xref: /linux/arch/arm/kernel/smp.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cpu.h>
32 #include <asm/cputype.h>
33 #include <asm/exception.h>
34 #include <asm/topology.h>
35 #include <asm/mmu_context.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/processor.h>
39 #include <asm/sections.h>
40 #include <asm/tlbflush.h>
41 #include <asm/ptrace.h>
42 #include <asm/localtimer.h>
43 #include <asm/smp_plat.h>
44 
45 /*
46  * as from 2.5, kernels no longer have an init_tasks structure
47  * so we need some other way of telling a new secondary core
48  * where to place its SVC stack
49  */
50 struct secondary_data secondary_data;
51 
52 enum ipi_msg_type {
53 	IPI_TIMER = 2,
54 	IPI_RESCHEDULE,
55 	IPI_CALL_FUNC,
56 	IPI_CALL_FUNC_SINGLE,
57 	IPI_CPU_STOP,
58 };
59 
60 int __cpuinit __cpu_up(unsigned int cpu)
61 {
62 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
63 	struct task_struct *idle = ci->idle;
64 	pgd_t *pgd;
65 	int ret;
66 
67 	/*
68 	 * Spawn a new process manually, if not already done.
69 	 * Grab a pointer to its task struct so we can mess with it
70 	 */
71 	if (!idle) {
72 		idle = fork_idle(cpu);
73 		if (IS_ERR(idle)) {
74 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
75 			return PTR_ERR(idle);
76 		}
77 		ci->idle = idle;
78 	} else {
79 		/*
80 		 * Since this idle thread is being re-used, call
81 		 * init_idle() to reinitialize the thread structure.
82 		 */
83 		init_idle(idle, cpu);
84 	}
85 
86 	/*
87 	 * Allocate initial page tables to allow the new CPU to
88 	 * enable the MMU safely.  This essentially means a set
89 	 * of our "standard" page tables, with the addition of
90 	 * a 1:1 mapping for the physical address of the kernel.
91 	 */
92 	pgd = pgd_alloc(&init_mm);
93 	if (!pgd)
94 		return -ENOMEM;
95 
96 	if (PHYS_OFFSET != PAGE_OFFSET) {
97 #ifndef CONFIG_HOTPLUG_CPU
98 		identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
99 #endif
100 		identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
101 		identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
102 	}
103 
104 	/*
105 	 * We need to tell the secondary core where to find
106 	 * its stack and the page tables.
107 	 */
108 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
109 	secondary_data.pgdir = virt_to_phys(pgd);
110 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
111 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
112 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
113 
114 	/*
115 	 * Now bring the CPU into our world.
116 	 */
117 	ret = boot_secondary(cpu, idle);
118 	if (ret == 0) {
119 		unsigned long timeout;
120 
121 		/*
122 		 * CPU was successfully started, wait for it
123 		 * to come online or time out.
124 		 */
125 		timeout = jiffies + HZ;
126 		while (time_before(jiffies, timeout)) {
127 			if (cpu_online(cpu))
128 				break;
129 
130 			udelay(10);
131 			barrier();
132 		}
133 
134 		if (!cpu_online(cpu)) {
135 			pr_crit("CPU%u: failed to come online\n", cpu);
136 			ret = -EIO;
137 		}
138 	} else {
139 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
140 	}
141 
142 	secondary_data.stack = NULL;
143 	secondary_data.pgdir = 0;
144 
145 	if (PHYS_OFFSET != PAGE_OFFSET) {
146 #ifndef CONFIG_HOTPLUG_CPU
147 		identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
148 #endif
149 		identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
150 		identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
151 	}
152 
153 	pgd_free(&init_mm, pgd);
154 
155 	return ret;
156 }
157 
158 #ifdef CONFIG_HOTPLUG_CPU
159 static void percpu_timer_stop(void);
160 
161 /*
162  * __cpu_disable runs on the processor to be shutdown.
163  */
164 int __cpu_disable(void)
165 {
166 	unsigned int cpu = smp_processor_id();
167 	struct task_struct *p;
168 	int ret;
169 
170 	ret = platform_cpu_disable(cpu);
171 	if (ret)
172 		return ret;
173 
174 	/*
175 	 * Take this CPU offline.  Once we clear this, we can't return,
176 	 * and we must not schedule until we're ready to give up the cpu.
