1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/smp.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/exception.h> 35 #include <asm/idmap.h> 36 #include <asm/topology.h> 37 #include <asm/mmu_context.h> 38 #include <asm/pgtable.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sections.h> 42 #include <asm/tlbflush.h> 43 #include <asm/ptrace.h> 44 #include <asm/localtimer.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 49 /* 50 * as from 2.5, kernels no longer have an init_tasks structure 51 * so we need some other way of telling a new secondary core 52 * where to place its SVC stack 53 */ 54 struct secondary_data secondary_data; 55 56 /* 57 * control for which core is the next to come out of the secondary 58 * boot "holding pen" 59 */ 60 volatile int __cpuinitdata pen_release = -1; 61 62 enum ipi_msg_type { 63 IPI_WAKEUP, 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CALL_FUNC_SINGLE, 68 IPI_CPU_STOP, 69 }; 70 71 static DECLARE_COMPLETION(cpu_running); 72 73 static struct smp_operations smp_ops; 74 75 void __init smp_set_ops(struct smp_operations *ops) 76 { 77 if (ops) 78 smp_ops = *ops; 79 }; 80 81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) 82 { 83 int ret; 84 85 /* 86 * We need to tell the secondary core where to find 87 * its stack and the page tables. 88 */ 89 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 90 secondary_data.pgdir = virt_to_phys(idmap_pgd); 91 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir); 92 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 93 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 94 95 /* 96 * Now bring the CPU into our world. 97 */ 98 ret = boot_secondary(cpu, idle); 99 if (ret == 0) { 100 /* 101 * CPU was successfully started, wait for it 102 * to come online or time out. 103 */ 104 wait_for_completion_timeout(&cpu_running, 105 msecs_to_jiffies(1000)); 106 107 if (!cpu_online(cpu)) { 108 pr_crit("CPU%u: failed to come online\n", cpu); 109 ret = -EIO; 110 } 111 } else { 112 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 113 } 114 115 secondary_data.stack = NULL; 116 secondary_data.pgdir = 0; 117 118 return ret; 119 } 120 121 /* platform specific SMP operations */ 122 void __init smp_init_cpus(void) 123 { 124 if (smp_ops.smp_init_cpus) 125 smp_ops.smp_init_cpus(); 126 } 127 128 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) 129 { 130 if (smp_ops.smp_boot_secondary) 131 return smp_ops.smp_boot_secondary(cpu, idle); 132 return -ENOSYS; 133 } 134 135 #ifdef CONFIG_HOTPLUG_CPU 136 static void percpu_timer_stop(void); 137 138 static int platform_cpu_kill(unsigned int cpu) 139 { 140 if (smp_ops.cpu_kill) 141 return smp_ops.cpu_kill(cpu); 142 return 1; 143 } 144 145 static int platform_cpu_disable(unsigned int cpu) 146 { 147 if (smp_ops.cpu_disable) 148 return smp_ops.cpu_disable(cpu); 149 150 /* 151 * By default, allow disabling all CPUs except the first one, 152 * since this is special on a lot of platforms, e.g. because 153 * of clock tick interrupts. 154 */ 155 return cpu == 0 ? -EPERM : 0; 156 } 157 /* 158 * __cpu_disable runs on the processor to be shutdown. 159 */ 160 int __cpuinit __cpu_disable(void) 161 { 162 unsigned int cpu = smp_processor_id(); 163 int ret; 164 165 ret = platform_cpu_disable(cpu); 166 if (ret) 167 return ret; 168 169 /* 170 * Take this CPU offline. Once we clear this, we can't return, 171 * and we must not schedule until we're ready to give up the cpu. 172 */ 173 set_cpu_online(cpu, false); 174 175 /* 176 * OK - migrate IRQs away from this CPU 177 */ 178 migrate_irqs(); 179 180 /* 181 * Stop the local timer for this CPU. 182 */ 183 percpu_timer_stop(); 184 185 /* 186 * Flush user cache and TLB mappings, and then remove this CPU 187 * from the vm mask set of all processes. 