xref: /linux/arch/arm/kernel/smp.c (revision a078ccff5642a8fe792a43b3d973bcc3f6dd733f)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55 
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CALL_FUNC_SINGLE,
68 	IPI_CPU_STOP,
69 };
70 
71 static DECLARE_COMPLETION(cpu_running);
72 
73 static struct smp_operations smp_ops;
74 
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77 	if (ops)
78 		smp_ops = *ops;
79 };
80 
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83 	int ret;
84 
85 	/*
86 	 * We need to tell the secondary core where to find
87 	 * its stack and the page tables.
88 	 */
89 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
91 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
92 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
93 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94 
95 	/*
96 	 * Now bring the CPU into our world.
97 	 */
98 	ret = boot_secondary(cpu, idle);
99 	if (ret == 0) {
100 		/*
101 		 * CPU was successfully started, wait for it
102 		 * to come online or time out.
103 		 */
104 		wait_for_completion_timeout(&cpu_running,
105 						 msecs_to_jiffies(1000));
106 
107 		if (!cpu_online(cpu)) {
108 			pr_crit("CPU%u: failed to come online\n", cpu);
109 			ret = -EIO;
110 		}
111 	} else {
112 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113 	}
114 
115 	secondary_data.stack = NULL;
116 	secondary_data.pgdir = 0;
117 
118 	return ret;
119 }
120 
121 /* platform specific SMP operations */
122 void __init smp_init_cpus(void)
123 {
124 	if (smp_ops.smp_init_cpus)
125 		smp_ops.smp_init_cpus();
126 }
127 
128 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
129 {
130 	if (smp_ops.smp_boot_secondary)
131 		return smp_ops.smp_boot_secondary(cpu, idle);
132 	return -ENOSYS;
133 }
134 
135 #ifdef CONFIG_HOTPLUG_CPU
136 static void percpu_timer_stop(void);
137 
138 static int platform_cpu_kill(unsigned int cpu)
139 {
140 	if (smp_ops.cpu_kill)
141 		return smp_ops.cpu_kill(cpu);
142 	return 1;
143 }
144 
145 static int platform_cpu_disable(unsigned int cpu)
146 {
147 	if (smp_ops.cpu_disable)
148 		return smp_ops.cpu_disable(cpu);
149 
150 	/*
151 	 * By default, allow disabling all CPUs except the first one,
152 	 * since this is special on a lot of platforms, e.g. because
153 	 * of clock tick interrupts.
154 	 */
155 	return cpu == 0 ? -EPERM : 0;
156 }
157 /*
158  * __cpu_disable runs on the processor to be shutdown.
159  */
160 int __cpuinit __cpu_disable(void)
161 {
162 	unsigned int cpu = smp_processor_id();
163 	int ret;
164 
165 	ret = platform_cpu_disable(cpu);
166 	if (ret)
167 		return ret;
168 
169 	/*
170 	 * Take this CPU offline.  Once we clear this, we can't return,
171 	 * and we must not schedule until we're ready to give up the cpu.
172 	 */
173 	set_cpu_online(cpu, false);
174 
175 	/*
176 	 * OK - migrate IRQs away from this CPU
177 	 */
178 	migrate_irqs();
179 
180 	/*
181 	 * Stop the local timer for this CPU.
182 	 */
183 	percpu_timer_stop();
184 
185 	/*
186 	 * Flush user cache and TLB mappings, and then remove this CPU
187 	 * from the vm mask set of all processes.
188 	 *
189 	 * Caches are flushed to the Level of Unification Inner Shareable
190 	 * to write-back dirty lines to unified caches shared by all CPUs.
191 	 */
192 	flush_cache_louis();
193 	local_flush_tlb_all();
194 
195 	clear_tasks_mm_cpumask(cpu);
196 
197 	return 0;
198 }
199 
200 static DECLARE_COMPLETION(cpu_died);
201 
202 /*
203  * called on the thread which is asking for a CPU to be shutdown -
204  * waits until shutdown has completed, or it is timed out.
205  */
206 void __cpuinit __cpu_die(unsigned int cpu)
207 {
208 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
209 		pr_err("CPU%u: cpu didn't die\n", cpu);
210 		return;
211 	}
212 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
213 
214 	if (!platform_cpu_kill(cpu))
215 		printk("CPU%u: unable to kill\n", cpu);
216 }
217 
218 /*
219  * Called from the idle thread for the CPU which has been shutdown.
220  *
221  * Note that we disable IRQs here, but do not re-enable them
222  * before returning to the caller. This is also the behaviour
223  * of the other hotplug-cpu capable cores, so presumably coming
224  * out of idle fixes this.