177 	 */
178 	set_cpu_online(cpu, false);
179 
180 	/*
181 	 * OK - migrate IRQs away from this CPU
182 	 */
183 	migrate_irqs();
184 
185 	/*
186 	 * Stop the local timer for this CPU.
187 	 */
188 	percpu_timer_stop();
189 
190 	/*
191 	 * Flush user cache and TLB mappings, and then remove this CPU
192 	 * from the vm mask set of all processes.
193 	 */
194 	flush_cache_all();
195 	local_flush_tlb_all();
196 
197 	read_lock(&tasklist_lock);
198 	for_each_process(p) {
199 		if (p->mm)
200 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
201 	}
202 	read_unlock(&tasklist_lock);
203 
204 	return 0;
205 }
206 
207 static DECLARE_COMPLETION(cpu_died);
208 
209 /*
210  * called on the thread which is asking for a CPU to be shutdown -
211  * waits until shutdown has completed, or it is timed out.
212  */
213 void __cpu_die(unsigned int cpu)
214 {
215 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
216 		pr_err("CPU%u: cpu didn't die\n", cpu);
217 		return;
218 	}
219 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
220 
221 	if (!platform_cpu_kill(cpu))
222 		printk("CPU%u: unable to kill\n", cpu);
223 }
224 
225 /*
226  * Called from the idle thread for the CPU which has been shutdown.
227  *
228  * Note that we disable IRQs here, but do not re-enable them
229  * before returning to the caller. This is also the behaviour
230  * of the other hotplug-cpu capable cores, so presumably coming
231  * out of idle fixes this.
232  */
233 void __ref cpu_die(void)
234 {
235 	unsigned int cpu = smp_processor_id();
236 
237 	idle_task_exit();
238 
239 	local_irq_disable();
240 	mb();
241 
242 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
243 	complete(&cpu_died);
244 
245 	/*
246 	 * actual CPU shutdown procedure is at least platform (if not
247 	 * CPU) specific.
248 	 */
249 	platform_cpu_die(cpu);
250 
251 	/*
252 	 * Do not return to the idle loop - jump back to the secondary
253 	 * cpu initialisation.  There's some initialisation which needs
254 	 * to be repeated to undo the effects of taking the CPU offline.
255 	 */
256 	__asm__("mov	sp, %0\n"
257 	"	mov	fp, #0\n"
258 	"	b	secondary_start_kernel"
259 		:
260 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
261 }
262 #endif /* CONFIG_HOTPLUG_CPU */
263 
264 int __cpu_logical_map[NR_CPUS];
265 
266 void __init smp_setup_processor_id(void)
267 {
268 	int i;
269 	u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
270 
271 	cpu_logical_map(0) = cpu;
272 	for (i = 1; i < NR_CPUS; ++i)
273 		cpu_logical_map(i) = i == cpu ? 0 : i;
274 
275 	printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
276 }
277 
278 /*
279  * Called by both boot and secondaries to move global data into
280  * per-processor storage.
281  */
282 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
283 {
284 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
285 
286 	cpu_info->loops_per_jiffy = loops_per_jiffy;
287 
288 	store_cpu_topology(cpuid);
289 }
290 
291 /*
292  * This is the secondary CPU boot entry.  We're using this CPUs
293  * idle thread stack, but a set of temporary page tables.
294  */
295 asmlinkage void __cpuinit secondary_start_kernel(void)
296 {
297 	struct mm_struct *mm = &init_mm;
298 	unsigned int cpu = smp_processor_id();
299 
300 	printk("CPU%u: Booted secondary processor\n", cpu);
301 
302 	/*
303 	 * All kernel threads share the same mm context; grab a
304 	 * reference and switch to it.
305 	 */
306 	atomic_inc(&mm->mm_count);
307 	current->active_mm = mm;
308 	cpumask_set_cpu(cpu, mm_cpumask(mm));
309 	cpu_switch_mm(mm->pgd, mm);
310 	enter_lazy_tlb(mm, current);
311 	local_flush_tlb_all();
312 
313 	cpu_init();
314 	preempt_disable();
315 	trace_hardirqs_off();
316 
317 	/*
318 	 * Give the platform a chance to do its own initialisation.