188 * 189 * Caches are flushed to the Level of Unification Inner Shareable 190 * to write-back dirty lines to unified caches shared by all CPUs. 191 */ 192 flush_cache_louis(); 193 local_flush_tlb_all(); 194 195 clear_tasks_mm_cpumask(cpu); 196 197 return 0; 198 } 199 200 static DECLARE_COMPLETION(cpu_died); 201 202 /* 203 * called on the thread which is asking for a CPU to be shutdown - 204 * waits until shutdown has completed, or it is timed out. 205 */ 206 void __cpuinit __cpu_die(unsigned int cpu) 207 { 208 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 209 pr_err("CPU%u: cpu didn't die\n", cpu); 210 return; 211 } 212 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 213 214 if (!platform_cpu_kill(cpu)) 215 printk("CPU%u: unable to kill\n", cpu); 216 } 217 218 /* 219 * Called from the idle thread for the CPU which has been shutdown. 220 * 221 * Note that we disable IRQs here, but do not re-enable them 222 * before returning to the caller. This is also the behaviour 223 * of the other hotplug-cpu capable cores, so presumably coming 224 * out of idle fixes this. 225 */ 226 void __ref cpu_die(void) 227 { 228 unsigned int cpu = smp_processor_id(); 229 230 idle_task_exit(); 231 232 local_irq_disable(); 233 mb(); 234 235 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 236 RCU_NONIDLE(complete(&cpu_died)); 237 238 /* 239 * actual CPU shutdown procedure is at least platform (if not 240 * CPU) specific. 241 */ 242 if (smp_ops.cpu_die) 243 smp_ops.cpu_die(cpu); 244 245 /* 246 * Do not return to the idle loop - jump back to the secondary 247 * cpu initialisation. There's some initialisation which needs 248 * to be repeated to undo the effects of taking the CPU offline. 249 */ 250 __asm__("mov sp, %0\n" 251 " mov fp, #0\n" 252 " b secondary_start_kernel" 253 : 254 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 255 } 256 #endif /* CONFIG_HOTPLUG_CPU */ 257 258 /* 259 * Called by both boot and secondaries to move global data into 260 * per-processor storage. 261 */ 262 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 263 { 264 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 265 266 cpu_info->loops_per_jiffy = loops_per_jiffy; 267 cpu_info->cpuid = read_cpuid_id(); 268 269 store_cpu_topology(cpuid); 270 } 271 272 static void percpu_timer_setup(void); 273 274 /* 275 * This is the secondary CPU boot entry. We're using this CPUs 276 * idle thread stack, but a set of temporary page tables. 277 */ 278 asmlinkage void __cpuinit secondary_start_kernel(void) 279 { 280 struct mm_struct *mm = &init_mm; 281 unsigned int cpu; 282 283 /* 284 * The identity mapping is uncached (strongly ordered), so 285 * switch away from it before attempting any exclusive accesses. 286 */ 287 cpu_switch_mm(mm->pgd, mm); 288 local_flush_bp_all(); 289 enter_lazy_tlb(mm, current); 290 local_flush_tlb_all(); 291 292 /* 293 * All kernel threads share the same mm context; grab a 294 * reference and switch to it. 295 */ 296 cpu = smp_processor_id(); 297 atomic_inc(&mm->mm_count); 298 current->active_mm = mm; 299 cpumask_set_cpu(cpu, mm_cpumask(mm)); 300 301 cpu_init(); 302 303 printk("CPU%u: Booted secondary processor\n", cpu); 304 305 preempt_disable(); 306 trace_hardirqs_off(); 307 308 /* 309 * Give the platform a chance to do its own initialisation. 310 */ 311 if (smp_ops.smp_secondary_init) 312 smp_ops.smp_secondary_init(cpu); 313 314 notify_cpu_starting(cpu); 315 316 calibrate_delay(); 317 318 smp_store_cpu_info(cpu); 319 320 /* 321 * OK, now it's safe to let the boot CPU continue. Wait for 322 * the CPU migration code to notice that the CPU is online 323 * before we continue - which happens after __cpu_up returns. 324 */ 325 set_cpu_online(cpu, true); 326 complete(&cpu_running); 327 328 /* 329 * Setup the percpu timer for this CPU. 330 */ 331 percpu_timer_setup(); 332 333 local_irq_enable(); 334 local_fiq_enable(); 335 336 /* 337 * OK, it's off to the idle thread for us 338 */ 339 cpu_idle(); 340 } 341 342 void __init smp_cpus_done(unsigned int max_cpus) 343 { 344 int cpu; 345 unsigned long bogosum = 0; 346 347 for_each_online_cpu(cpu) 348 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 349 350 printk(KERN_INFO "SMP: Total of %d processors activated " 351 "(%lu.%02lu BogoMIPS).\n", 352 num_online_cpus(), 353 bogosum / (500000/HZ), 354 (bogosum / (5000/HZ)) % 100); 355 356 hyp_mode_check(); 357 } 358 359 void __init smp_prepare_boot_cpu(void) 360 { 361 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 362 } 363 364 void __init smp_prepare_cpus(unsigned int max_cpus) 365 { 366 unsigned int ncores = num_possible_cpus(); 367 368 init_cpu_topology(); 369 370 smp_store_cpu_info(smp_processor_id()); 371 372 /* 373 * are we trying to boot more cores than exist? 