1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 #include <linux/completion.h> 28 29 #include <linux/atomic.h> 30 #include <asm/cacheflush.h> 31 #include <asm/cpu.h> 32 #include <asm/cputype.h> 33 #include <asm/exception.h> 34 #include <asm/idmap.h> 35 #include <asm/topology.h> 36 #include <asm/mmu_context.h> 37 #include <asm/pgtable.h> 38 #include <asm/pgalloc.h> 39 #include <asm/processor.h> 40 #include <asm/sections.h> 41 #include <asm/tlbflush.h> 42 #include <asm/ptrace.h> 43 #include <asm/localtimer.h> 44 #include <asm/smp_plat.h> 45 46 /* 47 * as from 2.5, kernels no longer have an init_tasks structure 48 * so we need some other way of telling a new secondary core 49 * where to place its SVC stack 50 */ 51 struct secondary_data secondary_data; 52 53 enum ipi_msg_type { 54 IPI_TIMER = 2, 55 IPI_RESCHEDULE, 56 IPI_CALL_FUNC, 57 IPI_CALL_FUNC_SINGLE, 58 IPI_CPU_STOP, 59 }; 60 61 int __cpuinit __cpu_up(unsigned int cpu) 62 { 63 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 64 struct task_struct *idle = ci->idle; 65 int ret; 66 67 /* 68 * Spawn a new process manually, if not already done. 69 * Grab a pointer to its task struct so we can mess with it 70 */ 71 if (!idle) { 72 idle = fork_idle(cpu); 73 if (IS_ERR(idle)) { 74 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 75 return PTR_ERR(idle); 76 } 77 ci->idle = idle; 78 } else { 79 /* 80 * Since this idle thread is being re-used, call 81 * init_idle() to reinitialize the thread structure. 82 */ 83 init_idle(idle, cpu); 84 } 85 86 /* 87 * We need to tell the secondary core where to find 88 * its stack and the page tables. 89 */ 90 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 91 secondary_data.pgdir = virt_to_phys(idmap_pgd); 92 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir); 93 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 94 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 95 96 /* 97 * Now bring the CPU into our world. 98 */ 99 ret = boot_secondary(cpu, idle); 100 if (ret == 0) { 101 unsigned long timeout; 102 103 /* 104 * CPU was successfully started, wait for it 105 * to come online or time out. 106 */ 107 timeout = jiffies + HZ; 108 while (time_before(jiffies, timeout)) { 109 if (cpu_online(cpu)) 110 break; 111 112 udelay(10); 113 barrier(); 114 } 115 116 if (!cpu_online(cpu)) { 117 pr_crit("CPU%u: failed to come online\n", cpu); 118 ret = -EIO; 119 } 120 } else { 121 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 122 } 123 124 secondary_data.stack = NULL; 125 secondary_data.pgdir = 0; 126 127 return ret; 128 } 129 130 #ifdef CONFIG_HOTPLUG_CPU 131 static void percpu_timer_stop(void); 132 133 /* 134 * __cpu_disable runs on the processor to be shutdown. 135 */ 136 int __cpu_disable(void) 137 { 138 unsigned int cpu = smp_processor_id(); 139 struct task_struct *p; 140 int ret; 141 142 ret = platform_cpu_disable(cpu); 143 if (ret) 144 return ret; 145 146 /* 147 * Take this CPU offline. Once we clear this, we can't return, 148 * and we must not schedule until we're ready to give up the cpu. 149 */ 150 set_cpu_online(cpu, false); 151 152 /* 153 * OK - migrate IRQs away from this CPU 154 */ 155 migrate_irqs(); 156 157 /* 158 * Stop the local timer for this CPU. 159 */ 160 percpu_timer_stop(); 161 162 /* 163 * Flush user cache and TLB mappings, and then remove this CPU 164 * from the vm mask set of all processes. 