1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 #include <linux/completion.h> 28 29 #include <linux/atomic.h> 30 #include <asm/cacheflush.h> 31 #include <asm/cpu.h> 32 #include <asm/cputype.h> 33 #include <asm/exception.h> 34 #include <asm/topology.h> 35 #include <asm/mmu_context.h> 36 #include <asm/pgtable.h> 37 #include <asm/pgalloc.h> 38 #include <asm/processor.h> 39 #include <asm/sections.h> 40 #include <asm/tlbflush.h> 41 #include <asm/ptrace.h> 42 #include <asm/localtimer.h> 43 #include <asm/smp_plat.h> 44 45 /* 46 * as from 2.5, kernels no longer have an init_tasks structure 47 * so we need some other way of telling a new secondary core 48 * where to place its SVC stack 49 */ 50 struct secondary_data secondary_data; 51 52 enum ipi_msg_type { 53 IPI_TIMER = 2, 54 IPI_RESCHEDULE, 55 IPI_CALL_FUNC, 56 IPI_CALL_FUNC_SINGLE, 57 IPI_CPU_STOP, 58 }; 59 60 int __cpuinit __cpu_up(unsigned int cpu) 61 { 62 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 63 struct task_struct *idle = ci->idle; 64 pgd_t *pgd; 65 int ret; 66 67 /* 68 * Spawn a new process manually, if not already done. 69 * Grab a pointer to its task struct so we can mess with it 70 */ 71 if (!idle) { 72 idle = fork_idle(cpu); 73 if (IS_ERR(idle)) { 74 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 75 return PTR_ERR(idle); 76 } 77 ci->idle = idle; 78 } else { 79 /* 80 * Since this idle thread is being re-used, call 81 * init_idle() to reinitialize the thread structure. 82 */ 83 init_idle(idle, cpu); 84 } 85 86 /* 87 * Allocate initial page tables to allow the new CPU to 88 * enable the MMU safely. This essentially means a set 89 * of our "standard" page tables, with the addition of 90 * a 1:1 mapping for the physical address of the kernel. 91 */ 92 pgd = pgd_alloc(&init_mm); 93 if (!pgd) 94 return -ENOMEM; 95 96 if (PHYS_OFFSET != PAGE_OFFSET) { 97 #ifndef CONFIG_HOTPLUG_CPU 98 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end)); 99 #endif 100 identity_mapping_add(pgd, __pa(_stext), __pa(_etext)); 101 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata)); 102 } 103 104 /* 105 * We need to tell the secondary core where to find 106 * its stack and the page tables. 107 */ 108 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 109 secondary_data.pgdir = virt_to_phys(pgd); 110 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir); 111 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 112 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 113 114 /* 115 * Now bring the CPU into our world. 116 */ 117 ret = boot_secondary(cpu, idle); 118 if (ret == 0) { 119 unsigned long timeout; 120 121 /* 122 * CPU was successfully started, wait for it 123 * to come online or time out. 124 */ 125 timeout = jiffies + HZ; 126 while (time_before(jiffies, timeout)) { 127 if (cpu_online(cpu)) 128 break; 129 130 udelay(10); 131 barrier(); 132 } 133 134 if (!cpu_online(cpu)) { 135 pr_crit("CPU%u: failed to come online\n", cpu); 136 ret = -EIO; 137 } 138 } else { 139 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 140 } 141 142 secondary_data.stack = NULL; 143 secondary_data.pgdir = 0; 144 145 if (PHYS_OFFSET != PAGE_OFFSET) { 146 #ifndef CONFIG_HOTPLUG_CPU 147 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end)); 148 #endif 149 identity_mapping_del(pgd, __pa(_stext), __pa(_etext)); 150 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata)); 151 } 152 153 pgd_free(&init_mm, pgd); 154 155 return ret; 156 } 157 158 #ifdef CONFIG_HOTPLUG_CPU 159 static void percpu_timer_stop(void); 160 161 /* 162 * __cpu_disable runs on the processor to be shutdown. 