * Timer (local or broadcast) support
519  */
520 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
521 
522 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
523 void tick_broadcast(const struct cpumask *mask)
524 {
525 	smp_cross_call(mask, IPI_TIMER);
526 }
527 #endif
528 
529 static void broadcast_timer_set_mode(enum clock_event_mode mode,
530 	struct clock_event_device *evt)
531 {
532 }
533 
534 static void broadcast_timer_setup(struct clock_event_device *evt)
535 {
536 	evt->name	= "dummy_timer";
537 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
538 			  CLOCK_EVT_FEAT_PERIODIC |
539 			  CLOCK_EVT_FEAT_DUMMY;
540 	evt->rating	= 100;
541 	evt->mult	= 1;
542 	evt->set_mode	= broadcast_timer_set_mode;
543 
544 	clockevents_register_device(evt);
545 }
546 
547 static struct local_timer_ops *lt_ops;
548 
549 #ifdef CONFIG_LOCAL_TIMERS
550 int local_timer_register(struct local_timer_ops *ops)
551 {
552 	if (!is_smp() || !setup_max_cpus)
553 		return -ENXIO;
554 
555 	if (lt_ops)
556 		return -EBUSY;
557 
558 	lt_ops = ops;
559 	return 0;
560 }
561 #endif
562 
563 static void percpu_timer_setup(void)
564 {
565 	unsigned int cpu = smp_processor_id();
566 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
567 
568 	evt->cpumask = cpumask_of(cpu);
569 
570 	if (!lt_ops || lt_ops->setup(evt))
571 		broadcast_timer_setup(evt);
572 }
573 
574 #ifdef CONFIG_HOTPLUG_CPU
575 /*
576  * The generic clock events code purposely does not stop the local timer
577  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
578  * manually here.
579  */
580 static void percpu_timer_stop(void)
581 {
582 	unsigned int cpu = smp_processor_id();
583 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
584 
585 	if (lt_ops)
586 		lt_ops->stop(evt);
587 }
588 #endif
589 
590 static DEFINE_RAW_SPINLOCK(stop_lock);
591 
592 /*
593  * ipi_cpu_stop - handle IPI from smp_send_stop()
594  */
595 static void ipi_cpu_stop(unsigned int cpu)
596 {
597 	if (system_state == SYSTEM_BOOTING ||
598 	    system_state == SYSTEM_RUNNING) {
599 		raw_spin_lock(&stop_lock);
600 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
601 		dump_stack();
602 		raw_spin_unlock(&stop_lock);
603 	}
604 
605 	set_cpu_online(cpu, false);
606 
607 	local_fiq_disable();
608 	local_irq_disable();
609 
610 	while (1)
611 		cpu_relax();
612 }
613 
614 /*
615  * Main handler for inter-processor interrupts
616  */
617 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
618 {
619 	handle_IPI(ipinr, regs);
620 }
621 
622 void handle_IPI(int ipinr, struct pt_regs *regs)
623 {
624 	unsigned int cpu = smp_processor_id();
625 	struct pt_regs *old_regs = set_irq_regs(regs);
626 
627 	if (ipinr < NR_IPI)
628 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
629 
630 	switch (ipinr) {
631 	case IPI_WAKEUP:
632 		break;
633 
634 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
635 	case IPI_TIMER:
636 		irq_enter();
637 		tick_receive_broadcast();
638 		irq_exit();
639 		break;
640 #endif
641 
642 	case IPI_RESCHEDULE:
643 		scheduler_ipi();
644 		break;
645 
646 	case IPI_CALL_FUNC:
647 		irq_enter();
648 		generic_smp_call_function_interrupt();
649 		irq_exit();
650 		break;
651 
652 	case IPI_CALL_FUNC_SINGLE:
653 		irq_enter();
654 		generic_smp_call_function_single_interrupt();
655 		irq_exit();
656 		break;
657 
658 	case IPI_CPU_STOP:
659 		irq_enter();
660 		ipi_cpu_stop(cpu);
661 		irq_exit();
662 		break;
663 
664 	default:
665 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
666 		       cpu, ipinr);
667 		break;
668 	}
669 	set_irq_regs(old_regs);
670 }
671 
672 void smp_send_reschedule(int cpu)
673 {
674 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
675 }
676 
677 void smp_send_stop(void)
678 {
679 	unsigned long timeout;
680 	struct cpumask mask;
681 
682 	cpumask_copy(&mask, cpu_online_mask);
683 	cpumask_clear_cpu(smp_processor_id(), &mask);
684 	if (!cpumask_empty(&mask))
685 		smp_cross_call(&mask, IPI_CPU_STOP);
686 
687 	/* Wait up to one second for other CPUs to stop */
688 	timeout = USEC_PER_SEC;
689 	while (num_online_cpus() > 1 && timeout--)
690 		udelay(1);
691 
692 	if (num_online_cpus() > 1)
693 		pr_warning("SMP: failed to stop secondary CPUs\n");
694 }
695 
696 /*
697  * not supported here
698  */
699 int setup_profiling_timer(unsigned int multiplier)
700 {
701 	return -EINVAL;
702 }
703 
704 #ifdef CONFIG_CPU_FREQ
705 
706 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
707 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
708 static unsigned long global_l_p_j_ref;
709 static unsigned long global_l_p_j_ref_freq;
710 
711 static int cpufreq_callback(struct notifier_block *nb,
712 					unsigned long val, void *data)
713 {
714 	struct cpufreq_freqs *freq = data;
715 	int cpu = freq->cpu;
716 
717 	if (freq->flags & CPUFREQ_CONST_LOOPS)
718 		return NOTIFY_OK;
719 
720 	if (!per_cpu(l_p_j_ref, cpu)) {
721 		per_cpu(l_p_j_ref, cpu) =
722 			per_cpu(cpu_data, cpu).loops_per_jiffy;
723 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
724 		if (!global_l_p_j_ref) {
725 			global_l_p_j_ref = loops_per_jiffy;
726 			global_l_p_j_ref_freq = freq->old;
727 		}
728 	}
729 
730 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
731 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
732 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
733 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
734 						global_l_p_j_ref_freq,
735 						freq->new);
736 		per_cpu(cpu_data, cpu).loops_per_jiffy =
737 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
738 					per_cpu(l_p_j_ref_freq, cpu),
739 					freq->new);
740 	}
741 	return NOTIFY_OK;
742 }
743 
744 static struct notifier_block cpufreq_notifier = {
745 	.notifier_call  = cpufreq_callback,
746 };
747 
748 static int __init register_cpufreq_notifier(void)
749 {
750 	return cpufreq_register_notifier(&cpufreq_notifier,
751 						CPUFREQ_TRANSITION_NOTIFIER);
752 }
753 core_initcall(register_cpufreq_notifier);
754 
755 #endif
756