225  */
226 void __ref cpu_die(void)
227 {
228 	unsigned int cpu = smp_processor_id();
229 
230 	idle_task_exit();
231 
232 	local_irq_disable();
233 	mb();
234 
235 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
236 	RCU_NONIDLE(complete(&cpu_died));
237 
238 	/*
239 	 * actual CPU shutdown procedure is at least platform (if not
240 	 * CPU) specific.
241 	 */
242 	if (smp_ops.cpu_die)
243 		smp_ops.cpu_die(cpu);
244 
245 	/*
246 	 * Do not return to the idle loop - jump back to the secondary
247 	 * cpu initialisation.  There's some initialisation which needs
248 	 * to be repeated to undo the effects of taking the CPU offline.
249 	 */
250 	__asm__("mov	sp, %0\n"
251 	"	mov	fp, #0\n"
252 	"	b	secondary_start_kernel"
253 		:
254 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
255 }
256 #endif /* CONFIG_HOTPLUG_CPU */
257 
258 /*
259  * Called by both boot and secondaries to move global data into
260  * per-processor storage.
261  */
262 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
263 {
264 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
265 
266 	cpu_info->loops_per_jiffy = loops_per_jiffy;
267 	cpu_info->cpuid = read_cpuid_id();
268 
269 	store_cpu_topology(cpuid);
270 }
271 
272 static void percpu_timer_setup(void);
273 
274 /*
275  * This is the secondary CPU boot entry.  We're using this CPUs
276  * idle thread stack, but a set of temporary page tables.
277  */
278 asmlinkage void __cpuinit secondary_start_kernel(void)
279 {
280 	struct mm_struct *mm = &init_mm;
281 	unsigned int cpu;
282 
283 	/*
284 	 * The identity mapping is uncached (strongly ordered), so
285 	 * switch away from it before attempting any exclusive accesses.
286 	 */
287 	cpu_switch_mm(mm->pgd, mm);
288 	local_flush_bp_all();
289 	enter_lazy_tlb(mm, current);
290 	local_flush_tlb_all();
291 
292 	/*
293 	 * All kernel threads share the same mm context; grab a
294 	 * reference and switch to it.
295 	 */
296 	cpu = smp_processor_id();
297 	atomic_inc(&mm->mm_count);
298 	current->active_mm = mm;
299 	cpumask_set_cpu(cpu, mm_cpumask(mm));
300 
301 	cpu_init();
302 
303 	printk("CPU%u: Booted secondary processor\n", cpu);
304 
305 	preempt_disable();
306 	trace_hardirqs_off();
307 
308 	/*
309 	 * Give the platform a chance to do its own initialisation.
310 	 */
311 	if (smp_ops.smp_secondary_init)
312 		smp_ops.smp_secondary_init(cpu);
313 
314 	notify_cpu_starting(cpu);
315 
316 	calibrate_delay();
317 
318 	smp_store_cpu_info(cpu);
319 
320 	/*
321 	 * OK, now it's safe to let the boot CPU continue.  Wait for
322 	 * the CPU migration code to notice that the CPU is online
323 	 * before we continue - which happens after __cpu_up returns.
324 	 */
325 	set_cpu_online(cpu, true);
326 	complete(&cpu_running);
327 
328 	/*
329 	 * Setup the percpu timer for this CPU.
330 	 */
331 	percpu_timer_setup();
332 
333 	local_irq_enable();
334 	local_fiq_enable();
335 
336 	/*
337 	 * OK, it's off to the idle thread for us
338 	 */
339 	cpu_idle();
340 }
341 
342 void __init smp_cpus_done(unsigned int max_cpus)
343 {
344 	int cpu;
345 	unsigned long bogosum = 0;
346 
347 	for_each_online_cpu(cpu)
348 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
349 
350 	printk(KERN_INFO "SMP: Total of %d processors activated "
351 	       "(%lu.%02lu BogoMIPS).\n",
352 	       num_online_cpus(),
353 	       bogosum / (500000/HZ),
354 	       (bogosum / (5000/HZ)) % 100);
355 
356 	hyp_mode_check();
357 }
358 
359 void __init smp_prepare_boot_cpu(void)
360 {
361 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
362 }
363 
364 void __init smp_prepare_cpus(unsigned int max_cpus)
365 {
366 	unsigned int ncores = num_possible_cpus();
367 
368 	init_cpu_topology();
369 
370 	smp_store_cpu_info(smp_processor_id());
371 
372 	/*
373 	 * are we trying to boot more cores than exist?
374 	 */
375 	if (max_cpus > ncores)
376 		max_cpus = ncores;
377 	if (ncores > 1 && max_cpus) {
378 		/*
379 		 * Enable the local timer or broadcast device for the
380 		 * boot CPU, but only if we have more than one CPU.