165 */ 166 flush_cache_all(); 167 local_flush_tlb_all(); 168 169 read_lock(&tasklist_lock); 170 for_each_process(p) { 171 if (p->mm) 172 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 173 } 174 read_unlock(&tasklist_lock); 175 176 return 0; 177 } 178 179 static DECLARE_COMPLETION(cpu_died); 180 181 /* 182 * called on the thread which is asking for a CPU to be shutdown - 183 * waits until shutdown has completed, or it is timed out. 184 */ 185 void __cpu_die(unsigned int cpu) 186 { 187 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 188 pr_err("CPU%u: cpu didn't die\n", cpu); 189 return; 190 } 191 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 192 193 if (!platform_cpu_kill(cpu)) 194 printk("CPU%u: unable to kill\n", cpu); 195 } 196 197 /* 198 * Called from the idle thread for the CPU which has been shutdown. 199 * 200 * Note that we disable IRQs here, but do not re-enable them 201 * before returning to the caller. This is also the behaviour 202 * of the other hotplug-cpu capable cores, so presumably coming 203 * out of idle fixes this. 204 */ 205 void __ref cpu_die(void) 206 { 207 unsigned int cpu = smp_processor_id(); 208 209 idle_task_exit(); 210 211 local_irq_disable(); 212 mb(); 213 214 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 215 complete(&cpu_died); 216 217 /* 218 * actual CPU shutdown procedure is at least platform (if not 219 * CPU) specific. 220 */ 221 platform_cpu_die(cpu); 222 223 /* 224 * Do not return to the idle loop - jump back to the secondary 225 * cpu initialisation. There's some initialisation which needs 226 * to be repeated to undo the effects of taking the CPU offline. 227 */ 228 __asm__("mov sp, %0\n" 229 " mov fp, #0\n" 230 " b secondary_start_kernel" 231 : 232 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 233 } 234 #endif /* CONFIG_HOTPLUG_CPU */ 235 236 /* 237 * Called by both boot and secondaries to move global data into 238 * per-processor storage. 239 */ 240 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 241 { 242 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 243 244 cpu_info->loops_per_jiffy = loops_per_jiffy; 245 246 store_cpu_topology(cpuid); 247 } 248 249 /* 250 * This is the secondary CPU boot entry. We're using this CPUs 251 * idle thread stack, but a set of temporary page tables. 252 */ 253 asmlinkage void __cpuinit secondary_start_kernel(void) 254 { 255 struct mm_struct *mm = &init_mm; 256 unsigned int cpu = smp_processor_id(); 257 258 printk("CPU%u: Booted secondary processor\n", cpu); 259 260 /* 261 * All kernel threads share the same mm context; grab a 262 * reference and switch to it. 263 */ 264 atomic_inc(&mm->mm_count); 265 current->active_mm = mm; 266 cpumask_set_cpu(cpu, mm_cpumask(mm)); 267 cpu_switch_mm(mm->pgd, mm); 268 enter_lazy_tlb(mm, current); 269 local_flush_tlb_all(); 270 271 cpu_init(); 272 preempt_disable(); 273 trace_hardirqs_off(); 274 275 /* 276 * Give the platform a chance to do its own initialisation. 277 */ 278 platform_secondary_init(cpu); 279 280 notify_cpu_starting(cpu); 281 282 calibrate_delay(); 283 284 smp_store_cpu_info(cpu); 285 286 /* 287 * OK, now it's safe to let the boot CPU continue. Wait for 288 * the CPU migration code to notice that the CPU is online 289 * before we continue. 