374 */ 375 if (max_cpus > ncores) 376 max_cpus = ncores; 377 if (ncores > 1 && max_cpus) { 378 /* 379 * Enable the local timer or broadcast device for the 380 * boot CPU, but only if we have more than one CPU. 381 */ 382 percpu_timer_setup(); 383 384 /* 385 * Initialise the present map, which describes the set of CPUs 386 * actually populated at the present time. A platform should 387 * re-initialize the map in the platforms smp_prepare_cpus() 388 * if present != possible (e.g. physical hotplug). 389 */ 390 init_cpu_present(cpu_possible_mask); 391 392 /* 393 * Initialise the SCU if there are more than one CPU 394 * and let them know where to start. 395 */ 396 if (smp_ops.smp_prepare_cpus) 397 smp_ops.smp_prepare_cpus(max_cpus); 398 } 399 } 400 401 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 402 403 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 404 { 405 if (!smp_cross_call) 406 smp_cross_call = fn; 407 } 408 409 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 410 { 411 smp_cross_call(mask, IPI_CALL_FUNC); 412 } 413 414 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 415 { 416 smp_cross_call(mask, IPI_WAKEUP); 417 } 418 419 void arch_send_call_function_single_ipi(int cpu) 420 { 421 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 422 } 423 424 static const char *ipi_types[NR_IPI] = { 425 #define S(x,s) [x] = s 426 S(IPI_WAKEUP, "CPU wakeup interrupts"), 427 S(IPI_TIMER, "Timer broadcast interrupts"), 428 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 429 S(IPI_CALL_FUNC, "Function call interrupts"), 430 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 431 S(IPI_CPU_STOP, "CPU stop interrupts"), 432 }; 433 434 void show_ipi_list(struct seq_file *p, int prec) 435 { 436 unsigned int cpu, i; 437 438 for (i = 0; i < NR_IPI; i++) { 439 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 440 441 for_each_online_cpu(cpu) 442 seq_printf(p, "%10u ", 443 __get_irq_stat(cpu, ipi_irqs[i])); 444 445 seq_printf(p, " %s\n", ipi_types[i]); 446 } 447 } 448 449 u64 smp_irq_stat_cpu(unsigned int cpu) 450 { 451 u64 sum = 0; 452 int i; 453 454 for (i = 0; i < NR_IPI; i++) 455 sum += __get_irq_stat(cpu, ipi_irqs[i]); 456 457 return sum; 458 } 459 460 /* 461 * Timer (local or broadcast) support 462 */ 463 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 464 465 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 466 void tick_broadcast(const struct cpumask *mask) 467 { 468 smp_cross_call(mask, IPI_TIMER); 469 } 470 #endif 471 472 static void broadcast_timer_set_mode(enum clock_event_mode mode, 473 struct clock_event_device *evt) 474 { 475 } 476 477 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 478 { 479 evt->name = "dummy_timer"; 480 evt->features = CLOCK_EVT_FEAT_ONESHOT | 481 CLOCK_EVT_FEAT_PERIODIC | 482 CLOCK_EVT_FEAT_DUMMY; 483 evt->rating = 100; 484 evt->mult = 1; 485 evt->set_mode = broadcast_timer_set_mode; 486 487 clockevents_register_device(evt); 488 } 489 490 static struct local_timer_ops *lt_ops; 491 492 #ifdef CONFIG_LOCAL_TIMERS 493 int local_timer_register(struct local_timer_ops *ops) 494 { 495 if (!is_smp() || !setup_max_cpus) 496 return -ENXIO; 497 498 if (lt_ops) 499 return -EBUSY; 500 501 lt_ops = ops; 502 return 0; 503 } 504 #endif 505 506 static void __cpuinit percpu_timer_setup(void) 507 { 508 unsigned int cpu = smp_processor_id(); 509 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 510 511 evt->cpumask = cpumask_of(cpu); 512 513 if (!lt_ops || lt_ops->setup(evt)) 514 broadcast_timer_setup(evt); 515 } 516 517 #ifdef CONFIG_HOTPLUG_CPU 518 /* 519 * The generic clock events code purposely does not stop the local timer 520 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 521 * manually here. 522 */ 523 static void percpu_timer_stop(void) 524 { 525 unsigned int cpu = smp_processor_id(); 526 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 527 528 if (lt_ops) 529 lt_ops->stop(evt); 530 } 531 #endif 532 533 static DEFINE_RAW_SPINLOCK(stop_lock); 534 535 /* 536 * ipi_cpu_stop - handle IPI from