319 	 */
320 	platform_secondary_init(cpu);
321 
322 	notify_cpu_starting(cpu);
323 
324 	calibrate_delay();
325 
326 	smp_store_cpu_info(cpu);
327 
328 	/*
329 	 * OK, now it's safe to let the boot CPU continue.  Wait for
330 	 * the CPU migration code to notice that the CPU is online
331 	 * before we continue.
332 	 */
333 	set_cpu_online(cpu, true);
334 
335 	/*
336 	 * Setup the percpu timer for this CPU.
337 	 */
338 	percpu_timer_setup();
339 
340 	while (!cpu_active(cpu))
341 		cpu_relax();
342 
343 	/*
344 	 * cpu_active bit is set, so it's safe to enalbe interrupts
345 	 * now.
346 	 */
347 	local_irq_enable();
348 	local_fiq_enable();
349 
350 	/*
351 	 * OK, it's off to the idle thread for us
352 	 */
353 	cpu_idle();
354 }
355 
356 void __init smp_cpus_done(unsigned int max_cpus)
357 {
358 	int cpu;
359 	unsigned long bogosum = 0;
360 
361 	for_each_online_cpu(cpu)
362 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
363 
364 	printk(KERN_INFO "SMP: Total of %d processors activated "
365 	       "(%lu.%02lu BogoMIPS).\n",
366 	       num_online_cpus(),
367 	       bogosum / (500000/HZ),
368 	       (bogosum / (5000/HZ)) % 100);
369 }
370 
371 void __init smp_prepare_boot_cpu(void)
372 {
373 	unsigned int cpu = smp_processor_id();
374 
375 	per_cpu(cpu_data, cpu).idle = current;
376 }
377 
378 void __init smp_prepare_cpus(unsigned int max_cpus)
379 {
380 	unsigned int ncores = num_possible_cpus();
381 
382 	init_cpu_topology();
383 
384 	smp_store_cpu_info(smp_processor_id());
385 
386 	/*
387 	 * are we trying to boot more cores than exist?
388 	 */
389 	if (max_cpus > ncores)
390 		max_cpus = ncores;
391 	if (ncores > 1 && max_cpus) {
392 		/*
393 		 * Enable the local timer or broadcast device for the
394 		 * boot CPU, but only if we have more than one CPU.
395 		 */
396 		percpu_timer_setup();
397 
398 		/*
399 		 * Initialise the present map, which describes the set of CPUs
400 		 * actually populated at the present time. A platform should
401 		 * re-initialize the map in platform_smp_prepare_cpus() if
402 		 * present != possible (e.g. physical hotplug).
403 		 */
404 		init_cpu_present(&cpu_possible_map);
405 
406 		/*
407 		 * Initialise the SCU if there are more than one CPU
408 		 * and let them know where to start.
409 		 */
410 		platform_smp_prepare_cpus(max_cpus);
411 	}
412 }
413 
414 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
415 
416 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
417 {
418 	smp_cross_call = fn;
419 }
420 
421 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
422 {
423 	smp_cross_call(mask, IPI_CALL_FUNC);
424 }
425 
426 void arch_send_call_function_single_ipi(int cpu)
427 {
428 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
429 }
430 
431 static const char *ipi_types[NR_IPI] = {
432 #define S(x,s)	[x - IPI_TIMER] = s
433 	S(IPI_TIMER, "Timer broadcast interrupts"),
434 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
435 	S(IPI_CALL_FUNC, "Function call interrupts"),
436 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
437 	S(IPI_CPU_STOP, "CPU stop interrupts"),
438 };
439 
440 void show_ipi_list(struct seq_file *p, int prec)
441 {
442 	unsigned int cpu, i;
443 
444 	for (i = 0; i < NR_IPI; i++) {
445 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
446 
447 		for_each_present_cpu(cpu)
448 			seq_printf(p, "%10u ",
449 				   __get_irq_stat(cpu, ipi_irqs[i]));
450 
451 		seq_printf(p, " %s\n", ipi_types[i]);
452 	}
453 }
454 
455 u64 smp_irq_stat_cpu(unsigned int cpu)
456 {
457 	u64 sum = 0;
458 	int i;
459 
460 	for (i = 0; i < NR_IPI; i++)
461 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
462 
463 	return sum;
464 }
465 
466 /*
467  * Timer (local or broadcast) support
468  */
469 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
470 
471 static void ipi_timer(void)
472 {