163 */ 164 int __cpu_disable(void) 165 { 166 unsigned int cpu = smp_processor_id(); 167 struct task_struct *p; 168 int ret; 169 170 ret = platform_cpu_disable(cpu); 171 if (ret) 172 return ret; 173 174 /* 175 * Take this CPU offline. Once we clear this, we can't return, 176 * and we must not schedule until we're ready to give up the cpu. 177 */ 178 set_cpu_online(cpu, false); 179 180 /* 181 * OK - migrate IRQs away from this CPU 182 */ 183 migrate_irqs(); 184 185 /* 186 * Stop the local timer for this CPU. 187 */ 188 percpu_timer_stop(); 189 190 /* 191 * Flush user cache and TLB mappings, and then remove this CPU 192 * from the vm mask set of all processes. 193 */ 194 flush_cache_all(); 195 local_flush_tlb_all(); 196 197 read_lock(&tasklist_lock); 198 for_each_process(p) { 199 if (p->mm) 200 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 201 } 202 read_unlock(&tasklist_lock); 203 204 return 0; 205 } 206 207 static DECLARE_COMPLETION(cpu_died); 208 209 /* 210 * called on the thread which is asking for a CPU to be shutdown - 211 * waits until shutdown has completed, or it is timed out. 212 */ 213 void __cpu_die(unsigned int cpu) 214 { 215 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 216 pr_err("CPU%u: cpu didn't die\n", cpu); 217 return; 218 } 219 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 220 221 if (!platform_cpu_kill(cpu)) 222 printk("CPU%u: unable to kill\n", cpu); 223 } 224 225 /* 226 * Called from the idle thread for the CPU which has been shutdown. 227 * 228 * Note that we disable IRQs here, but do not re-enable them 229 * before returning to the caller. This is also the behaviour 230 * of the other hotplug-cpu capable cores, so presumably coming 231 * out of idle fixes this. 232 */ 233 void __ref cpu_die(void) 234 { 235 unsigned int cpu = smp_processor_id(); 236 237 idle_task_exit(); 238 239 local_irq_disable(); 240 mb(); 241 242 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 243 complete(&cpu_died); 244 245 /* 246 * actual CPU shutdown procedure is at least platform (if not 247 * CPU) specific. 248 */ 249 platform_cpu_die(cpu); 250 251 /* 252 * Do not return to the idle loop - jump back to the secondary 253 * cpu initialisation. There's some initialisation which needs 254 * to be repeated to undo the effects of taking the CPU offline. 255 */ 256 __asm__("mov sp, %0\n" 257 " mov fp, #0\n" 258 " b secondary_start_kernel" 259 : 260 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 261 } 262 #endif /* CONFIG_HOTPLUG_CPU */ 263 264 int __cpu_logical_map[NR_CPUS]; 265 266 void __init smp_setup_processor_id(void) 267 { 268 int i; 269 u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0; 270 271 cpu_logical_map(0) = cpu; 272 for (i = 1; i < NR_CPUS; ++i) 273 cpu_logical_map(i) = i == cpu ? 0 : i; 274 275 printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu); 276 } 277 278 /* 279 * Called by both boot and secondaries to move global data into 280 * per-processor storage. 281 */ 282 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 283 { 284 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 285 286 cpu_info->loops_per_jiffy = loops_per_jiffy; 287 288 store_cpu_topology(cpuid); 289 } 290 291 /* 292 * This is the secondary CPU boot entry. We're using this CPUs 293 * idle thread stack, but a set of temporary page tables. 294 */ 295 asmlinkage void __cpuinit secondary_start_kernel(void) 296 { 297 struct mm_struct *mm = &init_mm; 298 unsigned int cpu = smp_processor_id(); 299 300 printk("CPU%u: Booted secondary processor\n", cpu); 301 302 /* 303 * All kernel threads share the same mm context; grab a 304 * reference and switch to it. 305 */ 306 atomic_inc(&mm->mm_count); 307 current->active_mm = mm; 308 cpumask_set_cpu(cpu, mm_cpumask(mm)); 309 cpu_switch_mm(mm->pgd, mm); 310 enter_lazy_tlb(mm, current); 311 local_flush_tlb_all(); 312 313 cpu_init(); 314 preempt_disable(); 315 trace_hardirqs_off(); 316 317 /* 318 * Give the platform a chance to do its own initialisation. 