smp_send_stop() 537 */ 538 static void ipi_cpu_stop(unsigned int cpu) 539 { 540 if (system_state == SYSTEM_BOOTING || 541 system_state == SYSTEM_RUNNING) { 542 raw_spin_lock(&stop_lock); 543 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 544 dump_stack(); 545 raw_spin_unlock(&stop_lock); 546 } 547 548 set_cpu_online(cpu, false); 549 550 local_fiq_disable(); 551 local_irq_disable(); 552 553 while (1) 554 cpu_relax(); 555 } 556 557 /* 558 * Main handler for inter-processor interrupts 559 */ 560 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 561 { 562 handle_IPI(ipinr, regs); 563 } 564 565 void handle_IPI(int ipinr, struct pt_regs *regs) 566 { 567 unsigned int cpu = smp_processor_id(); 568 struct pt_regs *old_regs = set_irq_regs(regs); 569 570 if (ipinr < NR_IPI) 571 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 572 573 switch (ipinr) { 574 case IPI_WAKEUP: 575 break; 576 577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 578 case IPI_TIMER: 579 irq_enter(); 580 tick_receive_broadcast(); 581 irq_exit(); 582 break; 583 #endif 584 585 case IPI_RESCHEDULE: 586 scheduler_ipi(); 587 break; 588 589 case IPI_CALL_FUNC: 590 irq_enter(); 591 generic_smp_call_function_interrupt(); 592 irq_exit(); 593 break; 594 595 case IPI_CALL_FUNC_SINGLE: 596 irq_enter(); 597 generic_smp_call_function_single_interrupt(); 598 irq_exit(); 599 break; 600 601 case IPI_CPU_STOP: 602 irq_enter(); 603 ipi_cpu_stop(cpu); 604 irq_exit(); 605 break; 606 607 default: 608 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 609 cpu, ipinr); 610 break; 611 } 612 set_irq_regs(old_regs); 613 } 614 615 void smp_send_reschedule(int cpu) 616 { 617 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 618 } 619 620 #ifdef CONFIG_HOTPLUG_CPU 621 static void smp_kill_cpus(cpumask_t *mask) 622 { 623 unsigned int cpu; 624 for_each_cpu(cpu, mask) 625 platform_cpu_kill(cpu); 626 } 627 #else 628 static void smp_kill_cpus(cpumask_t *mask) { } 629 #endif 630 631 void smp_send_stop(void) 632 { 633 unsigned long timeout; 634 struct cpumask mask; 635 636 cpumask_copy(&mask, cpu_online_mask); 637 cpumask_clear_cpu(smp_processor_id(), &mask); 638 if (!cpumask_empty(&mask)) 639 smp_cross_call(&mask, IPI_CPU_STOP); 640 641 /* Wait up to one second for other CPUs to stop */ 642 timeout = USEC_PER_SEC; 643 while (num_online_cpus() > 1 && timeout--) 644 udelay(1); 645 646 if (num_online_cpus() > 1) 647 pr_warning("SMP: failed to stop secondary CPUs\n"); 648 649 smp_kill_cpus(&mask); 650 } 651 652 /* 653 * not supported here 654 */ 655 int setup_profiling_timer(unsigned int multiplier) 656 { 657 return -EINVAL; 658 } 659 660 #ifdef CONFIG_CPU_FREQ 661 662 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 663 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 664 static unsigned long global_l_p_j_ref; 665 static unsigned long global_l_p_j_ref_freq; 666 667 static int cpufreq_callback(struct notifier_block *nb, 668 unsigned long val, void *data) 669 { 670 struct cpufreq_freqs *freq = data; 671 int cpu = freq->cpu; 672 673 if (freq->flags & CPUFREQ_CONST_LOOPS) 674 return NOTIFY_OK; 675 676 if (!per_cpu(l_p_j_ref, cpu)) { 677 per_cpu(l_p_j_ref, cpu) = 678 per_cpu(cpu_data, cpu).loops_per_jiffy; 679 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 680 if (!global_l_p_j_ref) { 681 global_l_p_j_ref = loops_per_jiffy; 682 global_l_p_j_ref_freq = freq->old; 683 } 684 } 685 686 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 687 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 688 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 689 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 690 global_l_p_j_ref_freq, 691 freq->new); 692 per_cpu(cpu_data, cpu).loops_per_jiffy = 693 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 694 per_cpu(l_p_j_ref_freq, cpu), 695 freq->new); 696 } 697 return NOTIFY_OK; 698 } 699 700 static struct notifier_block cpufreq_notifier = { 701 .notifier_call = cpufreq_callback, 702 }; 703 704 static int __init register_cpufreq_notifier(void) 705 { 706 return cpufreq_register_notifier(&cpufreq_notifier, 707 CPUFREQ_TRANSITION_NOTIFIER); 708 } 709 core_initcall(register_cpufreq_notifier); 710 711 #endif 712