473 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
474 	irq_enter();
475 	evt->event_handler(evt);
476 	irq_exit();
477 }
478 
479 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
480 static void smp_timer_broadcast(const struct cpumask *mask)
481 {
482 	smp_cross_call(mask, IPI_TIMER);
483 }
484 #else
485 #define smp_timer_broadcast	NULL
486 #endif
487 
488 static void broadcast_timer_set_mode(enum clock_event_mode mode,
489 	struct clock_event_device *evt)
490 {
491 }
492 
493 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
494 {
495 	evt->name	= "dummy_timer";
496 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
497 			  CLOCK_EVT_FEAT_PERIODIC |
498 			  CLOCK_EVT_FEAT_DUMMY;
499 	evt->rating	= 400;
500 	evt->mult	= 1;
501 	evt->set_mode	= broadcast_timer_set_mode;
502 
503 	clockevents_register_device(evt);
504 }
505 
506 void __cpuinit percpu_timer_setup(void)
507 {
508 	unsigned int cpu = smp_processor_id();
509 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
510 
511 	evt->cpumask = cpumask_of(cpu);
512 	evt->broadcast = smp_timer_broadcast;
513 
514 	if (local_timer_setup(evt))
515 		broadcast_timer_setup(evt);
516 }
517 
518 #ifdef CONFIG_HOTPLUG_CPU
519 /*
520  * The generic clock events code purposely does not stop the local timer
521  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
522  * manually here.
523  */
524 static void percpu_timer_stop(void)
525 {
526 	unsigned int cpu = smp_processor_id();
527 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
528 
529 	local_timer_stop(evt);
530 }
531 #endif
532 
533 static DEFINE_RAW_SPINLOCK(stop_lock);
534 
535 /*
536  * ipi_cpu_stop - handle IPI from smp_send_stop()
537  */
538 static void ipi_cpu_stop(unsigned int cpu)
539 {
540 	if (system_state == SYSTEM_BOOTING ||
541 	    system_state == SYSTEM_RUNNING) {
542 		raw_spin_lock(&stop_lock);
543 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
544 		dump_stack();
545 		raw_spin_unlock(&stop_lock);
546 	}
547 
548 	set_cpu_online(cpu, false);
549 
550 	local_fiq_disable();
551 	local_irq_disable();
552 
553 	while (1)
554 		cpu_relax();
555 }
556 
557 /*
558  * Main handler for inter-processor interrupts
559  */
560 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
561 {
562 	handle_IPI(ipinr, regs);
563 }
564 
565 void handle_IPI(int ipinr, struct pt_regs *regs)
566 {
567 	unsigned int cpu = smp_processor_id();
568 	struct pt_regs *old_regs = set_irq_regs(regs);
569 
570 	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
571 		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
572 
573 	switch (ipinr) {
574 	case IPI_TIMER:
575 		ipi_timer();
576 		break;
577 
578 	case IPI_RESCHEDULE:
579 		scheduler_ipi();
580 		break;
581 
582 	case IPI_CALL_FUNC:
583 		generic_smp_call_function_interrupt();
584 		break;
585 
586 	case IPI_CALL_FUNC_SINGLE:
587 		generic_smp_call_function_single_interrupt();
588 		break;
589 
590 	case IPI_CPU_STOP:
591 		ipi_cpu_stop(cpu);
592 		break;
593 
594 	default:
595 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
596 		       cpu, ipinr);
597 		break;
598 	}
599 	set_irq_regs(old_regs);
600 }
601 
602 void smp_send_reschedule(int cpu)
603 {
604 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
605 }
606 
607 void smp_send_stop(void)
608 {
609 	unsigned long timeout;
610 
611 	if (num_online_cpus() > 1) {
612 		cpumask_t mask = cpu_online_map;
613 		cpu_clear(smp_processor_id(), mask);
614 
615 		smp_cross_call(&mask, IPI_CPU_STOP);
616 	}
617 
618 	/* Wait up to one second for other CPUs to stop */
619 	timeout = USEC_PER_SEC;
620 	while (num_online_cpus() > 1 && timeout--)
621 		udelay(1);
622 
623 	if (num_online_cpus() > 1)
624 		pr_warning("SMP: failed to stop secondary CPUs\n");
625 }
626 
627 /*
628  * not supported here
629  */
630 int setup_profiling_timer(unsigned int multiplier)
631 {
632 	return -EINVAL;
633 }
634