319 */ 320 platform_secondary_init(cpu); 321 322 notify_cpu_starting(cpu); 323 324 calibrate_delay(); 325 326 smp_store_cpu_info(cpu); 327 328 /* 329 * OK, now it's safe to let the boot CPU continue. Wait for 330 * the CPU migration code to notice that the CPU is online 331 * before we continue. 332 */ 333 set_cpu_online(cpu, true); 334 335 /* 336 * Setup the percpu timer for this CPU. 337 */ 338 percpu_timer_setup(); 339 340 while (!cpu_active(cpu)) 341 cpu_relax(); 342 343 /* 344 * cpu_active bit is set, so it's safe to enalbe interrupts 345 * now. 346 */ 347 local_irq_enable(); 348 local_fiq_enable(); 349 350 /* 351 * OK, it's off to the idle thread for us 352 */ 353 cpu_idle(); 354 } 355 356 void __init smp_cpus_done(unsigned int max_cpus) 357 { 358 int cpu; 359 unsigned long bogosum = 0; 360 361 for_each_online_cpu(cpu) 362 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 363 364 printk(KERN_INFO "SMP: Total of %d processors activated " 365 "(%lu.%02lu BogoMIPS).\n", 366 num_online_cpus(), 367 bogosum / (500000/HZ), 368 (bogosum / (5000/HZ)) % 100); 369 } 370 371 void __init smp_prepare_boot_cpu(void) 372 { 373 unsigned int cpu = smp_processor_id(); 374 375 per_cpu(cpu_data, cpu).idle = current; 376 } 377 378 void __init smp_prepare_cpus(unsigned int max_cpus) 379 { 380 unsigned int ncores = num_possible_cpus(); 381 382 init_cpu_topology(); 383 384 smp_store_cpu_info(smp_processor_id()); 385 386 /* 387 * are we trying to boot more cores than exist? 388 */ 389 if (max_cpus > ncores) 390 max_cpus = ncores; 391 if (ncores > 1 && max_cpus) { 392 /* 393 * Enable the local timer or broadcast device for the 394 * boot CPU, but only if we have more than one CPU. 395 */ 396 percpu_timer_setup(); 397 398 /* 399 * Initialise the present map, which describes the set of CPUs 400 * actually populated at the present time. A platform should 401 * re-initialize the map in platform_smp_prepare_cpus() if 402 * present != possible (e.g. physical hotplug). 403 */ 404 init_cpu_present(&cpu_possible_map); 405 406 /* 407 * Initialise the SCU if there are more than one CPU 408 * and let them know where to start. 409 */ 410 platform_smp_prepare_cpus(max_cpus); 411 } 412 } 413 414 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 415 416 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 417 { 418 smp_cross_call = fn; 419 } 420 421 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 422 { 423 smp_cross_call(mask, IPI_CALL_FUNC); 424 } 425 426 void arch_send_call_function_single_ipi(int cpu) 427 { 428 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 429 } 430 431 static const char *ipi_types[NR_IPI] = { 432 #define S(x,s) [x - IPI_TIMER] = s 433 S(IPI_TIMER, "Timer broadcast interrupts"), 434 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 435 S(IPI_CALL_FUNC, "Function call interrupts"), 436 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 437 S(IPI_CPU_STOP, "CPU stop interrupts"), 438 }; 439 440 void show_ipi_list(struct seq_file *p, int prec) 441 { 442 unsigned int cpu, i; 443 444 for (i = 0; i < NR_IPI; i++) { 445 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 446 447 for_each_present_cpu(cpu) 448 seq_printf(p, "%10u ", 449 __get_irq_stat(cpu, ipi_irqs[i])); 450 451 seq_printf(p, " %s\n", ipi_types[i]); 452 } 453 } 454 455 u64 smp_irq_stat_cpu(unsigned int cpu) 456 { 457 u64 sum = 0; 458 int i; 459 460 for (i = 0; i < NR_IPI; i++) 461 sum += __get_irq_stat(cpu, ipi_irqs[i]); 462 463 return sum; 464 } 465 466 /* 467 * Timer (local or broadcast) support 468 */ 469 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 470 471 static void ipi_timer(void) 472 { 473 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 474 irq_enter(); 475 evt->event_handler(evt); 476 irq_exit(); 477 } 478 479 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 480 static void smp_timer_broadcast(const struct cpumask *mask) 481 { 482 smp_cross_call(mask, IPI_TIMER); 483 } 484 #else 485 #define smp_timer_broadcast NULL 486 #endif 487 488 static void broadcast_timer_set_mode(enum clock_event_mode mode, 489 struct clock_event_device *evt) 490 { 491 } 492 493 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 494 { 495 evt->name = "dummy_timer"; 496 evt->features = CLOCK_EVT_FEAT_ONESHOT | 497 CLOCK_EVT_FEAT_PERIODIC | 498 CLOCK_EVT_FEAT_DUMMY; 499 evt->rating = 400; 500 evt->mult = 1; 501 evt->set_mode = broadcast_timer_set_mode; 502 503 clockevents_register_device(evt); 504 } 505 506 void __cpuinit percpu_timer_setup(void) 507 { 508 unsigned int cpu = smp_processor_id(); 509 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 510 511 evt->cpumask = cpumask_of(cpu); 512 evt->broadcast = smp_timer_broadcast; 513 514 if (local_timer_setup(evt)) 515 broadcast_timer_setup(evt); 516 } 517 518 #ifdef CONFIG_HOTPLUG_CPU 519 /* 520 * The generic clock events code purposely does not stop the local timer 521 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 522 * manually here. 523 */ 524 static void percpu_timer_stop(void) 525 { 526 unsigned int cpu = smp_processor_id(); 527 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 528 529 local_timer_stop(evt); 530 } 531 #endif 532 533 static DEFINE_RAW_SPINLOCK(stop_lock); 534 535 /* 536 * ipi_cpu_stop - handle IPI from smp_send_stop() 537 */ 538 static void ipi_cpu_stop(unsigned int cpu) 539 { 540 if (system_state == SYSTEM_BOOTING || 541 system_state == SYSTEM_RUNNING) { 542 raw_spin_lock(&stop_lock); 543 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 544 dump_stack(); 545 raw_spin_unlock(&stop_lock); 546 } 547 548 set_cpu_online(cpu, false); 549 550 local_fiq_disable(); 551 local_irq_disable(); 552 553 while (1) 554 cpu_relax(); 555 } 556 557 /* 558 * Main handler for inter-processor interrupts 559 */ 560 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 561 { 562 handle_IPI(ipinr, regs); 563 } 564 565 void handle_IPI(int ipinr, struct pt_regs *regs) 566 { 567 unsigned int cpu = smp_processor_id(); 568 struct pt_regs *old_regs = set_irq_regs(regs); 569 570 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI) 571 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]); 572 573 switch (ipinr) { 574 case IPI_TIMER: 575 ipi_timer(); 576 break; 577 578 case IPI_RESCHEDULE: 579 scheduler_ipi(); 580 break; 581 582 case IPI_CALL_FUNC: 583 generic_smp_call_function_interrupt(); 584 break; 585 586 case IPI_CALL_FUNC_SINGLE: 587 generic_smp_call_function_single_interrupt(); 588 break; 589 590 case IPI_CPU_STOP: 591 ipi_cpu_stop(cpu); 592 break; 593 594 default: 595 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 596 cpu, ipinr); 597 break; 598 } 599 set_irq_regs(old_regs); 600 } 601 602 void smp_send_reschedule(int cpu) 603 { 604 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 605 } 606 607 void smp_send_stop(void) 608 { 609 unsigned long timeout; 610 611 if (num_online_cpus() > 1) { 612 cpumask_t mask = cpu_online_map; 613 cpu_clear(smp_processor_id(), mask); 614 615 smp_cross_call(&mask, IPI_CPU_STOP); 616 } 617 618 /* Wait up to one second for other CPUs to stop */ 619 timeout = USEC_PER_SEC; 620 while (num_online_cpus() > 1 && timeout--) 621 udelay(1); 622 623 if (num_online_cpus() > 1) 624 pr_warning("SMP: failed to stop secondary CPUs\n"); 625 } 626 627 /* 628 * not supported here 629 */ 630 int setup_profiling_timer(unsigned int multiplier) 631 { 632 return -EINVAL; 633 } 634