381 		 */
382 		percpu_timer_setup();
383 
384 		/*
385 		 * Initialise the present map, which describes the set of CPUs
386 		 * actually populated at the present time. A platform should
387 		 * re-initialize the map in the platforms smp_prepare_cpus()
388 		 * if present != possible (e.g. physical hotplug).
389 		 */
390 		init_cpu_present(cpu_possible_mask);
391 
392 		/*
393 		 * Initialise the SCU if there are more than one CPU
394 		 * and let them know where to start.
395 		 */
396 		if (smp_ops.smp_prepare_cpus)
397 			smp_ops.smp_prepare_cpus(max_cpus);
398 	}
399 }
400 
401 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
402 
403 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
404 {
405 	if (!smp_cross_call)
406 		smp_cross_call = fn;
407 }
408 
409 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
410 {
411 	smp_cross_call(mask, IPI_CALL_FUNC);
412 }
413 
414 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
415 {
416 	smp_cross_call(mask, IPI_WAKEUP);
417 }
418 
419 void arch_send_call_function_single_ipi(int cpu)
420 {
421 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
422 }
423 
424 static const char *ipi_types[NR_IPI] = {
425 #define S(x,s)	[x] = s
426 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
427 	S(IPI_TIMER, "Timer broadcast interrupts"),
428 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
429 	S(IPI_CALL_FUNC, "Function call interrupts"),
430 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
431 	S(IPI_CPU_STOP, "CPU stop interrupts"),
432 };
433 
434 void show_ipi_list(struct seq_file *p, int prec)
435 {
436 	unsigned int cpu, i;
437 
438 	for (i = 0; i < NR_IPI; i++) {
439 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
440 
441 		for_each_online_cpu(cpu)
442 			seq_printf(p, "%10u ",
443 				   __get_irq_stat(cpu, ipi_irqs[i]));
444 
445 		seq_printf(p, " %s\n", ipi_types[i]);
446 	}
447 }
448 
449 u64 smp_irq_stat_cpu(unsigned int cpu)
450 {
451 	u64 sum = 0;
452 	int i;
453 
454 	for (i = 0; i < NR_IPI; i++)
455 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
456 
457 	return sum;
458 }
459 
460 /*
461  * Timer (local or broadcast) support
462  */
463 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
464 
465 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
466 void tick_broadcast(const struct cpumask *mask)
467 {
468 	smp_cross_call(mask, IPI_TIMER);
469 }
470 #endif
471 
472 static void broadcast_timer_set_mode(enum clock_event_mode mode,
473 	struct clock_event_device *evt)
474 {
475 }
476 
477 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
478 {
479 	evt->name	= "dummy_timer";
480 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
481 			  CLOCK_EVT_FEAT_PERIODIC |
482 			  CLOCK_EVT_FEAT_DUMMY;
483 	evt->rating	= 100;
484 	evt->mult	= 1;
485 	evt->set_mode	= broadcast_timer_set_mode;
486 
487 	clockevents_register_device(evt);
488 }
489 
490 static struct local_timer_ops *lt_ops;
491 
492 #ifdef CONFIG_LOCAL_TIMERS
493 int local_timer_register(struct local_timer_ops *ops)
494 {
495 	if (!is_smp() || !setup_max_cpus)
496 		return -ENXIO;
497 
498 	if (lt_ops)
499 		return -EBUSY;
500 
501 	lt_ops = ops;
502 	return 0;
503 }
504 #endif
505 
506 static void __cpuinit percpu_timer_setup(void)
507 {
508 	unsigned int cpu = smp_processor_id();
509 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
510 
511 	evt->cpumask = cpumask_of(cpu);
512 
513 	if (!lt_ops || lt_ops->setup(evt))
514 		broadcast_timer_setup(evt);
515 }
516 
517 #ifdef CONFIG_HOTPLUG_CPU
518 /*
519  * The generic clock events code purposely does not stop the local timer
520  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
521  * manually here.