290 */ 291 set_cpu_online(cpu, true); 292 293 /* 294 * Setup the percpu timer for this CPU. 295 */ 296 percpu_timer_setup(); 297 298 local_irq_enable(); 299 local_fiq_enable(); 300 301 /* 302 * OK, it's off to the idle thread for us 303 */ 304 cpu_idle(); 305 } 306 307 void __init smp_cpus_done(unsigned int max_cpus) 308 { 309 int cpu; 310 unsigned long bogosum = 0; 311 312 for_each_online_cpu(cpu) 313 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 314 315 printk(KERN_INFO "SMP: Total of %d processors activated " 316 "(%lu.%02lu BogoMIPS).\n", 317 num_online_cpus(), 318 bogosum / (500000/HZ), 319 (bogosum / (5000/HZ)) % 100); 320 } 321 322 void __init smp_prepare_boot_cpu(void) 323 { 324 unsigned int cpu = smp_processor_id(); 325 326 per_cpu(cpu_data, cpu).idle = current; 327 } 328 329 void __init smp_prepare_cpus(unsigned int max_cpus) 330 { 331 unsigned int ncores = num_possible_cpus(); 332 333 init_cpu_topology(); 334 335 smp_store_cpu_info(smp_processor_id()); 336 337 /* 338 * are we trying to boot more cores than exist? 339 */ 340 if (max_cpus > ncores) 341 max_cpus = ncores; 342 if (ncores > 1 && max_cpus) { 343 /* 344 * Enable the local timer or broadcast device for the 345 * boot CPU, but only if we have more than one CPU. 346 */ 347 percpu_timer_setup(); 348 349 /* 350 * Initialise the present map, which describes the set of CPUs 351 * actually populated at the present time. A platform should 352 * re-initialize the map in platform_smp_prepare_cpus() if 353 * present != possible (e.g. physical hotplug). 354 */ 355 init_cpu_present(&cpu_possible_map); 356 357 /* 358 * Initialise the SCU if there are more than one CPU 359 * and let them know where to start. 360 */ 361 platform_smp_prepare_cpus(max_cpus); 362 } 363 } 364 365 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 366 367 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 368 { 369 smp_cross_call = fn; 370 } 371 372 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 373 { 374 smp_cross_call(mask, IPI_CALL_FUNC); 375 } 376 377 void arch_send_call_function_single_ipi(int cpu) 378 { 379 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 380 } 381 382 static const char *ipi_types[NR_IPI] = { 383 #define S(x,s) [x - IPI_TIMER] = s 384 S(IPI_TIMER, "Timer broadcast interrupts"), 385 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 386 S(IPI_CALL_FUNC, "Function call interrupts"), 387 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 388 S(IPI_CPU_STOP, "CPU stop interrupts"), 389 }; 390 391 void show_ipi_list(struct seq_file *p, int prec) 392 { 393 unsigned int cpu, i; 394 395 for (i = 0; i < NR_IPI; i++) { 396 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 397 398 for_each_present_cpu(cpu) 399 seq_printf(p, "%10u ", 400 __get_irq_stat(cpu, ipi_irqs[i])); 401 402 seq_printf(p, " %s\n", ipi_types[i]); 403 } 404 } 405 406 u64 smp_irq_stat_cpu(unsigned int cpu) 407 { 408 u64 sum = 0; 409 int i; 410 411 for (i = 0; i < NR_IPI; i++) 412 sum += __get_irq_stat(cpu, ipi_irqs[i]); 413 414 return sum; 415 } 416 417 /* 418 * Timer (local or broadcast) support 419 */ 420 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 421 422 static void ipi_timer(void) 423 { 424 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 425 evt->event_handler(evt); 426 } 427 428 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 429 static void smp_timer_broadcast(const struct cpumask *mask) 430 { 431 smp_cross_call(mask, IPI_TIMER); 432 } 433 #else 434 #define smp_timer_broadcast NULL 435 #endif 436 437 static void broadcast_timer_set_mode(enum clock_event_mode mode, 438 struct clock_event_device *evt) 439 { 440 } 441 442 