522  */
523 static void percpu_timer_stop(void)
524 {
525 	unsigned int cpu = smp_processor_id();
526 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
527 
528 	if (lt_ops)
529 		lt_ops->stop(evt);
530 }
531 #endif
532 
533 static DEFINE_RAW_SPINLOCK(stop_lock);
534 
535 /*
536  * ipi_cpu_stop - handle IPI from smp_send_stop()
537  */
538 static void ipi_cpu_stop(unsigned int cpu)
539 {
540 	if (system_state == SYSTEM_BOOTING ||
541 	    system_state == SYSTEM_RUNNING) {
542 		raw_spin_lock(&stop_lock);
543 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
544 		dump_stack();
545 		raw_spin_unlock(&stop_lock);
546 	}
547 
548 	set_cpu_online(cpu, false);
549 
550 	local_fiq_disable();
551 	local_irq_disable();
552 
553 	while (1)
554 		cpu_relax();
555 }
556 
557 /*
558  * Main handler for inter-processor interrupts
559  */
560 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
561 {
562 	handle_IPI(ipinr, regs);
563 }
564 
565 void handle_IPI(int ipinr, struct pt_regs *regs)
566 {
567 	unsigned int cpu = smp_processor_id();
568 	struct pt_regs *old_regs = set_irq_regs(regs);
569 
570 	if (ipinr < NR_IPI)
571 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
572 
573 	switch (ipinr) {
574 	case IPI_WAKEUP:
575 		break;
576 
577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
578 	case IPI_TIMER:
579 		irq_enter();
580 		tick_receive_broadcast();
581 		irq_exit();
582 		break;
583 #endif
584 
585 	case IPI_RESCHEDULE:
586 		scheduler_ipi();
587 		break;
588 
589 	case IPI_CALL_FUNC:
590 		irq_enter();
591 		generic_smp_call_function_interrupt();
592 		irq_exit();
593 		break;
594 
595 	case IPI_CALL_FUNC_SINGLE:
596 		irq_enter();
597 		generic_smp_call_function_single_interrupt();
598 		irq_exit();
599 		break;
600 
601 	case IPI_CPU_STOP:
602 		irq_enter();
603 		ipi_cpu_stop(cpu);
604 		irq_exit();
605 		break;
606 
607 	default:
608 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
609 		       cpu, ipinr);
610 		break;
611 	}
612 	set_irq_regs(old_regs);
613 }
614 
615 void smp_send_reschedule(int cpu)
616 {
617 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
618 }
619 
620 #ifdef CONFIG_HOTPLUG_CPU
621 static void smp_kill_cpus(cpumask_t *mask)
622 {
623 	unsigned int cpu;
624 	for_each_cpu(cpu, mask)
625 		platform_cpu_kill(cpu);
626 }
627 #else
628 static void smp_kill_cpus(cpumask_t *mask) { }
629 #endif
630 
631 void smp_send_stop(void)
632 {
633 	unsigned long timeout;
634 	struct cpumask mask;
635 
636 	cpumask_copy(&mask, cpu_online_mask);
637 	cpumask_clear_cpu(smp_processor_id(), &mask);
638 	if (!cpumask_empty(&mask))
639 		smp_cross_call(&mask, IPI_CPU_STOP);
640 
641 	/* Wait up to one second for other CPUs to stop */
642 	timeout = USEC_PER_SEC;
643 	while (num_online_cpus() > 1 && timeout--)
644 		udelay(1);
645 
646 	if (num_online_cpus() > 1)
647 		pr_warning("SMP: failed to stop secondary CPUs\n");
648 
649 	smp_kill_cpus(&mask);
650 }
651 
652 /*
653  * not supported here
654  */
655 int setup_profiling_timer(unsigned int multiplier)
656 {
657 	return -EINVAL;
658 }
659 
660 #ifdef CONFIG_CPU_FREQ
661 
662 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
663 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
664 static unsigned long global_l_p_j_ref;
665 static unsigned long global_l_p_j_ref_freq;
666 
667 static int cpufreq_callback(struct notifier_block *nb,
668 					unsigned long val, void *data)
669 {
670 	struct cpufreq_freqs *freq = data;
671 	int cpu = freq->cpu;
672 
673 	if (freq->flags & CPUFREQ_CONST_LOOPS)
674 		return NOTIFY_OK;
675 
676 	if (!per_cpu(l_p_j_ref, cpu)) {
677 		per_cpu(l_p_j_ref, cpu) =
678 			per_cpu(cpu_data, cpu).loops_per_jiffy;
679 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
680 		if (!global_l_p_j_ref) {
681 			global_l_p_j_ref = loops_per_jiffy;
682 			global_l_p_j_ref_freq = freq->old;
683 		}
684 	}
685 
686 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
687 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
688 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
689 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
690 						global_l_p_j_ref_freq,
691 						freq->new);
692 		per_cpu(cpu_data, cpu).loops_per_jiffy =
693 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
694 					per_cpu(l_p_j_ref_freq, cpu),
695 					freq->new);
696 	}
697 	return NOTIFY_OK;
698 }
699 
700 static struct notifier_block cpufreq_notifier = {
701 	.notifier_call  = cpufreq_callback,
702 };
703 
704 static int __init register_cpufreq_notifier(void)
705 {
706 	return cpufreq_register_notifier(&cpufreq_notifier,
707 						CPUFREQ_TRANSITION_NOTIFIER);
708 }
709 core_initcall(register_cpufreq_notifier);
710 
711 #endif
712