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 443 { 444 evt->name = "dummy_timer"; 445 evt->features = CLOCK_EVT_FEAT_ONESHOT | 446 CLOCK_EVT_FEAT_PERIODIC | 447 CLOCK_EVT_FEAT_DUMMY; 448 evt->rating = 400; 449 evt->mult = 1; 450 evt->set_mode = broadcast_timer_set_mode; 451 452 clockevents_register_device(evt); 453 } 454 455 void __cpuinit percpu_timer_setup(void) 456 { 457 unsigned int cpu = smp_processor_id(); 458 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 459 460 evt->cpumask = cpumask_of(cpu); 461 evt->broadcast = smp_timer_broadcast; 462 463 if (local_timer_setup(evt)) 464 broadcast_timer_setup(evt); 465 } 466 467 #ifdef CONFIG_HOTPLUG_CPU 468 /* 469 * The generic clock events code purposely does not stop the local timer 470 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 471 * manually here. 472 */ 473 static void percpu_timer_stop(void) 474 { 475 unsigned int cpu = smp_processor_id(); 476 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 477 478 local_timer_stop(evt); 479 } 480 #endif 481 482 static DEFINE_RAW_SPINLOCK(stop_lock); 483 484 /* 485 * ipi_cpu_stop - handle IPI from smp_send_stop() 486 */ 487 static void ipi_cpu_stop(unsigned int cpu) 488 { 489 if (system_state == SYSTEM_BOOTING || 490 system_state == SYSTEM_RUNNING) { 491 raw_spin_lock(&stop_lock); 492 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 493 dump_stack(); 494 raw_spin_unlock(&stop_lock); 495 } 496 497 set_cpu_online(cpu, false); 498 499 local_fiq_disable(); 500 local_irq_disable(); 501 502 #ifdef CONFIG_HOTPLUG_CPU 503 platform_cpu_kill(cpu); 504 #endif 505 506 while (1) 507 cpu_relax(); 508 } 509 510 /* 511 * Main handler for inter-processor interrupts 512 */ 513 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 514 { 515 handle_IPI(ipinr, regs); 516 } 517 518 void handle_IPI(int ipinr, struct pt_regs *regs) 519 { 520 unsigned int cpu = smp_processor_id(); 521 struct pt_regs *old_regs = set_irq_regs(regs); 522 523 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI) 524 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]); 525 526 switch (ipinr) { 527 case IPI_TIMER: 528 irq_enter(); 529 ipi_timer(); 530 irq_exit(); 531 break; 532 533 case IPI_RESCHEDULE: 534 scheduler_ipi(); 535 break; 536 537 case IPI_CALL_FUNC: 538 irq_enter(); 539 generic_smp_call_function_interrupt(); 540 irq_exit(); 541 break; 542 543 case IPI_CALL_FUNC_SINGLE: 544 irq_enter(); 545 generic_smp_call_function_single_interrupt(); 546 irq_exit(); 547 break; 548 549 case IPI_CPU_STOP: 550 irq_enter(); 551 ipi_cpu_stop(cpu); 552 irq_exit(); 553 break; 554 555 default: 556 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 557 cpu, ipinr); 558 break; 559 } 560 set_irq_regs(old_regs); 561 } 562 563 void smp_send_reschedule(int cpu) 564 { 565 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 566 } 567 568 void smp_send_stop(void) 569 { 570 unsigned long timeout; 571 572 if (num_online_cpus() > 1) { 573 cpumask_t mask = cpu_online_map; 574 cpu_clear(smp_processor_id(), mask); 575 576 smp_cross_call(&mask, IPI_CPU_STOP); 577 } 578 579 /* Wait up to one second for other CPUs to stop */ 580 timeout = USEC_PER_SEC; 581 while (num_online_cpus() > 1 && timeout--) 582 udelay(1); 583 584 if (num_online_cpus() > 1) 585 pr_warning("SMP: failed to stop secondary CPUs\n"); 586 } 587 588 /* 589 * not supported here 590 */ 591 int setup_profiling_timer(unsigned int multiplier) 592 { 593 return -EINVAL; 594 } 595